1
|
Shimizu T, Tanaka T, Kobayashi T, Kudo I, Nakatsugawa M, Takakura A, Takao-Kawabata R, Ishizuya T. Sequential treatment with zoledronic acid followed by teriparatide or vice versa increases bone mineral density and bone strength in ovariectomized rats. Bone Rep 2017; 7:70-82. [PMID: 28948197 PMCID: PMC5602747 DOI: 10.1016/j.bonr.2017.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/27/2017] [Accepted: 06/15/2017] [Indexed: 01/16/2023] Open
Abstract
Bisphosphonates (BPs) and teriparatide (TPTD) are both effective treatments for osteoporosis, but BP treatment prior to daily TPTD treatment has been shown to impair the effect of TPTD in some clinical studies. In contrast, the loss of bone mineral density (BMD) that occurs after withdrawal of TPTD can be prevented by BP treatment. Although various studies have investigated the combination and/or sequential use of BP and TPTD, there have been no clinical studies investigating sequential treatment with zoledronic acid (ZOL) and TPTD (or vice versa). In this study, we evaluated the effects of sequential treatment with TPTD followed by ZOL, and ZOL followed by TPTD, using ovariectomized (OVX) rats. Two months after OVX, osteopenic rats were treated with ZOL, TPTD, or vehicle for a period of 4 months (first treatment period), and then the treatments were switched and administered for another 4 months (second treatment period). The group treated with ZOL followed by TPTD showed an immediate increase in BMD of the proximal tibia and greater BMD and bone strength of the lumbar vertebral body, femoral diaphysis, and proximal femur than the group treated with ZOL followed by vehicle. Serum osteocalcin, a marker of bone formation, increased rapidly after switching to TPTD from ZOL. The group treated with TPTD followed by ZOL did not lose BMD in the proximal tibia after TPTD was stopped, while the group treated with TPTD followed by vehicle did lose BMD. The BMD and bone strength of the lumbar vertebral body, femoral diaphysis, and proximal femur were greater in the group treated with TPTD followed by ZOL than in the group treated with TPTD followed by vehicle. The increase in serum osteocalcin and urinary CTX after withdrawal of TPTD was prevented by the switch from TPTD to ZOL. In conclusion, our results demonstrate that switching from ZOL to TPTD resulted in a non-attenuated anabolic response in the lumbar spine and femur of OVX rats. In addition, switching from TPTD to ZOL caused BMD to be maintained or further increased. If these results can be reproduced in a clinical setting, the sequential use of ZOL followed by TPTD or vice versa in the treatment of osteoporosis patients would contribute to increases in BMD that, hopefully, would translate into a corresponding decrease in the incidence of vertebral and non-vertebral fractures.
Collapse
Affiliation(s)
- T Shimizu
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - T Tanaka
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - T Kobayashi
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - I Kudo
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - M Nakatsugawa
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - A Takakura
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - R Takao-Kawabata
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - T Ishizuya
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| |
Collapse
|
2
|
Vegger JB, Nielsen ES, Brüel A, Thomsen JS. Additive effect of PTH (1-34) and zoledronate in the prevention of disuse osteopenia in rats. Bone 2014; 66:287-95. [PMID: 24970039 DOI: 10.1016/j.bone.2014.06.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/23/2014] [Accepted: 06/16/2014] [Indexed: 11/29/2022]
Abstract
Immobilization is known to cause a rapid bone loss due to increased osteoclastic bone resorption and decreased osteoblastic bone formation. Zoledronate (Zln) is a potent anti-resorptive pharmaceutical, while intermittent PTH is a potent bone anabolic agent. The aim of the present study was to investigate whether PTH or Zln alone or in combination could prevent immobilization-induced osteopenia. Immobilization was achieved by injecting 4IU Botox (BTX) into the right hind limb musculature. Seventy-two 16-week-old female Wistar rats were randomized into 6 groups; baseline (Base), control (Ctrl), BTX, BTX+PTH, BTX+Zln, and BTX+PTH+Zln. PTH (1-34) (80μg/kg) was given 5days/week and Zln (100μg/kg) was given once at study start. The animals were killed after 4weeks of treatment. The bone properties were evaluated using DEXA, μCT, dynamic bone histomorphometry, and mechanical testing. BTX resulted in lower femoral trabecular bone volume fraction (BV/TV) (-25%, p<0.05), lower tibial trabecular bone formation rate (BFR/BS) (-29%, p<0.05), and lower bone strength (Fmax) at the distal femur (-19%, p<0.001) compared with Ctrl. BTX+PTH resulted in higher femoral BV/TV (+31%, p<0.05), higher tibial trabecular BFR/BS (+297%, p<0.05), and higher Fmax at the distal femur (+11%, p<0.05) compared with BTX. BTX+Zln resulted in higher femoral BV/TV (+36%, p<0.05), lower tibial trabecular BFR/BS (-93%, p<0.05), and higher Fmax at the distal femur (+10%, p<0.05) compared with BTX. BTX+PTH+Zln resulted in higher femoral BV/TV (+70%, p<0.001), higher tibial trabecular BFR/BS (+59%, p<0.05), and higher Fmax at the distal femur (+32%, p<0.001) compared with BTX. In conclusion, BTX-induced immobilization led to lower BV/TV, BFR/BS, and Fmax. In general, PTH or Zln alone prevented the BTX-induced osteopenia, whereas PTH and Zln given in combination not only prevented, but also increased BV/TV and BFR/BS, and maintained Fmax at the distal femoral metaphysis compared with Ctrl.
Collapse
MESH Headings
- Absorptiometry, Photon
- Animals
- Biomechanical Phenomena
- Bone Diseases, Metabolic/diagnostic imaging
- Bone Diseases, Metabolic/drug therapy
- Bone Diseases, Metabolic/physiopathology
- Bone Diseases, Metabolic/prevention & control
- Bone and Bones/diagnostic imaging
- Bone and Bones/drug effects
- Bone and Bones/pathology
- Bone and Bones/physiopathology
- Diphosphonates/pharmacology
- Diphosphonates/therapeutic use
- Drug Synergism
- Female
- Imaging, Three-Dimensional
- Imidazoles/pharmacology
- Imidazoles/therapeutic use
- Muscular Disorders, Atrophic/diagnostic imaging
- Muscular Disorders, Atrophic/drug therapy
- Muscular Disorders, Atrophic/physiopathology
- Muscular Disorders, Atrophic/prevention & control
- Parathyroid Hormone/pharmacology
- Parathyroid Hormone/therapeutic use
- Rats, Wistar
- X-Ray Microtomography
- Zoledronic Acid
Collapse
Affiliation(s)
- Jens Bay Vegger
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark.
| | | | - Annemarie Brüel
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark.
| | | |
Collapse
|
3
|
Amugongo SK, Yao W, Jia J, Lay YAE, Dai W, Jiang L, Walsh D, Li CS, Dave NKN, Olivera D, Panganiban B, Ritchie RO, Lane NE. Effects of sequential osteoporosis treatments on trabecular bone in adult rats with low bone mass. Osteoporos Int 2014; 25:1735-50. [PMID: 24722767 PMCID: PMC4394748 DOI: 10.1007/s00198-014-2678-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/03/2013] [Indexed: 10/25/2022]
Abstract
UNLABELLED We used an osteopenic adult ovariectomized (OVX) rat model to evaluate various sequential treatments for osteoporosis, using FDA-approved agents with complementary tissue-level mechanisms of action. Sequential treatment for 3 months each with alendronate (Aln), followed by PTH, followed by resumption of Aln, created the highest trabecular bone mass, best microarchitecture, and highest bone strength. INTRODUCTION Individual agents used to treat human osteoporosis reduce fracture risk by ∼ 50-60%. As agents that act with complementary mechanisms are available, sequential therapies that mix antiresorptive and anabolic agents could improve fracture risk reduction, when compared with monotherapies. METHODS We evaluated bone mass, bone microarchitecture, and bone strength in adult OVX, osteopenic rats, during different sequences of vehicle (Veh), parathyroid hormone (PTH), Aln, or raloxifene (Ral) in three 90-day treatment periods, over 9 months. Differences among groups were evaluated. The interrelationships of bone mass and microarchitecture endpoints and their relationship to bone strength were studied. RESULTS Estrogen deficiency caused bone loss. OVX rats treated with Aln monotherapy had significantly better bone mass, microarchitecture, and bone strength than untreated OVX rats. Rats treated with an Aln drug holiday had bone mass and microarchitecture similar to the Aln monotherapy group but with significantly lower bone strength. PTH-treated rats had markedly higher bone endpoints, but all were lost after PTH withdrawal without follow-up treatment. Rats treated with PTH followed by Aln had better bone endpoints than those treated with Aln monotherapy, PTH monotherapy, or an Aln holiday. Rats treated initially with Aln or Ral, then switched to PTH, also had better bone endpoints, than monotherapy treatment. Rats treated with Aln, then PTH, and returned to Aln had the highest values for all endpoints. CONCLUSION Our data indicate that antiresorptive therapy can be coupled with an anabolic agent, to produce and maintain better bone mass, microarchitecture, and strength than can be achieved with any monotherapy.
Collapse
Affiliation(s)
- S K Amugongo
- Center for Musculoskeletal Health and Department of Medicine, University of California Davis Medical Center, 4625 2nd Avenue, Suite 1002, Sacramento, CA, 95817, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Casado-Díaz A, Santiago-Mora R, Dorado G, Quesada-Gómez JM. Risedronate Positively Affects Osteogenic Differentiation of Human Mesenchymal Stromal Cells. Arch Med Res 2013; 44:325-34. [DOI: 10.1016/j.arcmed.2013.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 05/08/2013] [Indexed: 01/05/2023]
|
5
|
Feher A, Koivunemi A, Koivunemi M, Fuchs RK, Burr DB, Phipps RJ, Reinwald S, Allen MR. Bisphosphonates do not inhibit periosteal bone formation in estrogen deficient animals and allow enhanced bone modeling in response to mechanical loading. Bone 2010; 46:203-7. [PMID: 19857619 DOI: 10.1016/j.bone.2009.10.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2009] [Revised: 10/16/2009] [Accepted: 10/17/2009] [Indexed: 11/16/2022]
Abstract
The suppressive effects of bisphosphonates (BPs) on bone remodeling are clear yet there is conflicting data concerning the effects of BPs on modeling (specifically formation modeling on the periosteal surface). The normal periosteal expansion that occurs during aging has significant benefits to maintaining/improving the bones' mechanical properties and thus it is important to understand whether BPs affect this bone surface. Therefore, the purpose of this study was to determine the effects of BPs on periosteal bone formation modeling induced by ovariectomy (OVX) and mechanical loading. Six-month-old Sprague-Dawley OVX rats (n=60; 12/group) were administered vehicle, risedronate, alendronate, or zoledronate at doses used clinically for treatment of post-menopausal osteoporosis. Three weeks after initiating BP treatment, all animals underwent in vivo ulnar loading of the right limb every other day for 1 week (3 total sessions). Periosteal surface mineral apposition rate, mineralizing surface, and bone formation rate were determined at the mid-diaphysis of both loaded (right) and non-loaded (left) ulnae. There was no significant effect of any of the BPs on periosteal bone formation parameters compared to VEH-treated animals in the non-loaded limb, suggesting that BP treatment does not compromise the normal periosteal expansion associated with estrogen loss. Mechanical loading significantly increased BFR in the loaded limb compared to the non-loaded limb in all BP-treated groups, with no difference in the magnitude of this effect among the various BPs. Collectively, these data show that BP treatment, at doses comparable to those used for treatment of post-menopausal osteoporosis, (1) does not alter the periosteal formation activity that occurs in the absence of estrogen and (2) allows normal stimulation of periosteal bone formation in response to the anabolic stimulation of mechanical loading.
Collapse
Affiliation(s)
- Anthony Feher
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS-5035, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Prolonged treatments with antiresorptive agents and PTH have different effects on bone strength and the degree of mineralization in old estrogen-deficient osteoporotic rats. J Bone Miner Res 2009; 24:209-20. [PMID: 18847326 PMCID: PMC3276355 DOI: 10.1359/jbmr.81005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Current approved medical treatments for osteoporosis reduce fracture risk to a greater degree than predicted from change in BMD in women with postmenopausal osteoporosis. We hypothesize that bone active agents improve bone strength in osteoporotic bone by altering different material properties of the bone. Eighteen-month-old female Fischer rats were ovariectomized (OVX) or sham-operated and left untreated for 60 days to induce osteopenia before they were treated with single doses of either risedronate (500 microg/kg, IV), zoledronic acid (100 microg/kg, IV), raloxifene (2 mg/kg, PO, three times per week), hPTH(1-34) (25 microg/kg, SC, three times per week), or vehicle (NS; 1 ml/kg, three times per week). Groups of animals were killed after days 60 and 180 of treatment, and either the proximal tibial metaphysis or lumbar vertebral body were studied. Bone volume and architecture were assessed by muCT and histomorphometry. Measurements of bone quality included the degree of bone mineralization (DBM), localized elastic modulus, bone turnover by histomorphometry, compression testing of the LVB, and three-point bending testing of the femur. The trabecular bone volume, DBM, elastic modulus, and compressive bone strength were all significantly lower at day 60 post-OVX (pretreatment, day 0 study) than at baseline. After 60 days of all of the bone active treatments, bone mass and material measurements agent were restored. However, after 180 days of treatment, the OVX + PTH group further increased BV/TV (+30% from day 60, p < 0.05 within group and between groups). In addition, after 180 days of treatment, there was more highly mineralized cortical and trabecular bone and increased cortical bone size and whole bone strength in OVX + PTH compared with other OVX + antiresorptives. Treatment of estrogen-deficient aged rats with either antiresorptive agents or PTH rapidly improved many aspects of bone quality including microarchitecture, bone mineralization, turnover, and bone strength. However, prolonged treatment for 180 days with PTH resulted in additional gains in bone quality and bone strength, suggesting that the maximal gains in bone strength in cortical and trabecular bone sites may require a longer treatment period with PTH.
Collapse
|
7
|
|
8
|
Recovery of trabecular and cortical bone turnover after discontinuation of risedronate and alendronate therapy in ovariectomized rats. J Bone Miner Res 2008; 23:1689-97. [PMID: 18466070 PMCID: PMC2684160 DOI: 10.1359/jbmr.080501] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Alendronate (ALN) and risedronate (RIS) are bisphosphonates effective in reducing bone loss and fractures associated with postmenopausal osteoporosis. However, it is uncertain how long it takes bone turnover to be re-established after treatment withdrawal, and whether this differs between the two drugs. The objective of this study was to determine the time required to re-establish normal bone turnover after the discontinuation of ALN and RIS treatment in an animal model of estrogen-deficiency osteoporosis. Two hundred ten, 6-mo-old female Sprague-Dawley rats were ovariectomized and 6 wk later were randomized into baseline controls (n = 10) and four treatment groups (n = 50/group): vehicle-treated controls (CON; 0.3 ml sterile water), ALN (2.4 microg/kg), low-dose RIS (RIS low; 1.2 microg/kg), and high-dose RIS (RIS high; 2.4 microg/kg). Treatments were administered 3 times/wk by subcutaneous injection. Baseline controls were killed at the initiation of treatment. Other groups were treated for 8 wk, and subgroups (n = 10/ treatment group) were killed 0, 4, 8, 12, and 16 wk after treatment was withdrawn. Static and dynamic histological analyses were performed for cortical (tibial diaphysis) and trabecular (proximal tibia and L(4) vertebrae) bone. DXA and mechanical testing was performed on the L(5) vertebra. After 8 wk of treatment, trabecular bone turnover rates were significantly suppressed in all drug-treated animals. Trabecular bone formation rate (BFR/BS) remained significantly lower than vehicle in bisphosphonate-treated animals through 12 wk. Sixteen weeks after treatment withdrawal, trabecular BFR/BS in the proximal tibia was re-established in animals treated with RIS but not in animals treated with ALN compared with controls. BMD of the fifth lumbar vertebra remained significantly higher than controls 16 wk after treatment withdrawal in ALN-treated animals but not in RIS-treated animals. Despite reductions in BMD and increases in bone turnover, ultimate force of the fifth lumbar vertebra remained significantly higher in all drug-treated animals through 16 wk after withdrawal.
Collapse
|