1
|
Saito K, Takahashi K, Huang B, Asahara M, Kiso H, Togo Y, Tsukamoto H, Mishima S, Nagata M, Iida M, Tokita Y, Asai M, Shimizu A, Komori T, Harada H, MacDougall M, Sugai M, Bessho K. Loss of Stemness, EMT, and Supernumerary Tooth Formation in Cebpb -/-Runx2 +/- Murine Incisors. Sci Rep 2018; 8:5169. [PMID: 29581460 PMCID: PMC5980103 DOI: 10.1038/s41598-018-23515-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 03/14/2018] [Indexed: 01/19/2023] Open
Abstract
Adult Cebpb KO mice incisors present amelogenin-positive epithelium pearls, enamel and dentin allopathic hyperplasia, fewer Sox2-positive cells in labial cervical loop epitheliums, and reduced Sox2 expression in enamel epithelial stem cells. Thus, Cebpb acts upstream of Sox2 to regulate stemness. In this study, Cebpb KO mice demonstrated cementum-like hard tissue in dental pulp, loss of polarity by ameloblasts, enamel matrix in ameloblastic layer, and increased expression of epithelial-mesenchymal transition (EMT) markers in a Cebpb knockdown mouse enamel epithelial stem cell line. Runx2 knockdown in the cell line presented a similar expression pattern. Therefore, the EMT enabled disengaged odontogenic epithelial stem cells to develop supernumerary teeth. Cebpb and Runx2 knockdown in the cell line revealed higher Biglycan and Decorin expression, and Decorin-positive staining in the periapical region, indicating their involvement in supernumerary tooth formation. Cebpb and Runx2 acted synergistically and played an important role in the formation of supernumerary teeth in adult incisors.
Collapse
Affiliation(s)
- Kazuyuki Saito
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Perinatology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi, Japan
| | - Katsu Takahashi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Boyen Huang
- School of Dentistry and Health Sciences, Faculty of Science, Charles Sturt University, Leeds Parade Orange, NSW 2800, Australia
| | - Masakazu Asahara
- Division of Liberal Arts and Sciences, Aichi Gakuin University, Aichi, Japan
| | - Honoka Kiso
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yumiko Togo
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroko Tsukamoto
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sayaka Mishima
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaki Nagata
- Department of Oral and Maxillofacial Surgery Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Machiko Iida
- Department of Perinatology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi, Japan
| | - Yoshihito Tokita
- Department of Perinatology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi, Japan
| | - Masato Asai
- Department of Perinatology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi, Japan
| | - Akira Shimizu
- Department of Experimental Therapeutics, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| | - Toshihisa Komori
- Department of Cell Biology, Unit of Basic Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hidemitsu Harada
- The Advanced Oral Health Science Research Center, Iwate Medical University, Iwate, Japan
| | - Mary MacDougall
- Facultyl of Dentistry, University of British Columbia, Vancouver, Canada
| | - Manabu Sugai
- Department of Molecular Genetics, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.
| | - Kazuhisa Bessho
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Xiong X, Li S, Cai Y, Chen F. Targeted sequencing in FGF/FGFR genes and association analysis of variants for mandibular prognathism. Medicine (Baltimore) 2017; 96:e7240. [PMID: 28640125 PMCID: PMC5484233 DOI: 10.1097/md.0000000000007240] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
To identify variants of the genes in fibroblast growth factors/fibroblast growth factor receptors (FGF/FGFR) signal pathway that predispose to mandibular prognathism (MP) in the general Chinese population systematically.Targeted sequencing of the FGF/FGFR genes was conducted in 176 MP individuals and 155 class I malocclusion controls. The associations of common and rare variants with MP as a categorical phenotype and also continuous malocclusion phenotypes generated by principal component (PC) analysis were analyzed.One common variant, rs372127537, located in the 3'-untranslated region of FGF7 gene, was significantly related to PC1 (P = 4.22 × 10), which explained 23.23% of the overall phenotypic variation observed and corresponded to vertical discrepancies ranging from short anterior face height to long anterior face height, after Bonferroni correction. Also, 15 other variants were associated with PC1-4, although not significant after multiple corrections (P < .05). We also identified 3 variants: rs13317 in FGFR1, rs149242678 in FGF20, and rs79176051 FGF12 associated with MP (P < .05). With respect to rare variant analysis, variants within the FGF12 gene showed significant association with MP (P = .001).Association between FGF/FGFR signaling pathway and MP has been identified. We found a previously unreported SNP in FGF7 significantly related to increased facial height. Also, rare variants within the FGF12 were associated with MP. Our results provide new clues for genetic mechanisms of MP and shed light on strategies for evaluating rare variants that underlie complex traits. Future studies with larger sample sizes and more comprehensive genome coverage, and also in other population are required to replicate these findings.
Collapse
Affiliation(s)
- Xueyan Xiong
- Department of Orthodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration
| | - Shuyuan Li
- Institute of Embryo-Fetal Original Adult Disease
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Cai
- Department of Orthodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration
| | - Fengshan Chen
- Department of Orthodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration
| |
Collapse
|
3
|
C/EBP β Mediates Endoplasmic Reticulum Stress Regulated Inflammatory Response and Extracellular Matrix Degradation in LPS-Stimulated Human Periodontal Ligament Cells. Int J Mol Sci 2016; 17:385. [PMID: 27011164 PMCID: PMC4813242 DOI: 10.3390/ijms17030385] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 01/05/2023] Open
Abstract
Periodontitis is an oral inflammatory disease that not only affects the integrity of local tooth-supporting tissues but also impacts systemic health. A compositional shift in oral microbiota has been considered as the main cause of periodontitis; however, the potential mechanism has not been fully defined. Herein, we investigated the role of CCAAT/enhancer-binding protein β (C/EBP β), a member of the C/EBP family of transcription factors, in human periodontal ligament cells (hPDLCs) exposed to Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS). RT-PCR and Western blotting analysis showed that the expression of C/EBP β was significantly increased in hPDLCs stimulated with LPS stimuli. Overexpression of C/EBP β by the recombinant adenoviral vector pAd/C/EBP β markedly increased the expression of the pro-inflammatory cytokines IL-6 and IL-8, and matrix metalloproteinases (MMP)-8 and -9 in hPDLCs in response to LPS. Furthermore, the activation of endoplasmic reticulum (ER) stress was confirmed in LPS-stimulated hPDLCs by measuring the expression of the ER stress marker molecules protein kinase-like ER kinase (PERK), eIF2α, GRP78/Bip, and C/EBP homologous protein (CHOP). The ER stress inhibitor salubrinal repressed, but inducer tunicamycin enhanced, the production of IL-6, IL-8, MMP-8, and MMP-9 in hPDLCs. Additionally, ER stress inducer tunicamycin significantly increased the expression level of C/EBP β in hPDLCs. Blocking of C/EBP β by siRNA resulted in a significant decrease in the secretion of IL-6 and IL-8 and expression of MMP-8 and MMP-9 induced by tunicamycin treatment in hPDLCs. Taken together, ER stress appears to play a regulatory role in the inflammatory response and extracellular matrix (ECM) degradation in hPDLCs in response to LPS stimuli by activating C/EBP β expression. This enhances our understanding of human periodontitis pathology.
Collapse
|
4
|
Huang B, Takahashi K, Jennings EA, Pumtang-On P, Kiso H, Togo Y, Saito K, Sugai M, Akira S, Shimizu A, Bessho K. Prospective signs of cleidocranial dysplasia in Cebpb deficiency. J Biomed Sci 2014; 21:44. [PMID: 24885110 PMCID: PMC4039338 DOI: 10.1186/1423-0127-21-44] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/08/2014] [Indexed: 11/10/2022] Open
Abstract
Background Although runt-related transcription factor 2 (RUNX2) has been considered a determinant of cleidocranial dysplasia (CCD), some CCD patients were free of RUNX2 mutations. CCAAT/enhancer-binding protein beta (Cebpb) is a key factor of Runx2 expression and our previous study has reported two CCD signs including hyperdontia and elongated coronoid process of the mandible in Cebpb deficient mice. Following that, this work aimed to conduct a case-control study of thoracic, zygomatic and masticatory muscular morphology to propose an association between musculoskeletal phenotypes and deficiency of Cebpb, using a sample of Cebpb-/-, Cebpb+/- and Cebpb+/+ adult mice. Somatic skeletons and skulls of mice were inspected with soft x-rays and micro-computed tomography (μCT), respectively. Zygomatic inclination was assessed using methods of coordinate geometry and trigonometric function on anatomic landmarks identified with μCT. Masseter and temporal muscles were collected and weighed. Expression of Cebpb was examined with a reverse transcriptase polymerase chain reaction (RT-PCR) technique. Results Cebpb-/- mice displayed hypoplastic clavicles, a narrow thoracic cage, and a downward tilted zygomatic arch (p < 0.001). Although Cebpb+/- mice did not show the phenotypes above (p = 0.357), a larger mass percentage of temporal muscles over masseter muscles was seen in Cebpb+/- littermates (p = 0.012). The mRNA expression of Cebpb was detected in the clavicle, the zygoma, the temporal muscle and the masseter muscle, respectively. Conclusions Prospective signs of CCD were identified in mice with Cebpb deficiency. These could provide an additional aetiological factor of CCD. Succeeding investigation into interactions among Cebpb, Runx2 and musculoskeletal development is indicated.
Collapse
Affiliation(s)
| | - Katsu Takahashi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho 54, Sakyo-ku, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Huang B, Takahashi K, Sakata-Goto T, Kiso H, Togo Y, Saito K, Tsukamoto H, Sugai M, Akira S, Shimizu A, Bessho K. Phenotypes of CCAAT/enhancer-binding protein beta deficiency: hyperdontia and elongated coronoid process. Oral Dis 2012; 19:144-50. [PMID: 22849712 DOI: 10.1111/j.1601-0825.2012.01963.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES This investigation aimed to conduct a case-control study of mandibular morphology and dental anomalies to propose a relationship between mandibular/dental phenotypes and deficiency of CCAAT/enhancer-binding protein beta (CEBPB). MATERIALS AND METHODS Skulls of CEBPB(-/-), CEBPB(+/-) and CEBPB(+/+) mice were inspected with micro-computed tomography. Mandibular morphology was assessed with a method of Euclidean distance matrix analysis. RESULTS Elongation of the coronoid process was identified in CEBPB(+/-) (P ≤ 0.046) and CEBPB(-/-) 12-month-olds (P ≤ 0.028) but not in 14-day-olds (P ≥ 0.217) and 0-day-olds (P ≥ 0.189) of either genotype. Formation of supernumerary teeth in CEBPB(-/-) adult mice was demonstrated (χ(2) = 6.00, df = 1, P = 0.014). CONCLUSIONS CEBPB deficiency was related to elongation of the coronoid process and formation of supernumerary teeth. The mandibular and dental phenotypes of CEBPB deficiency were unseen by the 14th day after birth. Future investigations into the influence of CEBPB on mandibular and dental development are needed.
Collapse
Affiliation(s)
- B Huang
- Department of Paediatric Dentistry, School of Medicine and Dentistry, James Cook University, Cairns, Australia Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan Translational Research Center, Kyoto University Hospital, Kyoto University, Kyoto, Japan Laboratory of Host Defense, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Zhang W, Ju J, Gronowicz G. Odontoblast-targeted Bcl-2 overexpression impairs dentin formation. J Cell Biochem 2011; 111:425-32. [PMID: 20518070 DOI: 10.1002/jcb.22722] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Apoptosis has been described extensively in tooth development, which is under tight control of multiple apoptosis regulators, including anti-apoptotic protein Bcl-2. However, it is totally unclear how Bcl-2 is related to odontogenesis, especially dentinogenesis. Using a transgenic mouse Col2.3Bcl-2 in which human Bcl-2 was overexpressed in odontoblasts, the effect of Bcl-2 on dentinogenesis was investigated. Overexpression of Bcl-2 was detected by immunohistochemistry and Western blot. Odontoblast apoptosis was evaluated by TUNEL and Western blot detection of cleaved caspase-3. Odontoblast differentiation was assessed by real-time PCR detection of dentin matrix expression. Dentin mineralization was evaluated by micro-CT in vivo, and alizarin red S staining and calcium content analysis in vitro. Bcl-2 was found to be overexpressed in odontoblasts and prevent their apoptosis. Odontoblast differentiation and mineralization was inhibited by Bcl-2, as evidenced by lower expressions of DMP-1, OC, and DSPP, and decreased odontoblast mineralization in vitro, as well as decreased dentin thickness and mineral density in vivo when compared to the wild-type animals. Inhibition of odontoblast differentiation by Bcl-2 occurs, at least partially, via a suppression of MEK-ERK1/2 signaling pathway. In conclusion, Bcl-2 overexpression prevents odontoblast apoptosis and impairs dentin formation, partially via an inhibition of odontoblast differentiation. This study revealed some novel functions of Bcl-2 in dentinogenesis in addition to its anti-apoptotic effect, which shed some light on the genetic complexity of tooth development.
Collapse
Affiliation(s)
- Wenjian Zhang
- Department of Diagnostic Sciences, University of Texas Dental Branch at Houston, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
7
|
Sheng ZF, Ye W, Wang J, Li CH, Liu JH, Liang QC, Li S, Xu K, Liao EY. OPG knockout mouse teeth display reduced alveolar bone mass and hypermineralization in enamel and dentin. Arch Oral Biol 2010; 55:288-93. [PMID: 20233613 DOI: 10.1016/j.archoralbio.2010.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 02/08/2010] [Accepted: 02/18/2010] [Indexed: 10/19/2022]
Abstract
Recent studies showed that local injection or upregulation of OPG gene would result in early temporal retardation of tooth development. It was assumed that this retardation might cause defective tooth mineralization and pulp formation as the long-term effects. However, since those OPG treatments were transient, any possible long-term effects of OPG addition could not be assessed previously. In the present study, a high-resolution microCT was used to evaluate the long-term effect of OPG gene deprivation on the mineralization and morphology of mouse tooth. Our results showed that the mineralization of alveolar bone in OPG(-/-) mouse tooth was decreased while those of enamel and dentin were increased, compared with the wild-type (WT) group. The labial and lingual dentin thicknesses of OPG(-/-) group were significantly higher and with larger area in enamel and dentin than those of WT group. The size of pulp chamber was also substantially decreased in OPG(-/-) mouse incisor. Different responses in mineralization and morphogenesis to OPG gene deprivation were found between bone and tooth. These effects may be independent of the early odontogenesis, and further studies are warranted to investigate the molecular mechanism of the effect of OPG gene expression on bone formation and later tooth development.
Collapse
Affiliation(s)
- Zhi-Feng Sheng
- Institute of Metabolism and Endocrinology, the Second Xiang-Ya Hospital, Central South University, Changsha, 86 Renmin-Zhong Rd, Hunan 410011, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
CCAAT/enhancer-binding protein beta: its role in breast cancer and associations with receptor tyrosine kinases. Expert Rev Mol Med 2009; 11:e12. [PMID: 19351437 DOI: 10.1017/s1462399409001033] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The CCAAT/enhancer-binding proteins (C/EBPs) are a family of leucine-zipper transcription factors that regulate gene expression to control cellular proliferation, differentiation, inflammation and metabolism. Encoded by an intronless gene, C/EBPbeta is expressed as several distinct protein isoforms (LAP1, LAP2, LIP) whose expression is regulated by the differential use of several in-frame translation start sites. LAP1 and LAP2 are transcriptional activators and are associated with differentiation, whereas LIP is frequently elevated in proliferative tissue and acts as a dominant-negative inhibitor of transcription. However, emerging evidence suggests that LIP can serve as a transcriptional activator in some cellular contexts, and that LAP1 and LAP2 might also have unique actions. The LIP:LAP ratio is crucial for the maintenance of normal growth and development, and increases in this ratio lead to aggressive forms of breast cancer. This review discusses the regulation of C/EBPbeta activity by post-translational modification, the individual actions of LAP1, LAP2 and LIP, and the functions and downstream targets that are unique to each isoform. The role of the C/EBPbeta isoforms in breast cancer is discussed and emphasis is placed on their interactions with receptor tyrosine kinases.
Collapse
|
9
|
Suzuki H, Amizuka N, Oda K, Noda M, Ohshima H, Maeda T. Involvement of the klotho protein in dentin formation and mineralization. Anat Rec (Hoboken) 2008; 291:183-90. [PMID: 18085632 DOI: 10.1002/ar.20630] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Klotho-deficient mice exhibit multiple pathological conditions resembling human aging. Our previous study showed alterations in the distribution of osteocytes and in the bone matrix synthesis in klotho-deficient mice. Although the bone and tooth share morphological features such as mineralization processes and components of the extracellular matrix, little information is available on how klotho deletion influences tooth formation. The present study aimed to elucidate the altered histology of incisors of klotho-deficient mice-comparing the findings with those from their wild-type littermates, by using immunohistochemistry for alkaline phosphatase (ALP), osteopontin, and dentin matrix protein-1 (DMP-1), terminal deoxynucleotidyl transferase-mediated deoxyuridinetriphosphate nick end-labeling (TUNEL) detection for apoptosis, and electron probe microanalyzer (EPMA) analysis on calcium (Ca), phosphate (P), and magnesium (Mg). Klotho-deficient incisors exhibited disturbed layers of odontoblasts, predentin, and dentin, resulting in an obscure dentin-predentinal border at the labial region. Several odontoblast-like cells without ALP activity were embedded in the labial dentin matrix, and immunopositivity for DMP-1 and osteopontin was discernible in the matrix surrounding these embedded odontoblast-like cells. TUNEL detection demonstrated an apoptotic reaction in the embedded odontoblast-like cells and pulpal cells in the klotho-deficient mice. EPMA revealed lower concentrations of Ca, P, and Mg in the klotho-deficient dentin, except for the dentin around abnormal odontoblast-like cells. These findings suggest the involvement of the klotho gene in dentinogenesis and its mineralization.
Collapse
Affiliation(s)
- Hironobu Suzuki
- Divisions of Anatomy and Cell Biology of the Hard Tissue, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | | | | | | | | | | |
Collapse
|
10
|
Bibliography. Current world literature. Parathyroids, bone and mineral metabolism. Curr Opin Endocrinol Diabetes Obes 2007; 14:494-501. [PMID: 17982358 DOI: 10.1097/med.0b013e3282f315ef] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Bloch-Zupan A. Genetische Störungen der Zahnentwicklung und Dentition. MED GENET-BERLIN 2007. [DOI: 10.1007/s11825-007-0050-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Zusammenfassung
Die Zähne sind Organe, die aus ektodermalen epithelialen Aussackungen im Bereich des 1. Kiemenbogens entstehen, gesteuert von epitheliomesenchymalen Interaktionen. Dabei spielen zahlreiche Signalmoleküle speziell der 4 großen Familien TGF-β, FGF, Hedgehog und WNT sowie diverse Transkriptionsfaktoren eine Rolle. Eine Beteiligung der Retinoide an der Odontogenese ist durch umfangreiche Befunde belegt, auch wenn die Inaktivierung relevanter Gene in Mausmodellen meist keine Zahnanomalien verursacht. Die Zahnentwicklung wird klassischerweise in verschiedene Stadien eingeteilt: Entstehung der Zahnleiste, der Zahnknospe, der Schmelzkappe, der Schmelzglocke, die Wurzelbildung und der Zahndurchbruch. Anomalien der Zahnentwicklung können isoliert oder gemeinsam mit anderen Symptomen im Zusammenhang mit Syndromen auftreten. Sie können genetisch bedingt sein oder unter Einwirkung teratogener Stoffe während der Bildung und Mineralisierung der Zahnkeime zustande kommen. Dentibukkale Entwicklungsanomalien treten im Kontext seltener Erkrankungen auf und finden zunehmend Beachtung, da sie bei bestimmten Erkrankungen in der Diagnostik und als prädikative Faktoren wichtige Anhaltspunkte geben können. Allerdings ist hierfür eine interdisziplinäre und internationale Kooperation notwendig, die bislang erst in Ansätzen verwirklicht wurde.
Collapse
Affiliation(s)
- A. Bloch-Zupan
- Aff1_50 Faculté de Chirurgie Dentaire, Université Louis Pasteur, Centre de référence des manifestations odontologiques des maladies rares, Service de Soins Bucco-Dentaires Centre Hospitalier Universitaire, Hopital Civil 1 Place de l’Hopital 67000 Strasbourg Cedex France
- Aff2_50 grid.420255.4 0000000406382716 Département Génétique et Physiologie IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Inserm, U596 CNRS, UMR7104 67400 Illkirch France
- Aff3_50 grid.83440.3b 0000000121901201 Eastman Dental Institute Institute of Child Health, University College London UK
| |
Collapse
|