1
|
Kodama S, Maeda T, Mita H, Tamura N, Chiba K, Matsukawa M. Heterogeneity of ultrasonic wave properties in ex vivo cortical bone of racehorse. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2025; 157:3771-3779. [PMID: 40377534 DOI: 10.1121/10.0036642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 04/22/2025] [Indexed: 05/18/2025]
Abstract
Despite the prevalence of lower limb disease in racehorses, outdoor bone evaluation equipment is lacking. Consequently, a secure and cost-effective field screening system for bones is required to identify early-stage leg illness. Elastic stiffness cannot be measured using x-ray techniques and is closely associated with bone quality, which is recognized as a significant determinant of fracture risk. Quantitative ultrasound has garnered attention as a viable option, offering insights into elastic stiffness. Understanding the characteristic behaviors of ultrasonic wave properties (velocity, attenuation, and associated characteristics) is crucial for developing a quantitative ultrasound system using simulations and plays a significant role in clinical evaluation. This study experimentally assessed the wave properties of thoroughbred leg bone utilizing an ultrasonic pulse technique in the megahertz range, using ex vivo specimens. The bone exhibited uniaxial anisotropy and demonstrated clear heterogeneity in the axial cross section. Exact measurements demonstrated distinct heterogeneity in the ultrasonic properties of the bone. Elevated wave velocities were observed in the medial and lateral regions, demonstrating clinical significance. Attenuation was more pronounced in core regions, suggesting a reliance on porosity. A correlation (R = 0.68, p < 0.001) was found between velocity and attenuation in dense regions, which may be attributable to the bone matrix properties.
Collapse
Affiliation(s)
- Shuta Kodama
- Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Takamitsu Maeda
- Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Hiroshi Mita
- Japan Racing Association Equine Research Institute, 1400-4 Shiba, Shimotsuke, Tochigi, 329-0412, Japan
| | - Norihisa Tamura
- Japan Racing Association Equine Research Institute, 1400-4 Shiba, Shimotsuke, Tochigi, 329-0412, Japan
| | - Ko Chiba
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1, Sakamoto, Nagasaki 852-8501, Japan
| | - Mami Matsukawa
- Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| |
Collapse
|
2
|
Kodama S, Mita H, Tamura N, Koyama D, Matsukawa M. Bone mineral density and hydroxyapatite alignment in leg cortical bone influence on ultrasound velocity. JASA EXPRESS LETTERS 2025; 5:032001. [PMID: 40063088 DOI: 10.1121/10.0036082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/19/2025] [Indexed: 04/04/2025]
Abstract
Bone diagnosis using x-ray techniques, such as computed tomography and dual-energy x-ray absorptiometry, can evaluate bone mineral density (BMD) and microstructure but does not provide elastic properties. This study investigated the ultrasonic properties of racehorse leg cortical bone, focusing on the relationship between wave velocity, BMD, and hydroxyapatite (HAp) crystallite alignment. The results showed a strong correlation between wave velocity and BMD, suggesting that quantitative ultrasound-obtained wave velocity is primarily influenced by BMD, followed by the HAp alignment direction.
Collapse
Affiliation(s)
- Shuta Kodama
- Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto, 610-0321, Japan
| | - Hiroshi Mita
- Japan Racing Association Equine Research Institute, 1400-4 Shiba, Shimotsuke, Tochigi, 329-0412, , , , ,
| | - Norihisa Tamura
- Japan Racing Association Equine Research Institute, 1400-4 Shiba, Shimotsuke, Tochigi, 329-0412, , , , ,
| | - Daisuke Koyama
- Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto, 610-0321, Japan
| | - Mami Matsukawa
- Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto, 610-0321, Japan
| |
Collapse
|
3
|
Miyashita K, Suzuyama H, Chiba K, Osaki M, Mita H, Tamura N, Matsukawa M. Study on ultrasonic wave propagation in equine leg bone for screening bucked shin. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:890. [PMID: 36050184 DOI: 10.1121/10.0012689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
For simple, safe, portable, and inexpensive evaluation suitable for leg bone diseases of racehorses in the field, an ultrasonic measurement technique was applied to evaluate wave velocities. A digital model of the third metacarpal bone with the bucked shin was fabricated using high-resolution peripheral quantitative computerized tomography data of a racehorse. This model was anisotropic and heterogeneous, and was constructed using the measured ultrasonic wave velocities in the bone. With this model, ultrasonic wave propagation along the bone axis was simulated using the elastic finite-difference time-domain method. We found two main waves with different propagation velocities. The fast-waves showed a wave velocity close to the longitudinal wave in the axial direction. However, the apparent velocities changed dramatically owing to bone surface irregularities (changes of the shape) in the area of bucked shin. The slow-waves showed a wave velocity close to the shear wave, which was unaffected by the bone surface irregularities. The simple comparison of different wave behaviors may be a suitable parameter for the initial in vivo screening of bucked shin in the legs of racehorses, which can be performed in the field.
Collapse
Affiliation(s)
- Kazuki Miyashita
- Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Hidehisa Suzuyama
- Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Ko Chiba
- Department of Orthopedic Surgery, Nagasaki University, Graduate School of Biomedical Sciences, 1-7-1, Sakamoto, Nagasaki 852-8501, Japan
| | - Makoto Osaki
- Department of Orthopedic Surgery, Nagasaki University, Graduate School of Biomedical Sciences, 1-7-1, Sakamoto, Nagasaki 852-8501, Japan
| | - Hiroshi Mita
- Clinical Veterinary Medicine Division, Japan Racing Association Equine Research Institute, 1400-4 Shiba, Shimotsuke, 329-0412, Japan
| | - Norihisa Tamura
- Clinical Veterinary Medicine Division, Japan Racing Association Equine Research Institute, 1400-4 Shiba, Shimotsuke, 329-0412, Japan
| | - Mami Matsukawa
- Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| |
Collapse
|
4
|
Li Y, Li B, Li Y, Liu C, Xu F, Zhang R, Ta D, Wang W. The Ability of Ultrasonic Backscatter Parametric Imaging to Characterize Bovine Trabecular Bone. ULTRASONIC IMAGING 2019; 41:271-289. [PMID: 31307317 DOI: 10.1177/0161734619862190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The ultrasonic backscatter technique holds the promise of characterizing bone density and microstructure. This paper conducts ultrasonic backscatter parametric imaging based on measurements of apparent integrated backscatter (AIB), spectral centroid shift (SCS), frequency slope of apparent backscatter (FSAB), and frequency intercept of apparent backscatter (FIAB) for representing trabecular bone mass and microstructure. We scanned 33 bovine trabecular bone samples using a 7.5 MHz focused transducer in a 20 mm × 20 mm region of interest (ROI) with a step interval of 0.05 mm. Images based on the ultrasonic backscatter parameters (i.e., AIB, SCS, FSAB, and FIAB) were constructed to compare with photographic images of the specimens as well as two-dimensional (2D) μ-CT images from approximately the same depth and location of the specimen. Similar structures and trabecular alignments can be observed among these images. Statistical analyses demonstrated that the means and standard deviations of the ultrasonic backscatter parameters exhibited significant correlations with bone density (|R| = 0.45-0.78, p < 0.01) and bone microstructure (|R| = 0.44-0.87, p < 0.001). Some bovine trabecular bone microstructure parameters were independently associated with the ultrasonic backscatter parameters (ΔR2 = 4.18%-44.45%, p < 0.05) after adjustment for bone apparent density (BAD). The results show that ultrasonic backscatter parametric imaging can provide a direct view of the trabecular microstructure and can reflect information about the density and microstructure of trabecular bone.
Collapse
Affiliation(s)
- Ying Li
- 1 Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Boyi Li
- 1 Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Yifang Li
- 1 Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Chengcheng Liu
- 2 Institute of Acoustics, Tongji University, Shanghai, China
| | - Feng Xu
- 1 Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Rong Zhang
- 3 Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Dean Ta
- 1 Department of Electronic Engineering, Fudan University, Shanghai, China
- 4 Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai, China
- 5 Human Phenome Institute, Fudan University, Shanghai, China
| | - Weiqi Wang
- 1 Department of Electronic Engineering, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Chen F, He A, Fu S, Liu X, Liu Y, Qu X. A method to locate spatial distribution of scattering centers from ultrasonic backscatter signal. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 145:2453. [PMID: 31046378 DOI: 10.1121/1.5098947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
The purpose of this work is to find a method to locate the scattering centers in spatial domain; by using this information, the mean scatter spacing (MSS) can be estimated, and the spatial information is the one-dimensional imaging of scattering centers. This paper presents a method that can locate the scattering centers in spatial domain robustly and automatically. By incorporating it with fast Fourier transformation, the MSS can be estimated. The three foremost processes, matched filtering, envelope extraction, and peak reconstruction, are incorporated in the authors' algorithm. Monte Carlo simulations demonstrate that the proposed method is a robust one to locate scattering centers in spatial domain, and has a better performance than spectrum-based MSS estimation techniques. Especially exploited in estimating MSS which varies from 0.6 to 1.2 mm in the range of human mean trabecular bone spacing, the proposed method shows great potential in medical use. Simple but widely used phantom experiments demonstrate that the proposed algorithm has the capacity to locate scattering centers in spatial domain.
Collapse
Affiliation(s)
- Fang Chen
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Aijun He
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Sidong Fu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaozhou Liu
- Key Laboratory of Modern Acoustics, Institute of Acoustics, Nanjing University, Nanjing 210093, China
| | - Yunqing Liu
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaoli Qu
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Robles G, Fresno JM, Giannetti R. Ultrasonic bone localization algorithm based on time-series cumulative kurtosis. ISA TRANSACTIONS 2017; 66:469-475. [PMID: 27665141 DOI: 10.1016/j.isatra.2016.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 04/08/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
The design and optimization of protective equipment and devices such as exoskeletons and prosthetics have the potential to be enhanced by the ability of accurately measure the positions of the bones during movement. Existing technologies allow a quite precise measurement of motion-mainly by using coordinate video-cameras and skin-mounted markers-but fail in directly measuring the bone position. Alternative approaches, as fluoroscopy, are too invasive and not usable during extended lapses of time, either for cost or radiation exposure. An approach to solve the problem is to combine the skin-glued markers with ultrasound technology in order to obtain the bone position by measuring at the same time the marker coordinates in 3D space and the depth of the echo from the bone. Given the complex structure of the bones and the tissues, the echoes from the ultrasound transducer show a quite complex structure as well. To reach a good accuracy in determining the depth of the bones, it is of paramount importance the ability to measure the time-of-flight (TOF) of the pulse with a high level of confidence. In this paper, the performance of several methods for determining the TOF of the ultrasound pulse has been evaluated when they are applied to the problem of measuring the bone depth. Experiments have been made using both simple setups used for calibration purposes and in real human tissues to test the performance of the algorithms. The results show that the method used to process the data to evaluate the time-of-flight of the echo signal can significantly affect the value of the depth measurement, especially in the cases when the verticality of the sensor with respect to the surface causing the main echo cannot be guaranteed. Finally, after testing several methods and processing algorithms for both accuracy and repeatability, the proposed cumulative kurtosis algorithm was found to be the most appropriate in the case of measuring bone depths in vivo with ultrasound sensors at frequencies around 5MHz.
Collapse
Affiliation(s)
- Guillermo Robles
- Department of Electrical Engineering, Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain.
| | - José Manuel Fresno
- Department of Electrical Engineering, Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain.
| | - Romano Giannetti
- Department of Electronics and Automatization, Universidad Pontificia Comillas de Madrid, 28015 Madrid, Spain.
| |
Collapse
|
7
|
Hata T, Nagatani Y, Takano K, Matsukawa M. Simulation study of axial ultrasonic wave propagation in heterogeneous bovine cortical bone. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:3710. [PMID: 27908063 DOI: 10.1121/1.4967234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The effect of the heterogeneity of the long cortical bone is an important factor when applying the axial transmission technique. In this study, the axial longitudinal wave velocity distributions in specimens from the mid-shaft of a bovine femur were measured, in the MHz range. Bilinear interpolation and the piecewise cubic Hermite interpolating polynomial method were used to construct three-dimensional (3D) axial velocity models with a resolution of 40 μm. By assuming the uniaxial anisotropy of the bone and using the results of previous experimental studies [Yamato, Matsukawa, Yanagitani, Yamazaki, Mizukawa, and Nagano (2008b). Calcified Tissue Int. 82, 162-169; Nakatsuji, Yamamoto, Suga, Yanagitani, Matsukawa, Yamazaki, and Matsuyama (2011). Jpn. J. Appl. Phys. 50, 07HF18], the distributions of all elastic moduli were estimated to obtain a 3D heterogeneous bone model and a uniform model. In the heterogeneous model, moduli at the surface were smaller than those inside the model. The elastic finite-difference time-domain method was used to simulate axial ultrasonic wave propagation in these models. In the heterogeneous model, the wavefront of the first arriving signal (FAS) was dependent on the heterogeneity, and the FAS velocity depended on the measured position. These phenomena were not observed in the uniform model.
Collapse
Affiliation(s)
- Toshiho Hata
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe 610-0321, Japan
| | - Yoshiki Nagatani
- Department of Electronics, Kobe City College of Technology, Kobe 651-2194, Japan
| | - Koki Takano
- Faculty of Science and Engineering, Doshisha University, Kyotanabe 610-0321, Japan
| | - Mami Matsukawa
- Faculty of Science and Engineering, Doshisha University, Kyotanabe 610-0321, Japan
| |
Collapse
|
8
|
Tasinkevych Y, Podhajecki J, Falińska K, Litniewski J. Simultaneous estimation of cortical bone thickness and acoustic wave velocity using a multivariable optimization approach: Bone phantom and in-vitro study. ULTRASONICS 2016; 65:105-112. [PMID: 26522955 DOI: 10.1016/j.ultras.2015.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 06/05/2023]
Abstract
The paper presents a method that allows the thickness of a compact bone layer and longitudinal wave velocity in the bone to be determined simultaneously with the use of reflected waves, with particular emphasis on the case of layers when the propagation time through the layer is shorter than the time duration of the interrogating pulse. The proposed method estimates simultaneously the thickness of the cortical bone layer and acoustic wave velocity by fitting the temporal spectrum of the simulated reflected wave to the spectrum of the reflected wave measured experimentally. For the purpose of echo-simulations the model of "soft tissue - compact bone layer - cancellous bone" was developed. Next, the cost function was defined as the least square error between the measured and simulated temporal spectra. Minimization of the cost function allowed us to determine the values of the parameters of the cortical bone layer which best fitted the measurements. To solve the optimization problem a simulated annealing algorithm was used. The method was tested using acoustic data obtained at the frequency of 0.6 MHz and 1 MHz respectively for a custom designed bone mimicking phantom and a calf femur. For the cortical shell of the calf femur whose thickness varies from 2.1 mm to 2.4 mm and velocity of 2910 m/s, the relative errors of the thickness estimation ranged from 0.4% to 5.5%. The corresponding error of the acoustic wave velocity estimation in the layer was 3.1%. In the case of artificial bone the thickness of the cortical layer was equal to 1.05 and 1.2 mm and acoustic wave velocity was 2900 m/s. These parameters were determined with the errors ranging from 1.9% to 10.8% and from 3.9% to 4.5% respectively.
Collapse
Affiliation(s)
- Yuriy Tasinkevych
- Institute of Fundamental Technological Research of the Polish Academy of Sciences, 5b Pawinskiego Str., 02-106 Warsaw, Poland.
| | - Jerzy Podhajecki
- Institute of Fundamental Technological Research of the Polish Academy of Sciences, 5b Pawinskiego Str., 02-106 Warsaw, Poland
| | - Katarzyna Falińska
- Institute of Fundamental Technological Research of the Polish Academy of Sciences, 5b Pawinskiego Str., 02-106 Warsaw, Poland
| | - Jerzy Litniewski
- Institute of Fundamental Technological Research of the Polish Academy of Sciences, 5b Pawinskiego Str., 02-106 Warsaw, Poland
| |
Collapse
|
9
|
Zheng R, Le LH, Sacchi MD, Lou E. Imaging Internal Structure of Long Bones Using Wave Scattering Theory. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:2955-2965. [PMID: 26299684 DOI: 10.1016/j.ultrasmedbio.2015.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 06/13/2015] [Accepted: 06/19/2015] [Indexed: 06/04/2023]
Abstract
An ultrasonic wavefield imaging method is developed to reconstruct the internal geometric properties of long bones using zero-offset data acquired axially on the bone surface. The imaging algorithm based on Born scattering theory is implemented with the conjugate gradient iterative method to reconstruct an optimal image. In the case of a multilayered velocity model, ray tracing through a smooth medium is used to calculate the traveled distance and traveling time. The method has been applied to simulated and real data. The results indicate that the interfaces of the top cortex are accurately imaged and correspond favorably to the original model. The reconstructed bottom cortex below the marrow is less accurate mainly because of the low signal-to-noise ratio. The current imaging method has successfully recovered the top cortical layer, providing a potential tool to investigate the internal structures of long bone cortex for osteoporosis assessment.
Collapse
Affiliation(s)
- Rui Zheng
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.
| | - Lawrence H Le
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada.
| | - Mauricio D Sacchi
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Edmond Lou
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
Jiang YQ, Liu CC, Li RY, Wang WP, Ding H, Qi Q, Ta D, Dong J, Wang WQ. Analysis of apparent integrated backscatter coefficient and backscattered spectral centroid shift in Calcaneus in vivo for the ultrasonic evaluation of osteoporosis. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:1307-17. [PMID: 24642217 DOI: 10.1016/j.ultrasmedbio.2013.12.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 05/10/2023]
Abstract
The purposes of our study were to evaluate the correlation among apparent integrated backscatter coefficient (AIB), spectral centroid shift (SCS) of ultrasonic backscatter signals and bone mineral density (BMD) and to examine the effectiveness of ultrasound variables as predictors of osteoporosis. A total of 1011 persons aged 21-80 y old were included. All study participants underwent BMD measurements of the lumbar spine (LSBMD) and the femoral neck (FNBMD). The participants also underwent calcaneal measurements to determine AIB and SCS with central frequencies of 3.5 (one transducer) and 5.0 MHz (the other transducer). AIB decreased with age and was positively correlated with BMD, while SCS increased with age and was negatively correlated with BMD. The correlation coefficient of SCS with LSBMD and FNBMD at 3.5 MHz was -0.72 and -0.70, respectively. The correlation coefficient at 5.0 MHz was -0.75 and -0.74, respectively. The correlation coefficient of AIB with LSBMD and FNBMD at 3.5 MHz was 0.65 and 0.63. The correlation coefficient at 5.0 MHz was 0.59 and 0.55, respectively. The correlation between SCS and BMD was significantly better than the correlation between AIB and BMD. Using receiver operating characteristic analysis, a significant difference was found between the areas under the curve for SCS and AIB at 3.5 MHz (0.781 vs. 0.715, respectively, p < 0.05), as well as at 5.0 MHz (0.782 vs. 0.709, respectively, p < 0.05). The optimum T-score threshold for SCS was -1.3 for both transducers. The sensitivity and specificity of SCS at 3.5 MHz and 5.0 MHz for the optimum threshold were 64%, 85%, 63% and 86%, respectively. In conclusion, the correlations among the ultrasound parameters and BMDs are strong. SCS performs better than AIB in differentiating patients with osteoporosis. Ultrasound variables may be taken into consideration as predictors of osteoporosis in the future considering its portability.
Collapse
Affiliation(s)
- Yun-qi Jiang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Cheng-cheng Liu
- Electronic Engineering Department of Fudan University, Shanghai, PR China
| | - Ruo-yu Li
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Wen-ping Wang
- Department of Ultrasonography, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Hong Ding
- Department of Ultrasonography, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Qing Qi
- Department of Ultrasonography, Zhongshan Hospital, Fudan University, Shanghai, PR China.
| | - Dean Ta
- Electronic Engineering Department of Fudan University, Shanghai, PR China.
| | - Jian Dong
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, PR China.
| | - Wei-qi Wang
- Electronic Engineering Department of Fudan University, Shanghai, PR China
| |
Collapse
|
11
|
Stein EM, Rosete F, Young P, Kamanda-Kosseh M, McMahon DJ, Luo G, Kaufman JJ, Shane E, Siffert RS. Clinical assessment of the 1/3 radius using a new desktop ultrasonic bone densitometer. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:388-95. [PMID: 23312957 PMCID: PMC3570600 DOI: 10.1016/j.ultrasmedbio.2012.09.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 09/20/2012] [Accepted: 09/27/2012] [Indexed: 05/23/2023]
Abstract
The objectives of this study were to evaluate the capability of a novel ultrasound device to clinically estimate bone mineral density (BMD) at the 1/3 radius. The device rests on a desktop and is portable, and permits real-time evaluation of the radial BMD. The device measures two net time delay (NTD) parameters, NTD(DW) and NTD(CW). NTD(DW) is defined as the difference between the transit time of an ultrasound pulse to travel through soft-tissue, cortex and medullary cavity, and the transit time through soft tissue only of equal overall distance. NTD(CW) is defined as the difference between the transit time of an ultrasound pulse to travel through soft-tissue and cortex only, and the transit time through soft tissue only again of equal overall distance. The square root of the product of these two parameters is a measure of the radial BMD at the 1/3 location as measured by dual-energy X-ray absorptiometry (DXA). A clinical IRB-approved study measured ultrasonically 60 adults at the 1/3 radius. BMD was also measured at the same anatomic site and time using DXA. A linear regression using NTD produced a linear correlation coefficient of 0.93 (p < 0.001). These results are consistent with previously reported simulation and in vitro studies. In conclusion, although X-ray methods are effective in bone mass assessment, osteoporosis remains one of the largest undiagnosed and under-diagnosed diseases in the world today. The research described here should enable significant expansion of diagnosis and monitoring of osteoporosis through a desktop device that ultrasonically assesses bone mass at the 1/3 radius.
Collapse
Affiliation(s)
- Emily M Stein
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Souzanchi MF, Palacio-Mancheno P, Borisov YA, Cardoso L, Cowin SC. Microarchitecture and bone quality in the human calcaneus: local variations of fabric anisotropy. J Bone Miner Res 2012; 27:2562-72. [PMID: 22807141 PMCID: PMC3500573 DOI: 10.1002/jbmr.1710] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 06/13/2012] [Accepted: 06/26/2012] [Indexed: 11/08/2022]
Abstract
The local variability of microarchitecture of human trabecular calcaneus bone is investigated using high-resolution micro-computed tomography (µCT) scanning. The fabric tensor is employed as the measure of the microarchitecture of the pore structure of a porous medium. It is hypothesized that a fabric tensor-dependent poroelastic ultrasound approach will more effectively predict the data variance than will porosity alone. The specific aims of the present study are as follows: (1) to quantify the morphology and local anisotropy of the calcaneus microarchitecture with respect to anatomical directions; (2) to determine the interdependence, or lack thereof, of microarchitecture parameters, fabric, and volumetric bone mineral density (vBMD); and (3) to determine the relative ability of vBMD and fabric measurements in evaluating the variance in ultrasound wave velocity measurements along orthogonal directions in the human calcaneus. Our results show that the microarchitecture in the analyzed regions of human calcanei is anisotropic, with a preferred alignment along the posterior-anterior direction. Strong correlation was found between most scalar architectural parameters and vBMD. However, no statistical correlation was found between vBMD and the fabric components, the measures of the pore microstructure orientation. Therefore, among the parameters usually considered for cancellous bone (ie, classic histomorphometric parameters such as porosity, trabecular thickness, number and separation), only fabric components explain the data variance that cannot be explained by vBMD, a global mass measurement, which lacks the sensitivity and selectivity to distinguish osteoporotic from healthy subjects because it is insensitive to directional changes in bone architecture. This study demonstrates that a multidirectional, fabric-dependent poroelastic ultrasound approach has the capability of characterizing anisotropic bone properties (bone quality) beyond bone mass, and could help to better understand anisotropic changes in bone architecture using ultrasound.
Collapse
|
13
|
Yamashita K, Fujita F, Mizuno K, Mano I, Matsukawa M. Two-wave propagation imaging to evaluate the structure of cancellous bone. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2012; 59:1160-1166. [PMID: 22711411 DOI: 10.1109/tuffc.2012.2306] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The two-wave phenomenon reflects not only bone mass but also the complex bone structure of cancellous bone. We propose a new simple imaging technique based on the two-wave phenomenon for investigating the anisotropic structure of cancellous bone. A cylindrical specimen of cancellous bone was obtained from a bovine femur. The structure (alignment of trabeculae) of the specimen was obtained from 3-D X-ray micro computed tomography imaging. Using a conventional ultrasonic pulse technique, we rotated the receiver around the specimen to investigate the ultrasonic fields after propagation within the specimen. The ultrasonic propagation image clearly showed the effect of the bone structure. We found that the fast wave showed apparent refraction, whereas the slow wave did not. Fast-wave propagation imaging is thus a simple and convenient technique for easy interpretation of the anisotropic structure. This imaging technique has the potential to become a powerful tool to investigate the structure of trabeculae during in vivo measurements.
Collapse
Affiliation(s)
- Keisuke Yamashita
- Laboratory of Ultrasonic Electronics, Doshisha University, Kyoto, Japan
| | | | | | | | | |
Collapse
|
14
|
Cardoso L, Cowin SC. Role of structural anisotropy of biological tissues in poroelastic wave propagation. MECHANICS OF MATERIALS : AN INTERNATIONAL JOURNAL 2012; 44:174-188. [PMID: 22162897 PMCID: PMC3233242 DOI: 10.1016/j.mechmat.2011.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Ultrasound waves have a broad range of clinical applications as a non-destructive testing approach in imaging and in the diagnoses of medical conditions. Generally, biological tissues are modeled as an homogenized equivalent medium with an apparent density through which a single wave propagates. Only the first wave arriving at the ultrasound probe is used for the measurement of the speed of sound. However, the existence of a second wave in tissues such as cancellous bone has been reported and its existence is an unequivocal signature of Biot type poroelastic media. To account for the fact that ultrasound is sensitive to microarchitecture as well as density, a fabric-dependent anisotropic poroelastic ultrasound (PEU) propagation theory was recently developed. Key to this development was the inclusion of the fabric tensor - a quantitative stereological measure of the degree of structural anisotropy of bone - into the linear poroelasticity theory. In the present study, this framework is extended to the propagation of waves in several soft and hard tissues. It was found that collagen fibers in soft tissues and the mineralized matrix in hard tissues are responsible for the anisotropy of the solid tissue constituent through the fabric tensor in the model.
Collapse
Affiliation(s)
- Luis Cardoso
- The Department of Biomedical Engineering, The City University of New York, New York, NY 10031
| | | |
Collapse
|
15
|
Cardoso L, Cowin SC. Fabric dependence of quasi-waves in anisotropic porous media. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 129:3302-16. [PMID: 21568431 PMCID: PMC3115277 DOI: 10.1121/1.3557032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 01/14/2011] [Accepted: 01/19/2011] [Indexed: 05/20/2023]
Abstract
Assessment of bone loss and osteoporosis by ultrasound systems is based on the speed of sound and broadband ultrasound attenuation of a single wave. However, the existence of a second wave in cancellous bone has been reported and its existence is an unequivocal signature of poroelastic media. To account for the fact that ultrasound is sensitive to microarchitecture as well as bone mineral density (BMD), a fabric-dependent anisotropic poroelastic wave propagation theory was recently developed for pure wave modes propagating along a plane of symmetry in an anisotropic medium. Key to this development was the inclusion of the fabric tensor--a quantitative stereological measure of the degree of structural anisotropy of bone--into the linear poroelasticity theory. In the present study, this framework is extended to the propagation of mixed wave modes along an arbitrary direction in anisotropic porous media called quasi-waves. It was found that differences between phase and group velocities are due to the anisotropy of the bone microarchitecture, and that the experimental wave velocities are more accurately predicted by the poroelastic model when the fabric tensor variable is taken into account. This poroelastic wave propagation theory represents an alternative for bone quality assessment beyond BMD.
Collapse
Affiliation(s)
- Luis Cardoso
- The Department of Biomedical Engineering, The City University of New York, New York, New York 10031, USA.
| | | |
Collapse
|
16
|
Cowin SC, Cardoso L. Fabric dependence of wave propagation in anisotropic porous media. Biomech Model Mechanobiol 2011; 10:39-65. [PMID: 20461539 PMCID: PMC3393603 DOI: 10.1007/s10237-010-0217-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Accepted: 04/08/2010] [Indexed: 10/19/2022]
Abstract
Current diagnosis of bone loss and osteoporosis is based on the measurement of the bone mineral density (BMD) or the apparent mass density. Unfortunately, in most clinical ultrasound densitometers: 1) measurements are often performed in a single anatomical direction, 2) only the first wave arriving to the ultrasound probe is characterized, and 3) the analysis of bone status is based on empirical relationships between measurable quantities such as speed of sound (SOS) and broadband ultrasound attenuation (BUA) and the density of the porous medium. However, the existence of a second wave in cancellous bone has been reported, which is an unequivocal signature of poroelastic media, as predicted by Biot's poroelastic wave propagation theory. In this paper, the governing equations for wave motion in the linear theory of anisotropic poroelastic materials are developed and extended to include the dependence of the constitutive relations upon fabric-a quantitative stereological measure of the degree of structural anisotropy in the pore architecture of a porous medium. This fabric-dependent anisotropic poroelastic approach is a theoretical framework to describe the microarchitectural-dependent relationship between measurable wave properties and the elastic constants of trabecular bone, and thus represents an alternative for bone quality assessment beyond BMD alone.
Collapse
Affiliation(s)
- Stephen C Cowin
- The New York Center for Biomedical Engineering, Departments of Biomedical and Mechanical Engineering, School of Engineering of The City College and Graduate School of The City University of New York, New York, NY 10031, USA.
| | | |
Collapse
|
17
|
Lee HD, Hwang HF, Lin MR. Use of quantitative ultrasound for identifying low bone density in older people. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2010; 29:1083-1092. [PMID: 20587432 DOI: 10.7863/jum.2010.29.7.1083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
OBJECTIVE This study examined criterion, convergent, and discriminant validities of quantitative ultrasound (QUS) for identifying low bone density among people aged 55 years and older in Taiwan. METHODS We recruited 453 community-dwelling volunteers and 30 patients with lower extremity fractures. Bone density was assessed using both calcaneal QUS and femoral neck dual-energy x-ray absorptiometry (DXA). Two QUS parameters, speed of sound (SOS) and broadband ultrasound attenuation (BUA), were also used to estimate heel bone mineral density (HBMD). RESULTS Using DXA as the criterion for identifying low bone density (DXA T score of 1.0 or lower), likelihood ratios for BUA and SOS at the 50th percentile and HBMD for men were 1.50, 1.75, and 1.28, respectively; the counterparts for women were 1.54, 2.13, and 1.29. As for identifying osteoporosis (DXA T score of -2.5 or lower), higher likelihood ratios of the 3 QUS parameters were gained. For convergent validity, Pearson correlation coefficients for DXA with BUA, SOS, and HBMD ranged from 0.40 to 0.43 for men and from 0.48 to 0.53 for women. For the ability to discriminate men and women with lower extremity fractures from those without, no significant differences in the area under the receiver operating characteristic curve were detected between BUA, SOS, and HBMD and DXA after adjusting for age, body mass index, fall history, and current smoking. CONCLUSIONS Although having very good convergent and discriminant validities and fair criterion validity, calcaneal QUS may be a screening tool for identifying low bone density.
Collapse
Affiliation(s)
- Hsin-Dai Lee
- Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | | | | |
Collapse
|
18
|
Schechner Z, Luo G, Kaufman JJ, Siffert RS. A poisson process model for hip fracture risk. Med Biol Eng Comput 2010; 48:799-810. [DOI: 10.1007/s11517-010-0638-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 05/16/2010] [Indexed: 10/19/2022]
|
19
|
Woo DG, Ko CY, Kim HS, Seo JB, Lim D. Evaluation of the Potential Clinical Application of Low-Intensity Ultrasound Stimulation for Preventing Osteoporotic Bone Fracture. Ann Biomed Eng 2010; 38:2438-46. [DOI: 10.1007/s10439-010-9983-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 02/22/2010] [Indexed: 11/28/2022]
|
20
|
Lenora J, Gerdhem P, Obrant KJ, Ivaska KK. Bone turnover markers are correlated with quantitative ultrasound of the calcaneus: 5-year longitudinal data. Osteoporos Int 2009; 20:1225-32. [PMID: 18949532 DOI: 10.1007/s00198-008-0769-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 09/24/2008] [Indexed: 10/21/2022]
Abstract
SUMMARY Associations between bone turnover markers and calcaneal ultrasound (quantitative ultrasound, QUS) were studied in a population-based sample of 810 elderly women. Baseline bone turnover markers correlated with baseline QUS as well as with 5-year prospective changes in QUS. INTRODUCTION Bone turnover markers are associated with areal bone mineral density, but the knowledge on the association with QUS is limited. METHODS Eight hundred ten women, all 75 years old, were investigated at baseline. Five hundred six completed a 5-year follow-up. Bone turnover markers and calcaneal QUS [speed of sound (SoS), broadband ultrasound attenuation (BUA), stiffness] were investigated at baseline. QUS was investigated at follow-up. RESULTS All bone turnover markers were correlated with baseline QUS [standardized regression (Beta(std)) values from -0.07, p < 0.05 to -0.23, p < 0.001], with the exception of bone-specific alkaline phosphatase (S-Bone ALP) which was not correlated with BUA and stiffness index. When the correlations between baseline bone turnover markers and 5-year changes in QUS were analyzed, three serum osteocalcins were correlated with changes of SoS and stiffness index (Beta(std) = -0.11, p < 0.05 to -0.17, p < 0.001). Also S-CTX-I correlated with changes of SoS and stiffness index (Beta(std) = -0.10 and -0.09, respectively, p < 0.05). S-TRACP5b, urinary deoxypyridinoline/crea, and U-MidOC/crea correlated with changes of SoS (Beta(std) = -0.10 and p < 0.05 for all). S-Bone ALP did not correlate with change of QUS. None of the bone turnover markers correlated with changes of BUA. CONCLUSIONS Bone turnover markers correlate with concomitantly assessed QUS as well as with longitudinal change in QUS.
Collapse
Affiliation(s)
- J Lenora
- Department of Orthopaedics, Malmö University Hospital, Lund University, Malmö, Sweden.
| | | | | | | |
Collapse
|
21
|
Ta D, Wang W, Wang Y, Le LH, Zhou Y. Measurement of the dispersion and attenuation of cylindrical ultrasonic guided waves in long bone. ULTRASOUND IN MEDICINE & BIOLOGY 2009; 35:641-652. [PMID: 19153000 DOI: 10.1016/j.ultrasmedbio.2008.10.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 09/20/2008] [Accepted: 10/08/2008] [Indexed: 05/27/2023]
Abstract
Osteoporotic bones are likely to have less cortical bone than healthy bones. The velocities of guided waves propagating in a long cylindrical bone are very sensitive to bone properties and cortical thickness (CTh). This work studies the dispersion and attenuation of ultrasonic guided waves propagating in long cylindrical bone. A hollow cylinder filled with a viscous liquid was used to model the long bone and then to calculate the theoretical phase and group velocities, as well as the attenuation of the waves. The generation and selection of guided wave modes were based on theoretical dispersive curves. The phase velocity and attenuation of cylindrical guided wave modes, such as L(0,1), L(0,2) and L(0,3), were measured in bovine tibia using angled beam transducers at various propagation distances ranging from 75 to 160 mm. The results showed that the phase velocity of the L(0,2) guided wave mode decreased with an increase in CTh. The attenuation of the low cylindrical guided wave modes was a nonlinear function that increased with propagation distance and mode order. The L(0,2) mode had a different attenuation for each CTh. The experimental results were in good agreement with the predicted values. Cylindrical guided waves of low-frequency and low-order have been shown to demonstrate more dispersion and less attenuation and should, therefore, be used to evaluate long bone.
Collapse
Affiliation(s)
- Dean Ta
- Department of Electronic Engineering, Fudan University, Shanghai, China.
| | | | | | | | | |
Collapse
|
22
|
Hollaender R, Hartl F, Krieg MA, Tyndall A, Geuckel C, Buitrago-Tellez C, Manghani M, Kraenzlin M, Theiler R, Hans D. Prospective evaluation of risk of vertebral fractures using quantitative ultrasound measurements and bone mineral density in a population-based sample of postmenopausal women: results of the Basel Osteoporosis Study. Ann Rheum Dis 2009; 68:391-6. [PMID: 18417517 DOI: 10.1136/ard.2007.083618] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Prospective studies have shown that quantitative ultrasound (QUS) techniques predict the risk of fracture of the proximal femur with similar standardised risk ratios to dual-energy x-ray absorptiometry (DXA). Few studies have investigated these devices for the prediction of vertebral fractures. The Basel Osteoporosis Study (BOS) is a population-based prospective study to assess the performance of QUS devices and DXA in predicting incident vertebral fractures. METHODS 432 women aged 60-80 years were followed-up for 3 years. Incident vertebral fractures were assessed radiologically. Bone measurements using DXA (spine and hip) and QUS measurements (calcaneus and proximal phalanges) were performed. Measurements were assessed for their value in predicting incident vertebral fractures using logistic regression. RESULTS QUS measurements at the calcaneus and DXA measurements discriminated between women with and without incident vertebral fracture, (20% height reduction). The relative risks (RRs) for vertebral fracture, adjusted for age, were 2.3 for the Stiffness Index (SI) and 2.8 for the Quantitative Ultrasound Index (QUI) at the calcaneus and 2.0 for bone mineral density at the lumbar spine. The predictive value (AUC (95% CI)) of QUS measurements at the calcaneus remained highly significant (0.70 for SI, 0.72 for the QUI, and 0.67 for DXA at the lumbar spine) even after adjustment for other confounding variables. CONCLUSIONS QUS of the calcaneus and bone mineral density measurements were shown to be significant predictors of incident vertebral fracture. The RRs for QUS measurements at the calcaneus are of similar magnitude as for DXA measurements.
Collapse
Affiliation(s)
- R Hollaender
- Departmant of Rheumatology, Felix Platter-Hospital, University of Basel, Bugfelderstrasse 101, CH-4012 Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ta D, Wang W, Huang K, Wang Y, Le LH. Analysis of frequency dependence of ultrasonic backscatter coefficient in cancellous bone. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2008; 124:4083-4090. [PMID: 19206830 DOI: 10.1121/1.3001705] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The ultrasonic scattering mechanism in cancellous bone is investigated theoretically and a model describing the frequency dependence of ultrasonic scattering from cancellous bone is presented. The ultrasonic backscatter coefficient (BSC) of bovine tibiae, human calcanei in vitro and in vivo, were measured and discussed. The data of BSC were also fitted by polynomial. The results demonstrate that BSC is a nonlinear function of frequency and increases with frequency. A good agreement was obtained between BSC values from theory and experiment. Also, the high correlation coefficient between BSC and bone mineral density was obtained, r=0.85+/-0.07 (mean+/-SD) (n=15, p<0.001). Based on the values of BSC, the status of cancellous bone and the degree of osteoporotic fracture risk may be assessed.
Collapse
Affiliation(s)
- Dean Ta
- Department of Electronic Engineering, Fudan University, Shanghai, China.
| | | | | | | | | |
Collapse
|
24
|
Le Floch V, Luo G, Kaufman JJ, Siffert RS. Ultrasonic assessment of the radius in vitro. ULTRASOUND IN MEDICINE & BIOLOGY 2008; 34:1972-1979. [PMID: 18692295 PMCID: PMC2607572 DOI: 10.1016/j.ultrasmedbio.2008.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 05/15/2008] [Accepted: 05/22/2008] [Indexed: 05/26/2023]
Abstract
The overall objective of this research is to develop an ultrasonic system for noninvasive assessment of the distal radius. The specific objective of this study was to examine the relationship between geometrical features of cortical bone and ultrasound measurements in vitro. Nineteen radii were measured in through transmission in a water bath. A 3.5 MHz rectangular (1 cm x 4.8 cm) single element transducer served as the source and a 3.5 MHz rectangular (1 cm x 4.8 cm) linear array transducer served as the receiver. The linear array consisted of 64 elements with a pitch of 0.75 mm. Ultrasound measurements were carried out at a location that was 1/3rdrd of the length from the distal end of each radius and two net time delay parameters, tau(NetDW) and tau(NetCW), associated with a direct wave (DW) and a circumferential wave (CW), respectively, were evaluated. The cortical thickness (CT), medullar thickness (MT) and cross-sectional area (CSA) of each radius was also evaluated based on a digital image of the cross-section at the 1/3rd location. The linear correlations between CT and tau(NetDW) was r = 0.91 (p < 0.001) and between MT and tau(NetCW) - tau(NetDW) was r = 0.63 (p < 0.05). The linear correlation between CSA and a nonlinear combination of the two net time delays, tau(NetDW) and tau(NetCW), was r = 0.95 (p < 0.001). The study shows that ultrasound measurements can be used to noninvasively assess cortical bone geometrical features in vitro as represented by cortical thickness, medullar thickness and cross-sectional area.
Collapse
Affiliation(s)
- Vincent Le Floch
- Ecole Nationale Superieure d’Arts et Metiers, Aix-en-Provence, Provence-Alpes-Cote-d’Azur, France
- CyberLogic, Inc., New York, NY, USA
| | - Gangming Luo
- CyberLogic, Inc., New York, NY, USA
- VA New York Harbor HealthCare System; New York, NY, USA
- New York University School of Medicine, Dept of Rehabilitation Medicine
| | - Jonathan J. Kaufman
- CyberLogic, Inc., New York, NY, USA
- Department of Orthopedics, The Mount Sinai School of Medicine, New York, NY, USA
| | - Robert S. Siffert
- Department of Orthopedics, The Mount Sinai School of Medicine, New York, NY, USA
| |
Collapse
|
25
|
Moilanen P, Talmant M, Kilappa V, Nicholson P, Cheng S, Timonen J, Laugier P. Modeling the impact of soft tissue on axial transmission measurements of ultrasonic guided waves in human radius. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2008; 124:2364-2373. [PMID: 19062874 DOI: 10.1121/1.2973228] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Recent in vitro and simulation studies have shown that guided waves measured at low ultrasound frequencies (f=200 kHz) can characterize both material properties and geometry of the cortical bone wall. In particular, a method for an accurate cortical thickness estimation from ultrasound velocity data has been presented. The clinical application remains, however, a challenge as the impact of a layer of soft tissue on top of the bone is not yet well established, and this layer is expected to affect the dispersion and relative intensities of guided modes. The present study is focused on the theoretical modeling of the impact of an overlying soft tissue. A semianalytical method and finite-difference time domain simulations were used. The models developed were shown to predict consistently real in vivo data on human radii. As a conclusion, clinical guided wave data are not consistent with in vitro data or related in vitro models, but use of an adequate in vivo model, such as the one introduced here, is necessary. A theoretical model that accounts for the impact of an overlying soft tissue could thus be used in clinical applications.
Collapse
Affiliation(s)
- Petro Moilanen
- Department of Physics, University of Jyvaskyla, Jyvaskyla FI-40014, Finland.
| | | | | | | | | | | | | |
Collapse
|
26
|
Quantitative ultrasound in the management of osteoporosis: the 2007 ISCD Official Positions. J Clin Densitom 2008; 11:163-87. [PMID: 18442758 DOI: 10.1016/j.jocd.2007.12.011] [Citation(s) in RCA: 248] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 12/05/2007] [Indexed: 12/19/2022]
Abstract
Dual-energy X-ray absorptiometry (DXA) is commonly used in the care of patients for diagnostic classification of osteoporosis, low bone mass (osteopenia), or normal bone density; assessment of fracture risk; and monitoring changes in bone density over time. The development of other technologies for the evaluation of skeletal health has been associated with uncertainties regarding their applications in clinical practice. Quantitative ultrasound (QUS), a technology for measuring properties of bone at peripheral skeletal sites, is more portable and less expensive than DXA, without the use of ionizing radiation. The proliferation of QUS devices that are technologically diverse, measuring and reporting variable bone parameters in different ways, examining different skeletal sites, and having differing levels of validating data for association with DXA-measured bone density and fracture risk, has created many challenges in applying QUS for use in clinical practice. The International Society for Clinical Densitometry (ISCD) 2007 Position Development Conference (PDC) addressed clinical applications of QUS for fracture risk assessment, diagnosis of osteoporosis, treatment initiation, monitoring of treatment, and quality assurance/quality control. The ISCD Official Positions on QUS resulting from this PDC, the rationale for their establishment, and recommendations for further study are presented here.
Collapse
|
27
|
Floch VL, McMahon DJ, Luo G, Cohen A, Kaufman JJ, Shane E, Siffert RS. Ultrasound simulation in the distal radius using clinical high-resolution peripheral-CT images. ULTRASOUND IN MEDICINE & BIOLOGY 2008; 34:1317-26. [PMID: 18343017 PMCID: PMC2562908 DOI: 10.1016/j.ultrasmedbio.2008.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 01/04/2008] [Accepted: 01/12/2008] [Indexed: 05/10/2023]
Abstract
The overall objective of this research is to develop an ultrasonic method for noninvasive assessment of the distal radius. The specific objective of this study was to examine the propagation of ultrasound through the distal radius and determine the relationships between bone mass and architecture and ultrasound parameters. Twenty-six high-resolution peripheral-CT clinical images were obtained from a set of subjects that were part of a larger study on secondary osteoporosis. A single midsection binary slice from each image was selected and used in the two-dimensional (2D) simulation of an ultrasound wave propagating from the anterior to the posterior surfaces of each radius. Mass and architectural parameters associated with each radius, including total (trabecular and cortical) bone mass, trabecular volume fraction, trabecular number and trabecular thickness were computed. Ultrasound parameters, including net time delay (NTD), broadband ultrasound attenuation (BUA) and ultrasound velocity (UV) were also evaluated. Significant correlations were found between NTD and total bone mass (R2 = 0.92, p < 0.001), BUA and trabecular number (R2 = 0.78, p < 0.01) and UV and trabecular bone volume fraction (R2 = 0.82, p < 0.01). There was only weak, statistically insignificant correlation (R2 < 0.14, p = 0.21) found between trabecular thickness and any of the ultrasound parameters. The study shows that ultrasound measurements are correlated with bone mass and architecture at the distal radius and, thus, ultrasound may prove useful as a method for noninvasive assessment of osteoporosis and fracture risk.
Collapse
Affiliation(s)
- Vincent Le Floch
- Ecole Nationale Superieure d'Arts et Metiers, Aix-en-Provence, Provence-Alpes-Cote-d'Azur, France
- CyberLogic, Inc., New York, NY, USA
| | - Donald J. McMahon
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Gangming Luo
- CyberLogic, Inc., New York, NY, USA
- VA New York Harbor HealthCare System, New York, NY, USA
- New York University School of Medicine, Department of Rehabilitation Medicine, New York, NY, USA
| | - Adi Cohen
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jonathan J. Kaufman
- CyberLogic, Inc., New York, NY, USA
- Department of Orthopedics, The Mount Sinai School of Medicine, New York, NY, USA
| | - Elizabeth Shane
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Robert S. Siffert
- Department of Orthopedics, The Mount Sinai School of Medicine, New York, NY, USA
| |
Collapse
|
28
|
Mizuno K, Matsukawa M, Otani T, Takada M, Mano I, Tsujimoto T. Effects of structural anisotropy of cancellous bone on speed of ultrasonic fast waves in the bovine femur. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2008; 55:1480-7. [PMID: 18986937 DOI: 10.1109/tuffc.2008.823] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Ultrasonic waves in cancellous bone change dramatically depending on its structural complexity. One good example is the separation of an ultrasonic longitudinal wave into fast and slow waves during propagation. In this study, we examined fast wave propagation in cancellous bone obtained from the head of the bovine femur, taking the bone structure into consideration. We investigated the wave propagation perpendicular to the bone axis and found the two-wave phenomenon. By rotating the cylindrical cancellous bone specimen, changes in the fast wave speed due to the rotation angle then were observed. In addition to the ultrasonic evaluation, the structural anisotropy of each specimen was measured by X-ray micro-computed tomography (CT). From the CT images, we obtained the mean intercept length (MIL), degree of anisotropy (DA), and angle of insonification relative to the trabecular orientation. The ultrasonic and CT results showed that the fast wave speed was dependent on the structural anisotropy, especially on the trabecular orientation and length. The fast wave speeds always were higher for propagation parallel to the trabecular orientation. In addition, there was a strong correlation between the DA and the ratio between maximum and minimum speeds (V(max)/V(min)) (R(2) = 0.63).
Collapse
Affiliation(s)
- K Mizuno
- Fac. of Eng., Doshisha Univ., Kyotanabe, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Huang K, Ta D, Wang W, Le LH. Simplified inverse filter tracking algorithm for estimating the mean trabecular bone spacing. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2008; 55:1453-1464. [PMID: 18986934 DOI: 10.1109/tuffc.2008.820] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Ultrasonic backscatter signals provide useful information relevant to bone tissue characterization. Trabecular bone microstructures have been considered as quasi-periodic tissues with a collection of regular and diffuse scatterers. This paper investigates the potential of a novel technique using a simplified inverse filter tracking (SIFT) algorithm to estimate mean trabecular bone spacing (MTBS) from ultrasonic backscatter signals. In contrast to other frequency-based methods, the SIFT algorithm is a time-based method and utilizes the amplitude and phase information of backscatter echoes, thus retaining the advantages of both the autocorrelation and the cepstral analysis techniques. The SIFT algorithm was applied to backscatter signals from simulations, phantoms, and bovine trabeculae in vitro. The estimated MTBS results were compared with those of the autoregressive (AR) cepstrum and quadratic transformation (QT) . The SIFT estimates are better than the AR cepstrum estimates and are comparable with the QT values. The study demonstrates that the SIFT algorithm has the potential to be a reliable and robust method for the estimation of MTBS in the presence of a small signal-to-noise ratio, a large spacing variation between regular scatterers, and a large scattering strength ratio of diffuse scatterers to regular ones.
Collapse
Affiliation(s)
- Kai Huang
- Dept. of Electron. Eng., Fudan Univ., Shanghai
| | | | | | | |
Collapse
|
30
|
Wear KA. A method for improved standardization of in vivo calcaneal time-domain speed-of-sound measurements. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2008; 55:1473-9. [PMID: 18986936 PMCID: PMC9148199 DOI: 10.1109/tuffc.2008.822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Although calcaneal speed of sound (SOS) is an effective predictor of osteoporotic fracture risk, clinical SOS measurements exhibit a high degree of inter-system variability. Calcaneal SOS is usually computed from time-of-flight measurements of broadband ultrasound pulses that propagate through the foot. In order to minimize the effects of multi-path interference, many investigators measure time-of-flight from markers near the leading edge of the pulse. The calcaneus is a highly attenuating, highly inhomogeneous bone that distorts propagating ultrasound pulses via frequency-dependent attenuation, reverberation, dispersion, multiple scattering, and refraction. This pulse distortion can produce errors in leading-edge transit-time marker-based SOS measurements. In this paper, an equation to predict dependence of time-domain SOS measurements on system parameters (center frequency and bandwidth), transit-time marker location, and bone properties (attenuation coefficient and thickness) is validated with through-transmission measurements in a bone-mimicking phantom and in 73 women in vivo, using a clinical bone sonometer. In order to test the utility of the formula for suppressing system dependence of SOS measurements, a wideband laboratory data acquisition system was used to make a second set of through-transmission measurements on the phantom. The compensation formula reduced system-dependent leading-edge transit-time marker-based SOS measurements in the phantom from 41 m/s to 5 m/s and reduced average transit-time marker-related SOS variability in 73 women from 40 m/s to 10 m/s. The compensation formula can be used to improve standardization in bone sonometry.
Collapse
Affiliation(s)
- K A Wear
- Center for Devices & Radiol. Health, Silver Spring, MD, USA.
| |
Collapse
|
31
|
Hans D, Krieg MA. The clinical use of quantitative ultrasound (QUS) in the detection and management of osteoporosis. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2008; 55:1529-38. [PMID: 18986943 DOI: 10.1109/tuffc.2008.829] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
For the detection and management of osteoporosis and osteoporosis-related fractures, quantitative ultrasound (QUS) is emerging as a relatively low-cost and readily accessible alternative to dual-energy X-ray absorptiometry (DXA) measurement of bone mineral density (BMD) in certain circumstances. The following is a brief, but thorough review of the existing literature with respect to the use of QUS in 6 settings: 1) assessing fragility fracture risk; 2) diagnosing osteoporosis; 3) initiating osteoporosis treatment; 4) monitoring osteoporosis treatment; 5) osteoporosis case finding; and 6) quality assurance and control. Many QUS devices exist that are quite different with respect to the parameters they measure and the strength of empirical evidence supporting their use. In general, heel QUS appears to be most tested and most effective. Overall, some, but not all, heel QUS devices are effective assessing fracture risk in some, but not all, populations, the evidence being strongest for Caucasian females over 55 years old. Otherwise, the evidence is fair with respect to certain devices allowing for the accurate diagnosis of likelihood of osteoporosis, and generally fair to poor in terms of QUS use when initiating or monitoring osteoporosis treatment. A reasonable protocol is proposed herein for case-finding purposes, which relies on a combined assessment of clinical risk factors (CR.F) and heel QUS. Finally, several recommendations are made for quality assurance and control.
Collapse
Affiliation(s)
- D Hans
- Dept. of Bone & Joint, Lausanne Univ. Hosp., Lausanne, Switzerland.
| | | |
Collapse
|
32
|
Wear KA. The effect of phase cancellation on estimates of broadband ultrasound attenuation and backscatter coefficient in human calcaneus in vitro. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2008; 55:384-90. [PMID: 18334344 PMCID: PMC6931155 DOI: 10.1109/tuffc.2008.656] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Broadband ultrasound attenuation (BUA) is a clinically proven indicator of osteoporotic fracture risk. BUA measurements are typically performed in throughtransmission with single-element phase sensitive (PS) receivers and therefore can be compromised by phase cancellation artifact. Phase-insensitive (PI) receivers suppress phase cancellation artifact. To study the effect of phase cancellation on BUA measurements, through-transmission measurements were performed on 16 human calcaneus samples in vitro using a two-dimensional receiver array that enabled PS and PI BUA estimation. The means plus or minus standard deviations for BUA measurements were 22.1 +/- 15.8 dB/MHz (PS) and 17.6 +/- 7.2 dB/MHz (PI), suggesting that, on the average, approximately 20% of PS BUA values in vitro can be attributed to phase cancellation artifact. Therefore, although cortical plates are often regarded as the primary source of phase cancellation artifact, the heterogeneity of cancellous bone in the calcaneal interior may also be a significant source. Backscatter coefficient estimates in human calcaneus that are based on PS attenuation compensation overestimate 1) average magnitude of backscatter coefficient at 500 kHz by a factor of about 1.6 +/- 0.3 and 2) average exponent (n) of frequency dependence by about 0.34 +/- 0.12 (where backscatter coefficient is fit to a power law form proportional to frequency to the nth power).
Collapse
Affiliation(s)
- Keith A Wear
- US Food and Drug Administration, Silver Spring, MD 20993-0002, USA.
| |
Collapse
|
33
|
Moilanen P. Ultrasonic guided waves in bone. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2008; 55:1277-1286. [PMID: 18599415 DOI: 10.1109/tuffc.2008.790] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Recent progress in quantitative ultrasound (QUS) has shown increasing interest toward measuring long bones by ultrasonic guided waves. This technology is widely used in the field of nondestructive testing and evaluation of different waveguide structures. Cortical bone provides such an elastic waveguide and its ability to sustain loading and resist fractures is known to be related to its mechanical properties at different length scales. Because guided waves could yield diverse characterizations of the bone's mechanical properties at the macroscopic level, the method of guided waves has a strong potential over the standardized bone densitometry as a tool for bone assessment. Despite this, development of guided wave methods is challenging, e.g., due to interferences and multiparametric inversion problems. This paper discusses the promises and challenges related to bone characterization by ultrasonic guided waves.
Collapse
Affiliation(s)
- Petro Moilanen
- Department of Physics, University of Jyväskylä, Jyväskylä, Finland.
| |
Collapse
|
34
|
Laugier P. Instrumentation for in vivo ultrasonic characterization of bone strength. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2008; 55:1179-96. [PMID: 18599407 DOI: 10.1109/tuffc.2008.782] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Although it has been more than 20 years since the first recorded use of a quantitative ultrasound (QUS) technology to predict bone fragility, the field has not yet reached its maturity. QUS has the potential to predict fracture risk in several clinical circumstances and has the advantages of being nonionizing, inexpensive, portable, highly acceptable to patients, and repeatable. However, the wide dissemination of QUS in clinical practice is still limited and suffering from the absence of clinical consensus on how to integrate QUS technologies in bone densitometry armamentarium. Several critical issues need to be addressed to develop the role of QUS within rheumatology. These include issues of technologies adapted to measure the central skeleton, data acquisition, and signal processing procedures to reveal bone properties beyond bone mineral quantity and elucidation of the complex interaction between ultrasound and bone structure. This article reviews the state-of-the art in technological developments applied to assess bone strength in vivo. We describe generic measurement and signal processing methods implemented in clinical ultrasound devices, the devices and their practical use, and performance measures. The article also points out the present limitations, especially those related to the absence of standardization, and the lack of comprehensive theoretical models. We conclude with suggestions of future lines and trends in technology challenges and research areas such as new acquisition modes, advanced signal processing techniques, and modelization.
Collapse
Affiliation(s)
- Pascal Laugier
- Université Pierre et Marie Curie-Paris 5, Laboratoire d'Imagerie Paramétrique, Paris, France.
| |
Collapse
|
35
|
Kaufman JJ, Luo G, Siffert RS. Ultrasound simulation in bone. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2008; 55:1205-1218. [PMID: 18599409 DOI: 10.1109/tuffc.2008.784] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The manner in which ultrasound interacts with bone is of key interest in therapy and diagnosis alike. These may include applications directly to bone, as, for example, in treatment to accelerate the healing of bone fractures and in assessment of bone density in osteoporosis, or indirectly in diagnostic imaging of soft tissue with interest in assessing exposure levels to nearby bone. Because of the lack of analytic solutions to virtually every "practical problem" encountered clinically, ultrasound simulation has become a widely used technique for evaluating ultrasound interactions in bone. This paper provides an overview of the use of ultrasound simulation in bone. A brief description of the mathematical model used to characterize ultrasound propagation in bone is first provided. A number of simulation examples are then presented that explain how simulation may be utilized in a variety of practical configurations. The focus of this paper in terms of examples presented is on diagnostic applications in bone, and, in particular, for assessment of osteoporosis. However, the use of simulation in other areas of interest can easily be extrapolated from the examples presented. In conclusion, this paper describes the use of ultrasound simulation in bone and demonstrates the power of computational methods for ultrasound research in general and tissue and bone applications in particular.
Collapse
Affiliation(s)
- Jonathan J Kaufman
- Department of Orthopedics, The Mount Sinai School of Medicine, New York, NY, USA.
| | | | | |
Collapse
|
36
|
Kim HS, Kim JS, Kim NS, Kim JH, Lee BK. Association of vitamin D receptor polymorphism with calcaneal broadband ultrasound attenuation in Korean postmenopausal women with low calcium intake. Br J Nutr 2007; 98:878-81. [PMID: 17562228 DOI: 10.1017/s0007114507756921] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study investigated the associations among vitamin D receptor (VDR)BsmI polymorphism, calcium intake and bone strength as indicated by the broadband ultrasound attenuation (BUA) measured by calcaneal quantitative ultrasound at the left calcaneus in community-dwelling subjects with a low calcium intake. The VDRBsmI polymorphism was analysed in 335 women older than 65 years residing in rural Asan, Korea. Calcium intake was assessed with a 2 d, 24 h recall method. The distribution of genotypes was similar to that reported in other Asian populations (92 % bb, 7 % Bb and 1 % BB). The calcaneal BUA was significantly higher (P = 0·013) in the bb genotype than in the Bb or BB genotype (Bb and BB genotypes were combined due to the small number of BB subjects) in a multiple regression model after adjusting for age, body weight, height, physical activity and nutritional factors. BUA was not significantly affected by the calcium intake regardless of the genotype, cross-sectionally. The energy-adjusted average calcium intake of this population was 439·6 mg/d (432·5 mg/d for bb and 522·3 mg/d for Bb or BB), and 96 % of the subjects had dietary intakes that were less than the recommended Dietary Reference Intake for Koreans (which for calcium is 800 mg/d for women older than 65 years). In summary, the BUA in older Korean women with a low calcium intake was significantly influenced by the VDR genotype but not by the calcium intake, cross-sectionally.
Collapse
Affiliation(s)
- Hee-Seon Kim
- Department of Food Science and Nutrition, Soonchunhyang University, Asan, 336-745, Republic of Korea
| | | | | | | | | |
Collapse
|
37
|
Zheng R, Le LH, Sacchi MD, Ta D, Lou E. Spectral ratio method to estimate broadband ultrasound attenuation of cortical bonesin vitrousing multiple reflections. Phys Med Biol 2007; 52:5855-69. [PMID: 17881804 DOI: 10.1088/0031-9155/52/19/008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Broadband ultrasound attenuation (BUA) is commonly measured by the spectral ratio method. Conventionally BUA is measured in transverse transmission mode where ultrasound signal is recorded with and without the sample. The spectral ratio method was extended to estimate nBUA (BUA normalized by thickness) in axial transmission mode using spectral amplitudes of the primary reflection and multiple reflection, which echoes more than once between the material interfaces within a layer. We performed three experiments. First, reflections were numerically simulated to verify the accuracy of the method. We then applied the method to estimate attenuation of silicon rubber and the cortex of a bovine femur. The center frequency of the transducers is 2.25 MHz. We obtained 93% accuracy for a simulated data set with 10% random noise after bandpass filtering. For the silicon rubber, 15 measurements were collected and the mean attenuation was 6.33 +/- 0.19 dB MHz(-1) cm(-1). For the bovine bone, eight measurements were performed in the middle portion of the femur. The mean attenuation was 4.91 +/- 0.65 dB MHz(-1) cm(-1) and compared well with those reported in the literature. The results demonstrate that the proposed method has the potential to provide a quick, reliable and robust cortical attenuation assessment in vivo.
Collapse
Affiliation(s)
- Rui Zheng
- Department of Physics, University of Alberta, Edmonton, AB, T6G 2G8, Canada
| | | | | | | | | |
Collapse
|
38
|
Kaufman JJ, Luo G, Siffert RS. A portable real-time ultrasonic bone densitometer. ULTRASOUND IN MEDICINE & BIOLOGY 2007; 33:1445-52. [PMID: 17587486 PMCID: PMC2063447 DOI: 10.1016/j.ultrasmedbio.2007.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 03/26/2007] [Accepted: 04/19/2007] [Indexed: 05/16/2023]
Abstract
The objectives of this study were to develop a novel ultrasound device to estimate bone mineral density (BMD) at the calcaneus. The device is entirely self-contained, portable (<or=1 kg) and handheld and permits real-time evaluation of the BMD by computing a parameter known as net time delay (NTD). The NTD is defined as the difference between the transit time through the heel of an ultrasound signal and the transit time through a hypothetical object of equal thickness (to the heel) but containing soft tissue only. This parameter is sensitive primarily to the total amount (i.e., the average total thickness) of bone contained in the propagation path, and thus is equivalent to the bone mineral content estimated by dual-energy X-ray absorptiometry (DXA) scanners, and to the (areal) BMD when normalized by transducer area. Computer simulations of ultrasound propagation were used to study the relationship between NTD and BMD. The simulations used micro-computed tomography (micro-CT) images of a set of 10 calcaneal bone cores, which were further processed by morphologic image processing to obtain a set of 30 "samples" with BMDs ranging from 0.25 to 1.83 g/cm2. The NTD and BMD were found to be very highly correlated (r=0.99), demonstrating the high sensitivity of NTD to bone mass. A clinical institutional review board-approved study measured 85 adult women at the heel. BMD was measured at the same time using DXA. A linear regression using NTD produced a linear correlation coefficient of 0.86, which represents a significant improvement over present ultrasound bone densitometers, but not nearly as good as the simulation results. Reasons for this have been identified (viz., errors in distance measurement and lack of coincidence between the DXA and ultrasound regions of interest), and a new device and experimental protocol to deal with these sources of error has been developed and is currently under clinical trials. It is expected that this should improve the correlation between NTD and BMD even further (>or=0.9), effectively making the former parameter a proxy for the latter. In conclusion, although X-ray methods are effective in bone mass assessment, osteoporosis remains one of the largest undiagnosed and under-diagnosed diseases in the world today. The research described here, in conjunction with the fact that the devices are designed to be manufactured at very low cost (approximately $400 USD), should enable the significant expansion of diagnosis and monitoring of osteoporosis.
Collapse
Affiliation(s)
- Jonathan J Kaufman
- Department of Orthopedics, The Mount Sinai School of Medicine, New York, NY 10012, USA.
| | | | | |
Collapse
|
39
|
Wear KA. The effect of phase cancellation on estimates of calcaneal broadband ultrasound attenuation in vivo. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2007; 54:1352-9. [PMID: 17718324 PMCID: PMC6935505 DOI: 10.1109/tuffc.2007.395] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Broadband ultrasonic attenuation (BUA) is a clinically-accepted measurement for prediction of osteoporotic fracture risk. Typical clinical BUA measurements are performed with phase-sensitive receivers and, therefore, can be affected by phase cancellation. In order to separate the effects of conventional attenuation (absorption plus scattering) from phase cancellation, BUA was measured on phantoms with acrylic wedge phase aberrators and on 73 women using both phase sensitive (PS) and phase insensitive (PI) reception. A clinical bone sonometer with a two-dimensional (2-D) receiver array was used. PI BUA measurements on phantoms with acrylic wedge phase aberrators were found to be far more resistant to phase cancellation than PS BUA measurements. In data from 73 women, means and standard deviations for BUA measurements were 81.4 +/- 21.4 dB/MHz (PS) and 67.2 +/- 9.7 dB/MHz (PI). The magnitude of the discrepancy between PS BUA and PI BUA tended to increase with bone mineral density (BMD).
Collapse
Affiliation(s)
- Keith A Wear
- US Food and Drug Administration, Center for Devices and Radiological Health, Rockville, MD 20852, USA.
| |
Collapse
|
40
|
Abstract
Quantitative Ultrasound (QUS) methods show great potential for refined assessment of bone strength. However, for widespread clinical acceptance, three issues have to be resolved: Will patients with low QUS readings benefit from approved osteoporosis medications? How can we ensure good quality of QUS measurements in daily clinical practice? How much added value does QUS bring to risk factor based case-finding strategies? When addressing these issues, differences among QUS approaches need to be recognized and vague and misleading terminology, e.g., regarding bone quality assessment, needs to be avoided. Innovations including assessment of material or micro-structural properties and direct QUS measurements at the proximal femur are likely to spark additional interest in pursuing QUS research.
Collapse
|