1
|
Yan Q, Zhang T, O'Connor C, Barlow JW, Walsh J, Scalabrino G, Xu F, Sheridan H. The biological responses of vitamin K2: A comprehensive review. Food Sci Nutr 2023; 11:1634-1656. [PMID: 37051359 PMCID: PMC10084986 DOI: 10.1002/fsn3.3213] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Vitamin K1 (VitK1) and Vitamin K2 (VitK2), two important naturally occurring micronutrients in the VitK family, found, respectively, in green leafy plants and algae (VitK1) and animal and fermented foods (VitK2). The present review explores the multiple biological functions of VitK2 from recently published in vitro and in vivo studies, including promotion of osteogenesis, prevention of calcification, relief of menopausal symptoms, enhancement of mitochondrial energy release, hepato- and neuro-protective effects, and possible use in treatment of coronavirus disease. The mechanisms of action associated with these biological effects are also explored. Overall, the findings presented here suggest that VitK, especially VitK2, is an important nutrient family for the normal functioning of human health. It acts on almost all major body systems and directly or indirectly participates in and regulates hundreds of physiological or pathological processes. However, as biological and clinical data are still inconsistent and conflicting, more in-depth investigations are warranted to elucidate its potential as a therapeutic strategy to prevent and treat a range of disease conditions.
Collapse
Affiliation(s)
- Quanxiang Yan
- Institute of Science and TechnologyShenyang Open UniversityShenyangChina
| | - Tao Zhang
- School of Food Science & Environmental HealthTechnological University DublinDublin 7Ireland
- NatPro Centre, School of Pharmacy and Pharmaceutical SciencesTrinity College DublinDublin 2Ireland
| | - Christine O'Connor
- School of Food Science & Environmental HealthTechnological University DublinDublin 7Ireland
| | - James W. Barlow
- Department of ChemistryRCSI University of Medicine and Health SciencesDublin 2Ireland
| | - John Walsh
- NatPro Centre, School of Pharmacy and Pharmaceutical SciencesTrinity College DublinDublin 2Ireland
- School of Pharmacy and Pharmaceutical SciencesTrinity College DublinDublin 2Ireland
| | - Gaia Scalabrino
- NatPro Centre, School of Pharmacy and Pharmaceutical SciencesTrinity College DublinDublin 2Ireland
| | - Feng Xu
- The Centre of Vitamin K2 ResearchShenyang Pharmaceutical UniversityShenyangChina
| | - Helen Sheridan
- NatPro Centre, School of Pharmacy and Pharmaceutical SciencesTrinity College DublinDublin 2Ireland
- School of Pharmacy and Pharmaceutical SciencesTrinity College DublinDublin 2Ireland
| |
Collapse
|
2
|
Wada H, Aso K, Izumi M, Ikeuchi M. The effect of postmenopausal osteoporosis on subchondral bone pathology in a rat model of knee osteoarthritis. Sci Rep 2023; 13:2926. [PMID: 36804438 PMCID: PMC9941090 DOI: 10.1038/s41598-023-29802-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
This study aimed to investigate the additional effect of ovariectomy-induced osteoporosis (OP) on the pathology of knee osteoarthritis (OA) in a rat meniscectomized model, particularly focusing on subchondral bone changes and pain behaviour. Rats were divided into four groups, sham, OP, OA, OP plus OA, and assessed for histology, osteoclast activity, subchondral bone microstructure, and pain-related behaviour. Rats with OP plus OA had significantly increased calcified cartilage and subchondral bone damage scores, increased densities of subchondral osteoclasts in the weight-bearing area, and more porous subchondral trabecular bone compared with rats with OA. Loss of tidemark integrity was observed most frequently in rats with OP plus OA. The density of subchondral osteoclasts correlated with the calcified cartilage and subchondral bone damage score in rats with OA (OA and OP plus OA). No significant differences in the receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin (OPG) expression ratio in subchondral bone and pain-related behavioural tests were observed between rats with OA and rats with OP plus OA. In rats with OA, coexisting OP potentially aggravated OA pathology mainly in calcified cartilage and subchondral trabecular bone by increasing subchondral osteoclast activity.
Collapse
Affiliation(s)
- Hiroyuki Wada
- grid.278276.e0000 0001 0659 9825Department of Orthopaedic Surgery, Kochi Medical School, Kochi University, 185-1 Oko-cho Kohasu, Nankoku, 783-8505 Japan
| | - Koji Aso
- Department of Orthopaedic Surgery, Kochi Medical School, Kochi University, 185-1 Oko-cho Kohasu, Nankoku, 783-8505, Japan.
| | - Masashi Izumi
- grid.278276.e0000 0001 0659 9825Department of Orthopaedic Surgery, Kochi Medical School, Kochi University, 185-1 Oko-cho Kohasu, Nankoku, 783-8505 Japan
| | - Masahiko Ikeuchi
- grid.278276.e0000 0001 0659 9825Department of Orthopaedic Surgery, Kochi Medical School, Kochi University, 185-1 Oko-cho Kohasu, Nankoku, 783-8505 Japan
| |
Collapse
|
3
|
AlHajri L, Ayoub A, Ahmed H, AlMulla M. Effect of Vitamin K2 Alone or in Combination on Various Bone Turnover Markers Amongst Postmenopausal Females. J Bone Metab 2021; 28:11-26. [PMID: 33730780 PMCID: PMC7973400 DOI: 10.11005/jbm.2021.28.1.11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 01/28/2021] [Indexed: 11/27/2022] Open
Abstract
Background Osteoporosis is common in postmenopausal women. Some studies have demonstrated the usefulness of vitamin K through the action of bone-specific proteins and osteoblast and osteoclast activities. However, no systematic review had explored this aspect in postmenopausal women. Hence, this systematic review aimed to explore the effect of vitamin K2 alone or in combination with other agents (vitamin D3 or calcium) on various bone turnover markers (BTMs) and bone mineral density (BMD) in postmenopausal women. Methods MEDLINE, ScienceDirect, PubMed, and Google Scholar were searched to identify relevant studies using specific inclusion criteria. Data extraction and quality assessment were carried out using standardized tests, and the results were narratively synthesized and presented in the form of tables. Results Vitamin K2 was beneficial in inducing an improvement or preventing deterioration, as evidenced by the BMD and osteocalcin (OC), undercarboxylated OC (ucOC), carboxylated OC (cOC), and γ-carboxylated OC levels. However, its effect was not conclusive when procollagen type 1 N-terminal propeptide, carboxyterminal propeptide of type I procollagen, C-terminal telopeptide of type I collagen, bone alkaline phosphatase, deoxypyridinoline, and N-terminal telopeptide levels (NTX) and ucOC:cOC or cOC:ucOC, and NTX:creatinine ratios were examined. Conclusions Vitamin K2 supplementation combined with vitamin D and calcium was found to be advantageous. However, vitamin K2 supplementation cannot replace the existing treatment options. In addition, vitamin K2 should be used with caution, considering its interactions with food and other drugs.
Collapse
Affiliation(s)
- Lamia AlHajri
- Department of Health Sciences and Pharmacy, Higher Colleges of Technology, Dubai, United Arab Emirates.,Department of Health Research, Lancaster University, Lancaster, UK
| | - Amna Ayoub
- United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hessa Ahmed
- Department of Health Sciences and Pharmacy, Higher Colleges of Technology, Dubai, United Arab Emirates
| | - Marwa AlMulla
- Department of Health Sciences and Pharmacy, Higher Colleges of Technology, Dubai, United Arab Emirates
| |
Collapse
|
4
|
Soysa NS, Alles N. Positive and negative regulators of osteoclast apoptosis. Bone Rep 2019; 11:100225. [PMID: 31720316 PMCID: PMC6838739 DOI: 10.1016/j.bonr.2019.100225] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/22/2019] [Accepted: 10/02/2019] [Indexed: 12/26/2022] Open
Abstract
Survival and apoptosis are of major importance in the osteoclast life cycle. As osteoclasts have short lifespan, any alteration that prolongs their viability may cause enhanced osteoclast activity. Hence, the regulation of OC apoptosis has been recognized as a critical factor in bone remodeling. An imbalance in bone remodeling due to increased osteoclast activity leads to most adult bone diseases such as osteoporosis, rheumatoid arthritis and multiple myeloma. Therefore, manipulating osteoclast death would be a viable therapeutic approach in ameliorating bone diseases, with accelerated resorption. Over the last few decades we have witnessed the unraveling of many of the intracellular mechanisms responsible for osteoclast apoptosis. Thus, an understanding of the underlying mechanisms by which osteoclasts undergo programmed cell death and the regulators that modulate that activity will undoubtedly provide an insight into the development of pharmacological agents to treat such pathological bone diseases.
Collapse
Affiliation(s)
- Niroshani Surangika Soysa
- Division of Pharmacology, Department of Oral Medicine and Periodontology, Faculty of Dental Sciences, University of Peradeniya, Sri Lanka
| | - Neil Alles
- Department of Biochemistry, Faculty of Medicine, University of Peradeniya, Sri Lanka
| |
Collapse
|
5
|
Vitamin K and Bone Metabolism: A Review of the Latest Evidence in Preclinical Studies. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4629383. [PMID: 30050932 PMCID: PMC6040265 DOI: 10.1155/2018/4629383] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/27/2018] [Indexed: 01/09/2023]
Abstract
Bone is a metabolically active tissue that renews itself throughout one's life. Cytokines along with several hormonal, nutritional, and growth factors are involved in tightly regulated bone remodeling. Accordingly, vitamin K as a multifunctional vitamin has been recently deemed appreciable as a topic of research as it plays a pivotal role in maintenance of the bone strength, and it has been proved to have a positive impact on the bone metabolism. Vitamin K exerts its anabolic effect on the bone turnover in different ways such as promoting osteoblast differentiation, upregulating transcription of specific genes in osteoblasts, and activating the bone-associated vitamin k dependent proteins which play critical roles in extracellular bone matrix mineralization. There is also credible evidence to support the effects of vitamin k2 on differentiation of other mesenchymal stem cells into osteoblast. The main objective of the present paper is to comprehensively outline the preclinical studies on the properties of vitamin K and its effects on the bone metabolism. The evidence could shed light on further clinical studies to improve osteogenesis in bone graft surgeries.
Collapse
|
6
|
Ray S, Thormann U, Sommer U, Khassawna TE, Hundgeburth M, Henß A, Rohnke M, Lips KS, Heiss C, Heinemann S, Hanke T, Dürselen L, Schnettler R, Alt V. Effects of macroporous, strontium loaded xerogel-scaffolds on new bone formation in critical-size metaphyseal fracture defects in ovariectomized rats. Injury 2016; 47 Suppl 1:S52-61. [PMID: 26768293 DOI: 10.1016/s0020-1383(16)30013-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
New bone formation was studied in a metaphyseal fracture-defect in ovariectomized rats stimulated by a plain and a strontium-enriched macroporous silica/collagen scaffold (ScB30 and ScB30Sr20) and a compact silica/collagen xerogel (B30). 45 female Sprague-Dawley rats were randomly assigned to three different treatment groups: (1) ScB30 (n=15), (2) ScB30Sr20 (n=15), and (3) B30 (n=15). 12 weeks after bilateral ovariectomy and multi-deficient diet, a 4 mm wedge-shaped fracture-defect was created at the metaphyseal area of the left femur. A 7-hole T-shaped plate at the lateral aspect of the femur stabilized the bone and the defect was filled with ScB30, ScB30Sr20 or B30 subsequently. After six weeks, histomorphometrical analysis revealed a statistically significant higher bone volume/tissue volume ratio in the ScB30Sr20 group compared to ScB30 (p=0.043) and B30 (p=0.0001) indicating an improved formation of new bone by the strontium-enriched macroporous silica/collagen scaffold. Furthermore, immunohistochemical results showed increased expression of BMP2 and OPG and a decreased RANKL expression in the ScB30Sr20 group. This was further confirmed with the gene expression analysis where an increase in prominent bone formation markers (ALP, OCN, Runx2, Col1a1 and Col10a1) was seen. No material remnants were found in the scaffold group indicating an almost complete degradation process of the biomaterials. This is confirmed by ToF-SIMS analysis that did not detect any strontium in the ScB30Sr20 group neither in the defect nor in the surrounding tissue. Taken together, this study shows the stimulating effects of strontium through increased bone formation by up regulation of osteoanabolic markers. This work also indicates the importance of material porosity, geometry and biodegradability in bone healing.
Collapse
Affiliation(s)
- Seemun Ray
- Laboratory of Experimental Trauma Surgery, Justus-Liebig-University, Giessen, Germany
| | - Ulrich Thormann
- Laboratory of Experimental Trauma Surgery, Justus-Liebig-University, Giessen, Germany; Department of Trauma Surgery, University Hospital Giessen-Marburg GmbH, Campus Giessen, Germany
| | - Ursula Sommer
- Laboratory of Experimental Trauma Surgery, Justus-Liebig-University, Giessen, Germany
| | - Thaqif El Khassawna
- Laboratory of Experimental Trauma Surgery, Justus-Liebig-University, Giessen, Germany
| | - Marvin Hundgeburth
- Laboratory of Experimental Trauma Surgery, Justus-Liebig-University, Giessen, Germany
| | - Anja Henß
- Institute of Physical Chemistry, Justus-Liebig-University Giessen, Giessen, Germany
| | - Marcus Rohnke
- Institute of Physical Chemistry, Justus-Liebig-University Giessen, Giessen, Germany
| | - Katrin S Lips
- Laboratory of Experimental Trauma Surgery, Justus-Liebig-University, Giessen, Germany
| | - Christian Heiss
- Laboratory of Experimental Trauma Surgery, Justus-Liebig-University, Giessen, Germany; Department of Trauma Surgery, University Hospital Giessen-Marburg GmbH, Campus Giessen, Germany
| | - Sascha Heinemann
- Max-Bergmann-Center of Biomaterials, Institute of Materials Science, Technische Universität Dresden, Dresden, Germany
| | - Thomas Hanke
- Max-Bergmann-Center of Biomaterials, Institute of Materials Science, Technische Universität Dresden, Dresden, Germany
| | - Lutz Dürselen
- Institute for Trauma Surgery Research and Biomechanics, Centre for Musculoskeletal Research Ulm, Germany
| | - Reinhard Schnettler
- Laboratory of Experimental Trauma Surgery, Justus-Liebig-University, Giessen, Germany; Department of Trauma Surgery, University Hospital Giessen-Marburg GmbH, Campus Giessen, Germany
| | - Volker Alt
- Laboratory of Experimental Trauma Surgery, Justus-Liebig-University, Giessen, Germany; Department of Trauma Surgery, University Hospital Giessen-Marburg GmbH, Campus Giessen, Germany.
| |
Collapse
|
7
|
Azuma K, Shiba S, Hasegawa T, Ikeda K, Urano T, Horie-Inoue K, Ouchi Y, Amizuka N, Inoue S. Osteoblast-Specific γ-Glutamyl Carboxylase-Deficient Mice Display Enhanced Bone Formation With Aberrant Mineralization. J Bone Miner Res 2015; 30:1245-54. [PMID: 25600070 DOI: 10.1002/jbmr.2463] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 12/19/2022]
Abstract
Vitamin K is a fat-soluble vitamin that is necessary for blood coagulation. In addition, it has bone-protective effects. Vitamin K functions as a cofactor of γ-glutamyl carboxylase (GGCX), which activates its substrates by carboxylation. These substrates are found throughout the body and examples include hepatic blood coagulation factors. Furthermore, vitamin K functions as a ligand of the nuclear receptor known as steroid and xenobiotic receptor (SXR) and its murine ortholog, pregnane X receptor (PXR). We have previously reported on the bone-protective role of SXR/PXR signaling by demonstrating that systemic Pxr-knockout mice displayed osteopenia. Because systemic Ggcx-knockout mice die shortly after birth from severe hemorrhage, the GGCX-mediated effect of vitamin K on bone metabolism has been difficult to evaluate. In this work, we utilized Ggcx-floxed mice to generate osteoblast-specific GGCX-deficient (Ggcx(Δobl/Δobl)) mice by crossing them with Col1-Cre mice. The bone mineral density (BMD) of Ggcx(Δobl/Δobl) mice was significantly higher than that of control Col1-Cre (Ggcx(+/+)) mice. Histomorphometrical analysis of trabecular bones in the proximal tibia showed increased osteoid volume and a higher rate of bone formation in Ggcx(Δobl/Δobl) mice. Histomorphometrical analysis of cortical bones revealed a thicker cortical width and a higher rate of bone formation in Ggcx(Δobl/Δobl) mice. Electron microscopic examination revealed disassembly of mineralized nodules and aberrant calcification of collagen fibers in Ggcx(Δobl/Δobl) mice. The mechanical properties of bones from Ggcx(Δobl/Δobl) mice tended to be stronger than those from control Ggcx(+/+) mice. These results suggest that GGCX in osteoblasts functions to prevent abnormal mineralization in bone formation, although this function may not be a prerequisite for the bone-protective effect of vitamin K.
Collapse
Affiliation(s)
- Kotaro Azuma
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sachiko Shiba
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Tomoka Hasegawa
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiro Ikeda
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Tomohiko Urano
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kuniko Horie-Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Yasuyoshi Ouchi
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Toranomon Hospital, Tokyo, Japan
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Inoue
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan.,Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Hong YJ, Liu S, Jiang NY, Jiang S, Liang JG. Vitamin K3 increased BMD at 1 and 2 months post-surgery and the maximum stress of the middle femur in the rat. Nutr Res 2015; 35:155-61. [PMID: 25433907 DOI: 10.1016/j.nutres.2014.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 02/05/2023]
Abstract
The therapeutic effects of vitamin K3 (VK3) on osteoporosis are still unknown. In this study, we hypothesized that VK3 possesses therapeutic effects on osteoporosis; to verify this hypothesis, the ovariectomized rat was used as an osteoporosis model. Fifty-six Sprague-Dawley female rats aged 8 to 9 months were randomly assigned to 4 groups: sham surgery, ovariectomy with saline, ovariectomy with low-dose VK3, and ovariectomy with high-dose VK3. Intramuscular injection of VK3 was performed every other day beginning 1 month postoperatively. The therapeutic effects of VK3 on osteoporosis were evaluated by measurement of bone mineral density (BMD), bone biochemical markers, biomechanical properties, and bone morphometric parameters. The overall average BMD in VK3-treated groups increased to a level between those of the ovariectomy group and the sham surgery group. The procollagen I N-terminal peptide level peaked at 2 months after surgery in all groups except in the group that had undergone ovariectomy with low-dose VK3. The tartrate-resistant acid phosphatase 5b level increased more slowly at 4 months after surgery than at 2 months after surgery in the VK3-treated groups. The ovariectomy with high-dose VK3 group had the highest maximum stress of the middle femur of all groups. With VK3 treatment, the trabecular bone area percentage increased. All morphometric indicators for the middle tibia in the VK3-treated groups reached the levels found in the sham surgery group. In summary, VK3 therapy increased BMD at 1 and 2 months postsurgery and the maximum stress of the middle femur. In addition, VK3 therapy slowed the increase in bone turnover in ovariectomized rats. Furthermore, VK3 can improve morphometric indicators for the middle tibia. Our preliminary study indicates that VK3 has a potential therapeutic effect on osteoporosis and is worthy of further investigation.
Collapse
Affiliation(s)
- You-jia Hong
- Department of Ultrasound, Tumor Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Sheng Liu
- Department of Nuclear Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University School of Medicine, Guangzhou, Guangdong, China
| | - Ning-yi Jiang
- Department of Nuclear Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University School of Medicine, Guangzhou, Guangdong, China
| | - Sen Jiang
- Department of Radiology, Tumor Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jiu-gen Liang
- Department of Nuclear Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University School of Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Soper RJ, Oguz C, Emery R, Pitsillides AA, Hodges SJ. Vitamin K catabolite inhibition of ovariectomy-induced bone loss: structure-activity relationship considerations. Mol Nutr Food Res 2014; 58:1658-66. [PMID: 25044634 DOI: 10.1002/mnfr.201400063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/31/2014] [Accepted: 06/03/2014] [Indexed: 11/09/2022]
Abstract
SCOPE The potential benefit of vitamin K as a therapeutic in osteoporosis is controversial and the vitamin K regimen being used clinically (45 mg/day) employs doses that are many times higher than required to ensure maximal gamma-carboxylation of the vitamin K-dependent bone proteins. We therefore tested the hypothesis that vitamin K catabolites, 5-carbon (CAN5C) and 7-carbon carboxylic acid (CAN7C) aliphatic side-chain derivatives of the naphthoquinone moiety exert an osteotrophic role consistent with the treatment of osteoporosis. METHODS AND RESULTS Osteoblast-like MG63 cell cultures were challenged with lipopolysaccharide and the levels of interleukin-6, an osteoclastogenic cytokine, measured with and without catabolites; low concentrations of CAN7C significantly inhibited interleukin-6 release, but CAN5C did not. In models of bone loss induced by ovariectomy or sciatic neurectomy in C57BL/6 mice, we found that the rarer CAN7C catabolite markedly restricted ovariectomy-induced bone loss and possibly limited sciatic neurectomy-induced bone loss. CAN7C activity depends on a free carboxylic acid and its particular side-chain structure. CONCLUSION These in vivo data indicate for the first time that the clinical utility of vitamin K for osteoporosis may reside in an unusual catabolite.
Collapse
Affiliation(s)
- Robin J Soper
- Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | | | | | | | | |
Collapse
|
10
|
Thormann U, El Khawassna T, Ray S, Duerselen L, Kampschulte M, Lips K, von Dewitz H, Heinemann S, Heiss C, Szalay G, Langheinrich AC, Ignatius A, Schnettler R, Alt V. Differences of bone healing in metaphyseal defect fractures between osteoporotic and physiological bone in rats. Injury 2014; 45:487-93. [PMID: 24332464 DOI: 10.1016/j.injury.2013.10.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/21/2013] [Indexed: 02/02/2023]
Abstract
Discrepancies in bone healing between osteoporotic and non-osteoporotic bone remain uncertain. The focus of the current work is to evaluate potential healing discrepancies in a metaphyseal defect model in rat femora. Female Sprague-Dawley rats were either ovariectomized (OVX, n=14) and combined with a calcium-, phosphorus- and vitamin D3-, soy- and phytoestrogen-free diet or received SHAM operation with standard diet rat (SHAM, n=14). Three months post-ovariectomy, DEXA measurement showed a reduction of bone mineral density reflecting an osteoporotic bone status in OVX rats. Rats then underwent a 3 mm wedge-shaped osteotomy at the distal metaphyseal area of the left femur stabilized with a T-shaped mini-plate and allowed to heal for 6 weeks. Biomechanical competence by means of a non-destructive three-point bending test showed significant lower flexural rigidity in the OVX rats at 3 mm lever span compared to SHAM animals (p=0.048) but no differences at 10 mm lever span. Microcomputer tomography (μCT) showed bridging cortices and consolidation of the defect in both groups, however, no measurable differences were found in either total ossified tissue or vascular volume fraction. Furthermore, histology showed healing discrepancies that were characterized by cartilaginous remnant and more unmineralized tissue presence in the OVX rats compared to more mature consolidation appearance in the SHAM group. In summary, bone defect healing in metaphyseal bone slightly differs between osteoporotic and non-osteoporotic bone in the current 3 mm defect model in both 3mm lever span biomechanical testing and histology.
Collapse
Affiliation(s)
- Ulrich Thormann
- Department of Trauma Surgery, University Hospital of Giessen-Marburg, Giessen, Germany; Laboratory of Experimental Trauma Surgery, Justus-Liebig University, Giessen, Germany
| | - Thaqif El Khawassna
- Laboratory of Experimental Trauma Surgery, Justus-Liebig University, Giessen, Germany
| | - Seemun Ray
- Laboratory of Experimental Trauma Surgery, Justus-Liebig University, Giessen, Germany
| | - Lutz Duerselen
- Institute of Orthopedic Research and Biomechanics, Centre of Musculoskeletal Research, University of Ulm, Ulm, Germany
| | - Marian Kampschulte
- Department of Radiology, University Hospital of Giessen-Marburg, Giessen, Germany
| | - Katrin Lips
- Laboratory of Experimental Trauma Surgery, Justus-Liebig University, Giessen, Germany
| | - Helena von Dewitz
- Department of Radiology, University Hospital of Giessen-Marburg, Giessen, Germany
| | - Sascha Heinemann
- Institute of Materials Science, Technische Universität Dresden, Dresden, Germany
| | - Christian Heiss
- Department of Trauma Surgery, University Hospital of Giessen-Marburg, Giessen, Germany; Laboratory of Experimental Trauma Surgery, Justus-Liebig University, Giessen, Germany
| | - Gabor Szalay
- Department of Trauma Surgery, University Hospital of Giessen-Marburg, Giessen, Germany
| | - Alexander C Langheinrich
- Department of Diagnostic and Interventional Radiology, BG Trauma Hospital Frankfurt/Main, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Centre of Musculoskeletal Research, University of Ulm, Ulm, Germany
| | - Reinhard Schnettler
- Department of Trauma Surgery, University Hospital of Giessen-Marburg, Giessen, Germany; Laboratory of Experimental Trauma Surgery, Justus-Liebig University, Giessen, Germany
| | - Volker Alt
- Department of Trauma Surgery, University Hospital of Giessen-Marburg, Giessen, Germany; Laboratory of Experimental Trauma Surgery, Justus-Liebig University, Giessen, Germany.
| |
Collapse
|
11
|
El Khassawna T, Böcker W, Govindarajan P, Schliefke N, Hürter B, Kampschulte M, Schlewitz G, Alt V, Lips KS, Faulenbach M, Möllmann H, Zahner D, Dürselen L, Ignatius A, Bauer N, Wenisch S, Langheinrich AC, Schnettler R, Heiss C. Effects of multi-deficiencies-diet on bone parameters of peripheral bone in ovariectomized mature rat. PLoS One 2013; 8:e71665. [PMID: 23977109 PMCID: PMC3745426 DOI: 10.1371/journal.pone.0071665] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 07/03/2013] [Indexed: 12/28/2022] Open
Abstract
Many postmenopausal women have vitamin D and calcium deficiency. Therefore, vitamin D and calcium supplementation is recommended for all patients with osteopenia and osteoporosis. We used an experimental rat model to test the hypothesis that induction of osteoporosis is more efficiently achieved in peripheral bone through combining ovariectomy with a unique multi-deficiencies diet (vitamin D depletion and deficient calcium, vitamin K and phosphorus). 14-week-old Sprague-Dawley rats served as controls to examine the initial bone status. 11 rats were bilaterally ovariectomized (OVX) and fed with multi-deficiencies diet. Three months later the treated group and the Sham group (n = 8) were euthanized. Bone biomechanical competence of the diaphyseal bone was examined on both, tibia and femur. Image analysis was performed on tibia via µCT, and on femur via histological analysis. Lower torsional stiffness indicated inferior mechanical competence of the tibia in 3 month OVX+Diet. Proximal metaphyseal region of the tibia showed a diminished bone tissue portion to total tissue in the µCT despite the increased total area as evaluated in both µCT and histology. Cortical bone showed higher porosity and smaller cross sectional thickness of the tibial diaphysis in the OVX+Diet rats. A lower ALP positive area and elevated serum level of RANKL exhibited the unbalanced cellular interaction in bone remodeling in the OVX+Diet rat after 3 month of treatment. Interestingly, more adipose tissue area in bone marrow indicated an effect of bone loss similar to that observed in osteoporotic patients. Nonetheless, the presence of osteoid and elevated serum level of PTH, BGP and Opn suggest the development of osteomalacia rather than an osteoporosis. As the treatment and fracture management of both osteoporotic and osteomalacia patients are clinically overlapping, this study provides a preclinical animal model to be utilized in local supplementation of minerals, drugs and growth factors in future fracture healing studies.
Collapse
Affiliation(s)
- Thaqif El Khassawna
- Laboratory of Experimental Trauma Surgery, Justus-Liebig University, Giessen, Germany
| | - Wolfgang Böcker
- Laboratory of Experimental Trauma Surgery, Justus-Liebig University, Giessen, Germany
- Department of Trauma Surgery, University Hospital of Giessen-Marburg, Giessen, Germany
| | | | - Nathalie Schliefke
- Department of Trauma Surgery, University Hospital of Giessen-Marburg, Giessen, Germany
| | - Britta Hürter
- Department of Trauma Surgery, University Hospital of Giessen-Marburg, Giessen, Germany
| | - Marian Kampschulte
- Department of Radiology, University Hospital of Giessen-Marburg, Giessen, Germany
| | - Gudrun Schlewitz
- Department of Trauma Surgery, University Hospital of Giessen-Marburg, Giessen, Germany
| | - Volker Alt
- Laboratory of Experimental Trauma Surgery, Justus-Liebig University, Giessen, Germany
- Department of Trauma Surgery, University Hospital of Giessen-Marburg, Giessen, Germany
| | - Katrin Susanne Lips
- Laboratory of Experimental Trauma Surgery, Justus-Liebig University, Giessen, Germany
| | - Miriam Faulenbach
- Department of Radiology, University Hospital of Giessen-Marburg, Giessen, Germany
| | - Henriette Möllmann
- Department of Radiology, University Hospital of Giessen-Marburg, Giessen, Germany
| | - Daniel Zahner
- Animal Laboratory, Justus-Liebig University of Giessen, Giessen, Germany
| | - Lutz Dürselen
- Institute of Orthopedic Research and Biomechanics, Centre of Musculoskeletal Research, University of Ulm, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Centre of Musculoskeletal Research, University of Ulm, Ulm, Germany
| | - Natali Bauer
- Department of Veterinary Clinical Sciences, Clinical Pathology and Clinical Pathophysiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Sabine Wenisch
- Department of Veterinary Anatomy, Justus-Liebig University of Giessen, Giessen, Germany
| | | | - Reinhard Schnettler
- Laboratory of Experimental Trauma Surgery, Justus-Liebig University, Giessen, Germany
- Department of Trauma Surgery, University Hospital of Giessen-Marburg, Giessen, Germany
| | - Christian Heiss
- Laboratory of Experimental Trauma Surgery, Justus-Liebig University, Giessen, Germany
- Department of Trauma Surgery, University Hospital of Giessen-Marburg, Giessen, Germany
- * E-mail:
| |
Collapse
|
12
|
Iwamoto J, Takeda T, Sato Y, Shen CL, Yeh JK. Beneficial effect of pretreatment and treatment continuation with risedronate and vitamin K2 on cancellous bone loss after ovariectomy in rats: a bone histomorphometry study. J Nutr Sci Vitaminol (Tokyo) 2007; 52:307-15. [PMID: 17190100 DOI: 10.3177/jnsv.52.307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The purpose of the present study was to examine the effect of pretreatment with risedronate and/or vitamin K2 and treatment continuation with reduced dosing frequency of the drugs on the early cancellous bone loss induced by ovariectomy (OVX) in rats. Eighty female Sprague-Dawley rats, 4 mo of age, were randomized by the stratified weight method into eight groups (n= 10 in each group); rats subjected to OVX, but not sham-operated rats, were treated with vehicle, risedronate, vitamin K2 (menatetrenone), or risedronate+vitamin K2 for 4 wk before the surgery, and the treatment was either discontinued (pretreatment groups) or continued after the surgery (treatment continuation groups) for 2 wk. Sham-operated rats (controls) were treated with the vehicle throughout the experimental period. During the 4 wk prior to the surgery (pretreatment), risedronate and vitamin K2 were administered five times a week either subcutaneously at a dose of 2.5 microg/kg body weight (risedronate) or orally at the dose of 30 mg/kg body weight (vitamin K2). During the 2 wk after the surgery (treatment continuation), the dosing frequency of the drugs was reduced to twice a week. Risedronate and vitamin K2 had an anti-resorptive effect on the bone. Pretreatment with risedronate alone, but not vitamin K2 alone, prevented the loss of the cancellous bone volume/total volume (BV/TV) of the proximal tibial metaphysis after OVX. Treatment continuation with vitamin K2 alone prevented the loss of the cancellous BV/TV after OVX, while treatment continuation with risedronate alone increased the cancellous BV/TV to beyond the values in controls. Pretreatment with risedronate+vitamin K2 had a more beneficial effect in increasing the cancellous bone mass than pretreatment with risedronate alone. Treatment continuation with risedronate and/or vitamin K_ appeared to have a more beneficial effect in increasing the cancellous bone mass than the respective pretreatment. Neither the total tissue area nor the cortical area of the tibial diaphysis was affected by any treatment. The present study demonstrated that pretreatment with risedronate had a beneficial effect on the early cancellous bone loss after OVX in rats, with a more beneficial effect when combined with vitamin K2. Moreover, even though the dosing frequency of the drugs was reduced after OVX, treatment continuation appeared to be more beneficial than pretreatment for increasing the cancellous bone mass.
Collapse
Affiliation(s)
- Jun Iwamoto
- Department of Sports Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | | | | | | | | |
Collapse
|
13
|
Iwamoto J, Takeda T, Sato Y, Yeh JK. Effect of vitamin K2 and growth hormone on the long bones in hypophysectomized young rats: a bone histomorphometry study. J Bone Miner Metab 2007; 25:46-53. [PMID: 17187193 DOI: 10.1007/s00774-006-0726-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 08/29/2006] [Indexed: 10/23/2022]
Abstract
The purpose of the present study was to determine whether vitamin K(2) and growth hormone (GH) had an additive effect on the long bones in hypophysectomized young rats. Forty-eight female Sprague-Dawley rats (6 weeks old) were assigned to the following five groups by the stratified weight randomization method: intact controls, hypophysectomy (HX) alone, HX + vitamin K(2) (30 mg/kg, p.o., daily), HX + GH (0.625 mg/kg, s.c., 5 days a week), and HX + vitamin K(2) + GH. The duration of the experiment was 4 weeks. HX resulted in a reduction of the cancellous bone volume/total tissue volume (BV/TV) at the proximal tibial metaphysis, as well as decreasing the total tissue area and cortical area of the tibial diaphysis. These changes resulted from a decrease of the longitudinal growth rate and the bone formation rate (BFR)/TV of cancellous bone, as well as a decrease of the periosteal BFR/bone surface (BS) and an increase of endocortical bone turnover (indicated by the BFR/BS) in cortical bone. Administration of vitamin K(2) to HX rats did not affect the cancellous BV/TV or the cortical area. On the other hand, GH completely prevented the decrease of total tissue area and cortical area in cortical bone, as well as the decrease of marrow area and endocortical circumference, by increasing the periosteal BFR/BS compared with that in intact controls and reversing the increase of endocortical bone turnover (BFR/BS). However, GH only partly improved the reduction of the cancellous BV/TV, despite an increase of the longitudinal growth rate and BFR/TV compared with those of intact controls. When administered with GH, vitamin K(2) counteracted the reduction of endocortical bone turnover (BFR/BS) and circumference caused by GH treatment, resulting in no significant difference of marrow area from that in untreated HX rats. These results suggest that, despite the lack of an obvious effect on bone parameters, vitamin K(2) normalizes the size of the marrow cavity during development of the bone marrow in young HX rats treated with GH.
Collapse
Affiliation(s)
- Jun Iwamoto
- Department of Sports Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | | | | | | |
Collapse
|
14
|
Iwamoto J, Takeda T, Sato Y, Yeh JK. Additive Effect of Vitamin K2 and Risedronate on Long Bone Mass in Hypophysectomized Young Rats. Exp Anim 2007; 56:103-10. [PMID: 17460355 DOI: 10.1538/expanim.56.103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Hypophysectomy (HX) arrests bone growth and induces osteopenia in the long bones of rats. The present study investigated the combined effect of vitamin K(2) and risedronate on long bone mass in HX rats, in order to determine whether treatment with these two agents had an additive effect. Forty female Sprague-Dawley rats were hypophysectomized at 6 weeks of age by the supplier, and were shipped to our laboratory at three days after surgery along with ten intact rats that served as age-matched controls. The study was started on the day when the rats were received. Three HX rats were excluded from the study because of the failure of HX. Forty-seven rats (6 weeks old) were assigned to the following 5 groups by the stratified weight randomization method: intact controls, HX alone, HX + vitamin K(2) (30 mg/kg, p.o., daily), HX + risedronate (2.5 microg/kg, s.c., 5 days a week), and HX + vitamin K(2) + risedronate. The dosing period was 4 weeks. HX resulted in a decrease of the femoral bone area, bone mineral content (BMC) and bone mineral density (BMD), as well as a decrease in the cancellous bone mass of the proximal tibial metaphysis and the total tissue and cortical areas of the tibial diaphysis. These changes were associated with a marked reduction in the serum level of insulin like growth factor (IGF)-I and with elevation of serum alkaline phosphatase (ALP) and pyridinoline. Administration of vitamin K(2) increased the serum ALP level in HX rats, but did not affect any of the other parameters. On the other hand, risedronate ameliorated the decrease of femoral BMD and cancellous bone mass at the proximal tibial metaphysis in HX rats without affecting the serum IGF-I level, as a result of not causing a significant elevation of serum pyridinoline. Vitamin K(2) and risedronate combined had an additive effect on the femoral bone area, BMC and BMD, and the combined treatment group did not show any significant reduction of the total tissue and cortical areas at the tibial diaphysis, as well as a reduced serum pyridinoline level compared with untreated rats and an increased serum ALP level compared with untreated or risedronate-treated rats. These results suggest that risedronate had a positive effect on the BMD and cancellous bone mass of long bones in HX rats. Despite the lack of a significant effect of vitamin K(2) on bone mass parameters, it had an additive effect with risedronate on the BMC, BMD and cortical bone mass of long bones in HX rats.
Collapse
Affiliation(s)
- Jun Iwamoto
- Department of Sports Medicine, Keio University School of Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|
15
|
Iwamoto J, Takeda T, Sato Y, Yeh JK. Synergistic effect of vitamin K2 and prostaglandin E2 on cancellous bone mass in hypophysectomized young rats. Calcif Tissue Int 2006; 79:318-25. [PMID: 17048065 DOI: 10.1007/s00223-006-0092-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Accepted: 06/01/2006] [Indexed: 10/24/2022]
Abstract
Hypophysectomy (HX) results in cessation of bone growth and cancellous osteopenia in rats. It has been reported that prostaglandin E2 (PGE2) improves cortical and cancellous bone mass in HX rats. The purpose of the present study was to examine whether combined administration of vitamin K2 and PGE2 would have a more beneficial effect on bone than single administration of either alone in HX rats. Forty-three female Sprague-Dawley rats, 6 weeks of age, were randomized by the stratified weight method into five groups: intact controls, HX, HX + vitamin K2 (30 mg/kg, p.o., daily), HX + PGE2 (0.83 mg/kg, i.m., 5 days a week), and HX + vitamin K2 + PGE2. The duration of the experiment was 4 weeks. There was a reduction in cancellous bone volume/total tissue volume (BV/TV) of the proximal tibial metaphysis and a reduction in total tissue area and cortical area (Ct.Ar) of the tibial diaphysis. Vitamin K2 did not affect cancellous BV/TV or Ct.Ar. On the other hand, PGE2 attenuated the loss of cancellous BV/TV in association with higher bone formation rate/bone surface (BFR/BS) and eroded surface (ES)/BS compared with intact controls. PGE2 also increased percent Ct.Ar compared with nontreated HX rats as a result of attenuation of a decrease in periosteal BFR/BS. Vitamin K2 had a synergistic effect with PGE2 on cancellous BV/TV as a result of the suppression of an increase in ES/BS observed by PGE2 treatment. These results suggested that PGE2 had an anabolic action on cancellous and cortical bone and that despite no apparent effect of vitamin K2 on bone, it had a synergistic effect with PGE2 on cancellous bone mass in young HX rats.
Collapse
Affiliation(s)
- J Iwamoto
- Department of Sports Medicine, Keio University School of Medicine, 35 Shinanomachi, Tokyo 160-8582, Japan.
| | | | | | | |
Collapse
|
16
|
Abstract
Vitamin K2 is widely used for the treatment of osteoporosis in Japan. To understand the effects of vitamin K2 on bone mass and bone metabolism, we reviewed its effects on the development of osteopenia in rats, which characterizes models of osteoporosis. Vitamin K2 was found to attenuate the increase in bone resorption and/or maintain bone formation, reduce bone loss, protect against the loss of trabecular bone mass and its connectivity, and prevent the decrease in strength of the long bone in ovariectomized rats. However, combined treatment of bisphosphonates and vitamin K2 had an additive effect in preventing the deterioration of the trabecular bone architecture in ovariectomized rats, while the combined treatment of raloxifene and vitamin K2 improved the bone strength of the femoral neck. The use of vitamin K2 alone suppressed the increase in trabecular bone turnover and endocortical bone resorption, which attenuated the development of cancellous and cortical osteopenia in orchidectomized rats. In addition, vitamin K2 inhibited the decrease in bone formation in prednisolone-treated rats, thereby preventing cancellous and cortical osteopenia. In sciatic neurectomized rats, vitamin K2 suppressed endocortical bone resorption and stimulated bone formation, delaying the reduction of the trabecular thickness and retarding the development of cortical osteopenia. Vitamin K2 also prevented the acceleration of bone resorption and the reduction in bone formation in tail-suspended rats, which counteracted cancellous bone loss. Concomitant use of vitamin K2 with a bisphosphonate ameliorated the suppression of bone formation and more effectively prevented cancellous bone loss in tail-suspended rats. Vitamin K2 stimulated renal calcium reabsorption, retarded the increase in serum parathyroid hormone levels, and attenuated cortical bone loss primarily by suppressing bone resorption in calcium-deficient rats while maintaining the strength of the long bone in rats with magnesium deficiency. These findings suggest that vitamin K2 may not only stimulate bone formation, but may also suppress bone resorption. Thus, vitamin K2 could regulate bone metabolism in rats, which represented the various models of osteoporosis. However, the effects of vitamin K2 on bone mass and bone metabolism seem to be modest.
Collapse
Affiliation(s)
- Jun Iwamoto
- Department of Sports Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | | | | |
Collapse
|