1
|
Zaia A, Maponi P, Sallei M, Galeazzi R, Scendoni P. Measuring Drug Therapy Effect on Osteoporotic Fracture Risk by Trabecular Bone Lacunarity: The LOTO Study. Biomedicines 2023; 11:781. [PMID: 36979760 PMCID: PMC10044723 DOI: 10.3390/biomedicines11030781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
An MRI method providing one parameter (TBLβ: trabecular-bone-lacunarity-parameter-β) that is sensitive to trabecular bone architecture (TBA) changes with aging and osteoporosis is under study as a new tool in the early diagnosis of bone fragility fracture. A cross-sectional and prospective observational study (LOTO: Lacunarity Of Trabecular bone in Osteoporosis) on over-50s women, at risk for bone fragility fracture, was designed to validate the method. From the baseline data, we observed that in women with prevalent vertebral fractures (VF+), TBA was differently characterized by TBLβ when osteoporosis treatment is considered. Here we verify the potential of TBLβ as an index of osteoporosis treatment efficacy. Untreated (N = 156) and treated (N = 123) women were considered to assess differences in TBLβ related to osteoporosis treatment. Prevalent VFs were found in 31% of subjects, 63% of which were under osteoporosis medications. The results show that TBLβ discriminates between VF+ and VF- patients (p = 0.004). This result is mostly stressed in untreated subjects. Treatment, drug therapy in particular (89% Bisphosphonates), significantly counteracts the difference between VF+ and VF- within and between groups: TBLβ values in treated patients are comparable to untreated VF- and statistically higher than untreated VF+ (p = 0.014) ones. These results highlight the potential role of TBLβ as an index of treatment efficacy.
Collapse
Affiliation(s)
- Annamaria Zaia
- Centre of Innovative Models and Technology for Ageing Care, Scientific Direction, IRCCS INRCA, 60121 Ancona, Italy
| | - Pierluigi Maponi
- School of Science and Technology, University of Camerino, 62032 Camerino, Italy
| | - Manuela Sallei
- Medical Imaging Division, Geriatric Hospital, IRCCS INRCA, 60121 Ancona, Italy
| | - Roberta Galeazzi
- Analysis Laboratory, Geriatric Hospital, IRCCS INRCA, 60121 Ancona, Italy
| | - Pietro Scendoni
- Rheumatology Division, Geriatric Hospital, IRCCS INRCA, 63900 Fermo, Italy
| |
Collapse
|
2
|
Usmani S, Ahmed N, Gnanasegaran G, Marafi F, van den Wyngaert T. Update on imaging in chronic kidney disease-mineral and bone disorder: promising role of functional imaging. Skeletal Radiol 2022; 51:905-922. [PMID: 34524489 DOI: 10.1007/s00256-021-03905-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 02/02/2023]
Abstract
Disorders of mineral metabolism and bone disease are common complications in chronic kidney disease (CKD) patients and are associated with increased morbidity and mortality. Bone biopsies, bone scintigraphy, biochemical markers, and plain films have been used to assess bone disorders and bone turnover. Of these, functional imaging is less invasive than bone/marrow sampling, more specific than serum markers and is therefore ideally placed to assess total skeletal metabolism. 18F-sodium fluoride (NaF) PET/CT is an excellent bone-seeking agent superior to conventional bone scan in CKD patients due to its high bone uptake, rapid single-pass extraction, and minimal binding to serum proteins. Due to these properties, 18F-NaF can better assess the skeletal metabolism on primary diagnosis and following treatment in CKD patients. With the increased accessibility of PET scanners, it is likely that PET scanning with bone-specific tracers such as 18F-NaF will be used more regularly for clinical assessment and quantitation of bone kinetics. This article describes the pattern of scintigraphic/functional appearances secondary to musculoskeletal alterations that might occur in patients with CKD.
Collapse
Affiliation(s)
- Sharjeel Usmani
- Department of Nuclear Medicine, Kuwait Cancer Control Centre, Kuwait City, Kuwait.
| | - Najeeb Ahmed
- Jack Brignall PET/CT Centre, Castle Hill Hospital, Cottingham, UK.,Cancer Research Group, Hull York Medical School, University of Hull, York, UK
| | | | - Fahad Marafi
- Jaber Al-Ahmad Molecular Imaging Center, Kuwait City, Kuwait
| | | |
Collapse
|
3
|
van den Bergh JP, Szulc P, Cheung AM, Bouxsein M, Engelke K, Chapurlat R. The clinical application of high-resolution peripheral computed tomography (HR-pQCT) in adults: state of the art and future directions. Osteoporos Int 2021; 32:1465-1485. [PMID: 34023944 PMCID: PMC8376700 DOI: 10.1007/s00198-021-05999-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/06/2021] [Indexed: 12/13/2022]
Abstract
High-resolution peripheral computed tomography (HR-pQCT) was developed to image bone microarchitecture in vivo at peripheral skeletal sites. Since the introduction of HR-pQCT in 2005, clinical research to gain insight into pathophysiology of skeletal fragility and to improve prediction of fractures has grown. Meanwhile, the second-generation HR-pQCT device has been introduced, allowing novel applications such as hand joint imaging, assessment of subchondral bone and cartilage thickness in the knee, and distal radius fracture healing. This article provides an overview of the current clinical applications and guidance on interpretation of results, as well as future directions. Specifically, we provide an overview of (1) the differences and reference data for HR-pQCT variables by age, sex, and race/ethnicity; (2) fracture risk prediction using HR-pQCT; (3) the ability to monitor response of anti-osteoporosis therapy with HR-pQCT; (4) the use of HR-pQCT in patients with metabolic bone disorders and diseases leading to secondary osteoporosis; and (5) novel applications of HR-pQCT imaging. Finally, we summarize the status of the application of HR-pQCT in clinical practice and discuss future directions. From the clinical perspective, there are both challenges and opportunities for more widespread use of HR-pQCT. Assessment of bone microarchitecture by HR-pQCT improves fracture prediction in mostly normal or osteopenic elderly subjects beyond DXA of the hip, but the added value is marginal. The prospects of HR-pQCT in clinical practice need further study with respect to medication effects, metabolic bone disorders, rare bone diseases, and other applications such as hand joint imaging and fracture healing. The mostly unexplored potential may be the differentiation of patients with only moderately low BMD but severe microstructural deterioration, which would have important implications for the decision on therapeutical interventions.
Collapse
Affiliation(s)
- J P van den Bergh
- Department of Internal Medicine, VieCuri Medical Center, Venlo, The Netherlands.
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.
- Faculty of Medicine, Hasselt University, Hasselt, Belgium.
| | - P Szulc
- INSERM UMR 1033, Université de Lyon, Hôpital E Herriot, 69437 cedex 03, Lyon, France
| | - A M Cheung
- Department of Medicine and Joint Department of Medical Imaging, University Health Network; and Department of Medicine and Centre of Excellence in Skeletal Health Assessment, University of Toronto, Toronto, Ontario, Canada
| | - M Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA
| | - K Engelke
- Department of Medicine 3, FAU University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - R Chapurlat
- INSERM UMR 1033, Université de Lyon, Hôpital E Herriot, 69437 cedex 03, Lyon, France
| |
Collapse
|
4
|
Zaworski C, Cheah J, Koff MF, Breighner R, Lin B, Harrison J, Donnelly E, Stein EM. MRI-based Texture Analysis of Trabecular Bone for Opportunistic Screening of Skeletal Fragility. J Clin Endocrinol Metab 2021; 106:2233-2241. [PMID: 33999148 DOI: 10.1210/clinem/dgab342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Many individuals at high risk for osteoporosis and fragility fracture are never screened by traditional methods. Opportunistic use of imaging obtained for other clinical purposes is required to foster identification of these patients. OBJECTIVE The aim of this pilot study was to evaluate texture features as a measure of bone fragility, by comparing clinically acquired magnetic resonance imaging (MRI) scans from individuals with and without a history of fragility fracture. METHODS This study retrospectively investigated 100 subjects who had lumbar spine MRI performed at our institution. Cases (n = 50) were postmenopausal women with osteoporosis and a confirmed history of fragility fracture. Controls (n = 50) were age- and race-matched postmenopausal women with no known fracture history. Trabecular bone from the lumbar vertebrae was segmented to create regions of interest within which a gray level co-occurrence matrix was used to quantify the distribution and spatial organization of voxel intensity. Heterogeneity in the trabecular bone texture was assessed by several features, including contrast (variability), entropy (disorder), and angular second moment (homogeneity). RESULTS Texture analysis revealed that trabecular bone was more heterogeneous in fracture patients. Specifically, fracture patients had greater texture variability (+76% contrast; P = 0.005), greater disorder (+10% entropy; P = 0.005), and less homogeneity (-50% angular second moment; P = 0.005) compared with controls. CONCLUSIONS MRI-based textural analysis of trabecular bone discriminated between patients with known osteoporotic fractures and controls. Further investigation is required to validate this promising methodology, which could greatly expand the number of patients screened for skeletal fragility.
Collapse
Affiliation(s)
- Caroline Zaworski
- Department of Medicine, Endocrinology and Metabolic Bone Service, Hospital for Special Surgery, NY, NY 10021, USA
| | - Jonathan Cheah
- Department of Medicine, Endocrinology and Metabolic Bone Service, Hospital for Special Surgery, NY, NY 10021, USA
| | - Matthew F Koff
- Department of Radiology and Imaging - MRI, Hospital for Special Surgery, NY, NY 10021, USA
| | - Ryan Breighner
- Department of Radiology and Imaging - MRI, Hospital for Special Surgery, NY, NY 10021, USA
| | - Bin Lin
- Department of Radiology and Imaging - MRI, Hospital for Special Surgery, NY, NY 10021, USA
| | - Jonathan Harrison
- Department of Medicine, Endocrinology and Metabolic Bone Service, Hospital for Special Surgery, NY, NY 10021, USA
| | - Eve Donnelly
- Materials Science and Engineering, Cornell University, Ithaca NY 14853, USA
| | - Emily M Stein
- Department of Medicine, Endocrinology and Metabolic Bone Service, Hospital for Special Surgery, NY, NY 10021, USA
| |
Collapse
|
5
|
Rajapakse CS, Johncola AJ, Batzdorf AS, Jones BC, Al Mukaddam M, Sexton K, Shults J, Leonard MB, Snyder PJ, Wehrli FW. Effect of Low-Intensity Vibration on Bone Strength, Microstructure, and Adiposity in Pre-Osteoporotic Postmenopausal Women: A Randomized Placebo-Controlled Trial. J Bone Miner Res 2021; 36:673-684. [PMID: 33314313 DOI: 10.1002/jbmr.4229] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/21/2020] [Accepted: 11/27/2020] [Indexed: 12/31/2022]
Abstract
There has been evidence that cyclical mechanical stimulation may be osteogenic, thus providing opportunities for nonpharmacological treatment of degenerative bone disease. Here, we applied this technology to a cohort of postmenopausal women with varying bone mineral density (BMD) T-scores at the total hip (-0.524 ± 0.843) and spine (-0.795 ± 1.03) to examine the response to intervention after 1 year of daily treatment with 10 minutes of vibration therapy in a randomized double-blinded trial. The device operates either in an active mode (30 Hz and 0.3 g) or placebo. Primary endpoints were changes in bone stiffness at the distal tibia and marrow adiposity of the vertebrae, based on 3 Tesla high-resolution MRI and spectroscopic imaging, respectively. Secondary outcome variables included distal tibial trabecular microstructural parameters and vertebral deformity determined by MRI, volumetric and areal bone densities derived using peripheral quantitative computed tomography (pQCT) of the tibia, and dual-energy X-ray absorptiometry (DXA)-based BMD of the hip and spine. Device adherence was 83% in the active group (n = 42) and 86% in the placebo group (n = 38) and did not differ between groups (p = .7). The mean 12-month changes in tibial stiffness in the treatment group and placebo group were +1.31 ± 6.05% and -2.55 ± 3.90%, respectively (group difference 3.86%, p = .0096). In the active group, marrow fat fraction significantly decreased after 12 months of intervention (p = .0003), whereas no significant change was observed in the placebo group (p = .7; group difference -1.59%, p = .029). Mean differences of the changes in trabecular bone volume fraction (p = .048) and erosion index (p = .044) were also significant, as was pQCT-derived trabecular volumetric BMD (vBMD; p = .016) at the tibia. The data are commensurate with the hypothesis that vibration therapy is protective against loss in mechanical strength and, further, that the intervention minimizes the shift from the osteoblastic to the adipocytic lineage of mesenchymal stem cells. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Chamith S Rajapakse
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA.,Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Alyssa J Johncola
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Brandon C Jones
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Mona Al Mukaddam
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.,Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelly Sexton
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Justine Shults
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Mary B Leonard
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA.,Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter J Snyder
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Felix W Wehrli
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Soldati E, Rossi F, Vicente J, Guenoun D, Pithioux M, Iotti S, Malucelli E, Bendahan D. Survey of MRI Usefulness for the Clinical Assessment of Bone Microstructure. Int J Mol Sci 2021; 22:2509. [PMID: 33801539 PMCID: PMC7958958 DOI: 10.3390/ijms22052509] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Bone microarchitecture has been shown to provide useful information regarding the evaluation of skeleton quality with an added value to areal bone mineral density, which can be used for the diagnosis of several bone diseases. Bone mineral density estimated from dual-energy X-ray absorptiometry (DXA) has shown to be a limited tool to identify patients' risk stratification and therapy delivery. Magnetic resonance imaging (MRI) has been proposed as another technique to assess bone quality and fracture risk by evaluating the bone structure and microarchitecture. To date, MRI is the only completely non-invasive and non-ionizing imaging modality that can assess both cortical and trabecular bone in vivo. In this review article, we reported a survey regarding the clinically relevant information MRI could provide for the assessment of the inner trabecular morphology of different bone segments. The last section will be devoted to the upcoming MRI applications (MR spectroscopy and chemical shift encoding MRI, solid state MRI and quantitative susceptibility mapping), which could provide additional biomarkers for the assessment of bone microarchitecture.
Collapse
Affiliation(s)
- Enrico Soldati
- CRMBM, CNRS, Aix Marseille University, 13385 Marseille, France;
- IUSTI, CNRS, Aix Marseille University, 13013 Marseille, France;
- ISM, CNRS, Aix Marseille University, 13288 Marseille, France; (D.G.); (M.P.)
| | - Francesca Rossi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (F.R.); (S.I.); (E.M.)
| | - Jerome Vicente
- IUSTI, CNRS, Aix Marseille University, 13013 Marseille, France;
| | - Daphne Guenoun
- ISM, CNRS, Aix Marseille University, 13288 Marseille, France; (D.G.); (M.P.)
- Department of Radiology, Institute for Locomotion, Saint-Marguerite Hospital, ISM, CNRS, APHM, Aix Marseille University, 13274 Marseille, France
| | - Martine Pithioux
- ISM, CNRS, Aix Marseille University, 13288 Marseille, France; (D.G.); (M.P.)
- Department of Orthopedics and Traumatology, Institute for Locomotion, Saint-Marguerite Hospital, ISM, CNRS, APHM, Aix Marseille University, 13274 Marseille, France
| | - Stefano Iotti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (F.R.); (S.I.); (E.M.)
- National Institute of Biostructures and Biosystems, 00136 Rome, Italy
| | - Emil Malucelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (F.R.); (S.I.); (E.M.)
| | - David Bendahan
- CRMBM, CNRS, Aix Marseille University, 13385 Marseille, France;
| |
Collapse
|
7
|
Zaia A, Rossi R, Galeazzi R, Sallei M, Maponi P, Scendoni P. Fractal lacunarity of trabecular bone in vertebral MRI to predict osteoporotic fracture risk in over-fifties women. The LOTO study. BMC Musculoskelet Disord 2021; 22:108. [PMID: 33485322 PMCID: PMC7827988 DOI: 10.1186/s12891-021-03966-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Osteoporotic fractures are a major cause of morbidity in the elderly. Menopausal women represent the population with the highest risk of early osteoporosis onset, often accompanied by vertebral fractures (VF). Bone mineral density (BMD) is commonly assessed by dual-energy X-ray absorptiometry (DXA) for osteoporosis diagnosis; however, BMD alone does not represent a significant predictor of fracture risk. Bone microarchitecture, instead, arises as a determinant of bone fragility independent of BMD. High-resolution magnetic resonance imaging (MRI) is an effective noninvasive/nonionizing tool for in vivo characterisation of trabecular bone microarchitecture (TBA). We have previously set up an MRI method able to characterise TBA changes in aging and osteoporosis by one parameter, trabecular bone lacunarity parameter β (TBLβ). Fractal lacunarity was used for TBA texture analysis as it describes discontinuity of bone network and size of bone marrow spaces, changes of which increase the risk of bone fracture. This study aims to assess the potential of TBLβ method as a tool for osteoporotic fracture risk. METHODS An observational, cross-sectional, and prospective study on over-50s women at risk for VF was designed. TBLβ, our index of osteoporotic fracture risk, is the main outcome measure. It was calculated on lumbar vertebra axial images, acquired by 1.5 T MRI spin-echo technique, from 279 osteopenic/osteoporotic women with/without prior VF. Diagnostic power of TBLβ method, by Receiver Operating Characteristics (ROC) curve and other diagnostic accuracy measurements were compared with lumbar spine DXA-BMD. RESULTS Baseline results show that TBLβ is able to discriminate patients with/without prevalent VF (p = 0.003). AUC (area under the curve from ROC) is 0.63 for TBLβ, statistically higher (p = 0.012) than BMD one (0.53). Contribution of TBLβ to prevalent VF is statistically higher (p < 0.001) than BMD (sensitivity: 66% vs. 52% respectively; OR: 3.20, p < 0.0001 for TBLβ vs. 1.31, p = 0.297 for BMD). Preliminary 1-year prospective results suggest that TBA contribution to incident VF is even higher (sensitivity: 73% for TBLβ vs. 55% for BMD; RR: 3.00, p = 0.002 for TBLβ vs. 1.31, p = 0.380 for BMD). CONCLUSION Results from this study further highlight the usefulness of TBLβ as a biomarker of TBA degeneration and an index of osteoporotic fracture risk.
Collapse
Affiliation(s)
- Annamaria Zaia
- Centre of Innovative Models for Ageing Care and Technology, Scientific Direction, IRCCS INRCA, Via S. Margherita 5, I-60121, Ancona, Italy.
| | - Roberto Rossi
- Medical Imaging Division, Geriatric Hospital, IRCCS INRCA, 60124, Ancona, Italy
| | - Roberta Galeazzi
- Analysis Laboratory, Geriatric Hospital, IRCCS INRCA, 60124, Ancona, Italy
| | - Manuela Sallei
- Medical Imaging Division, Geriatric Hospital, IRCCS INRCA, 60124, Ancona, Italy
| | - Pierluigi Maponi
- School of Science and Technology, University of Camerino, 62032, Camerino, MC, Italy
| | - Pietro Scendoni
- Rheumatology Division, Geriatric Hospital, IRCCS INRCA, 63900, Fermo, Italy
| |
Collapse
|
8
|
Ruderman I, Rajapakse CS, Opperman A, Robertson PL, Masterson R, Tiong MK, Toussaint ND. Bone microarchitecture in patients undergoing parathyroidectomy for management of secondary hyperparathyroidism. Bone Rep 2020; 13:100297. [PMID: 32760761 PMCID: PMC7393533 DOI: 10.1016/j.bonr.2020.100297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
Background Secondary hyperparathyroidism (SHPT) in patients with chronic kidney disease (CKD) leads to complex bone disease, affecting both trabecular and cortical bone, and increased fracture risk. Optimal assessment of bone in patients with CKD is yet to be determined. High-resolution magnetic resonance imaging (MRI) can provide three-dimensional assessment of bone microarchitecture, as well as determination of mechanical strength with finite element analysis (FEA). Methods We conducted a single-centre, cross-sectional study to determine bone microarchitecture with MRI in CKD patients with SHPT undergoing parathyroidectomy. Within two weeks of surgery, MRI was performed at the distal tibia and biochemical markers of SHPT (parathyroid hormone [PTH] and alkaline phosphatase [ALP]) were collected. Trabecular and cortical topological parameters as well as bone mechanical competence using FEA were assessed. Correlation of MRI findings of bone was made with biochemical markers. Results Twenty patients with CKD (15 male, 5 female) underwent MRI at the time of parathyroidectomy (16 on dialysis, 3 with functioning kidney transplant, one pre-dialysis with CKD stage 5). Median PTH at the time of surgery was 138.5 pmol/L [39.6–186.7 pmol/L]. MRI parameters in patients were consistent with trabecular deterioration, with erosion index (EI) 1.01 ± 0.3, and trabecular bone volume (BV/TV) 10.8 ± 2.9%, as well as poor trabecular network integrity with surface-to-curve ratio (S/C) 5.4 ± 2.3. There was also evidence of reduced cortical thickness, with CTh 2.698 ± 0.630 mm, and FEA demonstrated overall poor bone mechanical strength with mean elastic modulus of 2.07 ± 0.44. Conclusion Patients with severe SHPT requiring parathyroidectomy have evidence of significant changes in bone microarchitecture with trabecular deterioration, low trabecular and cortical bone volume, and reduced mechanical competence of bone.
Collapse
Affiliation(s)
- Irene Ruderman
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine (RMH), The University of Melbourne, Parkville, Victoria, Australia
| | - Chamith S Rajapakse
- Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, PA, USA
| | - Angelica Opperman
- Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, PA, USA
| | - Patricia L Robertson
- Department of Radiology, The Royal Melbourne Hospital and The University of Melbourne, Parkville, Victoria, Australia
| | - Rosemary Masterson
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine (RMH), The University of Melbourne, Parkville, Victoria, Australia
| | - Mark K Tiong
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine (RMH), The University of Melbourne, Parkville, Victoria, Australia
| | - Nigel D Toussaint
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine (RMH), The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Patients with inflammatory arthropathies have a high rate of fragility fractures. Diagnostic assessment and monitoring of bone density and quality are therefore critically important. Here, we review standard and advanced techniques to measure bone density and quality, specifically focusing on patients with inflammatory arthropathies. RECENT FINDINGS Current standard procedures are dual-energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT). DXA-based newer methods include trabecular bone score (TBS) and vertebral fracture assessment (VFA). More advanced imaging methods to measure bone quality include high-resolution peripheral quantitative computed tomography (HR-pQCT) as well as multi-detector CT (MD-CT) and magnetic resonance imaging (MRI). Quantitative ultrasound has shown promise but is not standard to assess bone fragility. While there are limitations, DXA remains the standard technique to measure density in patients with rheumatological disorders. Newer modalities to measure bone quality may allow better characterization of bone fragility but currently are not standard of care procedures.
Collapse
|
10
|
Wong AKO, Manske SL. A Comparison of Peripheral Imaging Technologies for Bone and Muscle Quantification: A Review of Segmentation Techniques. J Clin Densitom 2020; 23:92-107. [PMID: 29785933 DOI: 10.1016/j.jocd.2018.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/11/2018] [Indexed: 12/17/2022]
Abstract
Musculoskeletal science has developed many overlapping branches, necessitating specialists from 1 area of focus to often require the expertise in others. In terms of imaging, this means obtaining a comprehensive illustration of bone, muscle, and fat tissues. There is currently a lack of a reliable resource for end users to learn about these tissues' imaging and quantification techniques together. An improved understanding of these tissues has been an important progression toward better prediction of disease outcomes and better elucidation of their interaction with frailty, aging, and metabolic disorders. Over the last decade, there have been major advances into the image acquisition and segmentation of bone, muscle, and fat features using computed tomography (CT), magnetic resonance imaging (MRI), and peripheral modules of these systems. Dedicated peripheral quantitative musculoskeletal imaging systems have paved the way for mobile research units, lower cost clinical research facilities, and improved resolution per unit cost paid. The purpose of this review was to detail the segmentation techniques available for each of these peripheral CT and MRI modalities and to describe advances in segmentation methods as applied to study longitudinal changes and treatment-related dynamics. Although the peripheral CT units described herein have established feasible standardized protocols that users have adopted globally, there remain challenges in standardizing MRI protocols for bone and muscle imaging.
Collapse
Affiliation(s)
- Andy Kin On Wong
- Joint Department of Medical Imaging, Toronto General Research Institute, University Health Network, Toronto, ON, Canada; McMaster University, Department of Medicine, Faculty of Health Sciences, Hamilton, ON, Canada.
| | - Sarah Lynn Manske
- Department of Radiology, McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
11
|
Mechanobiological osteocyte feedback drives mechanostat regulation of bone in a multiscale computational model. Biomech Model Mechanobiol 2019; 18:1475-1496. [DOI: 10.1007/s10237-019-01158-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/23/2019] [Indexed: 10/26/2022]
|
12
|
Diachkova GV, Novikov KI, Diachkov KA, Rohilla R, Wadhwani J. Radiomorphological Manifestations of Femoral and Tibial Cortical Bones at Different Stages of Limb Lengthening. Indian J Orthop 2019; 53:567-573. [PMID: 31303674 PMCID: PMC6590022 DOI: 10.4103/ortho.ijortho_443_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND There has been a lot of research done on Ilizarov's limb lengthening; however, very few publications focus on the quantitative assessment of the distractional bone regeneration in tibial and femur lengthening. Data regarding quality of the bone after lengthening are needed to consider the time of frame removal and develop a rehabilitation program. MATERIALS AND METHODS Computed tomography (CT) assessment of a parent bone was performed on 136 patients with limb length discrepancy and bone deformity of various etiologies before and after lengthening. Transosseous osteosynthesis technique with the Ilizarov's external fixation was used for limb lengthening and deformity correction in all the cases. A 64-slice scanner was used for CT assessments. Specific Roentgen-negative units of the Ilizarov apparatus and techniques for interpreting CT findings were employed for artifact-free densitometric assessment. RESULTS Cortical density of the femur and tibia in patients with limb length discrepancy and bone deformity of various etiologies was shown to have differences as compared to the contralateral limb. The lengthening process was accompanied by decreased cortical density of the segment being lengthened, and the decrease in the density was greater in the areas adjacent to the distractional bone regeneration. The cortical structure underwent characteristic changes. Osteonal density of the cortical bone was higher in the norm and at long term followup as compared to the density of external and internal plates. CONCLUSION Cortical bone of the femur and tibia in patients with limb length discrepancy and bone deformity of various etiologies showed various preoperative local densities of external, internal, and osteon layers. The cortical bone demonstrated heterogenic structures with resorption areas of various magnitude and density, with minimal values at the boundary with regenerate bone during distraction and fixation with frame on and at short-term followup. Complete organotypical restructuring of the bone was shown to occur at a 1-to-3-year followup depending on the etiology of the disease and amount of lengthening performed.
Collapse
Affiliation(s)
| | | | | | - Rajesh Rohilla
- Department of Orthopaedics, Pt. B. D. S. PGIMS, Rohtak, Haryana, India,Address for correspondence: Dr. Rajesh Rohilla, 28/9J, Medical Enclave, PGIMS Campus, Rohtak - 124 001, Haryana, India. E-mail:
| | - Jitendra Wadhwani
- Department of Orthopaedics, Pt. B. D. S. PGIMS, Rohtak, Haryana, India
| |
Collapse
|
13
|
Sharma AK, Toussaint ND, Elder GJ, Masterson R, Holt SG, Robertson PL, Ebeling PR, Baldock P, Miller RC, Rajapakse CS. Magnetic resonance imaging based assessment of bone microstructure as a non-invasive alternative to histomorphometry in patients with chronic kidney disease. Bone 2018; 114:14-21. [PMID: 29860153 DOI: 10.1016/j.bone.2018.05.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 05/22/2018] [Accepted: 05/29/2018] [Indexed: 01/16/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) adversely affects bone microarchitecture and increases fracture risk. Historically, bone biopsy has been the 'gold standard' for evaluating renal bone disease but is invasive and infrequently performed. High-resolution magnetic resonance imaging (MRI) quantifies bone microarchitecture noninvasively. In patients with CKD, it has not been compared with results derived from bone biopsy or with imaging using dual energy X-ray absorptiometry (DXA). METHODS Fourteen patients with end-stage kidney disease (ESKD) underwent MRI at the distal tibia, bone mineral density (BMD) by dual energy X-ray absorptiometry (DXA; hip and spine) and transiliac bone biopsies with histomorphometry and microcomputed tomography (micro-CT). All patients had biomarkers of mineral metabolism. Associations were determined by Spearman's or Pearson's rank correlation coefficients. RESULTS MRI indices of trabecular network integrity, surface to curve ratio (S/C) and erosion index (EI), correlated to histomorphometric trabecular bone volume (S/C r = 0.85, p = 0.0003; EI r = -0.82, p = 0.001), separation (S/C r = -0.58, p = 0.039; EI r = 0.79, p = 0.0012) and thickness (S/C, r = 0.65, p = 0.017). MRI EI and trabecular thickness (TbTh) also correlated to micro-CT trabecular separation (EI r = 0.63, p = 0.02; TbTh r = -0.60, p = 0.02). Significant correlations were observed between histomorphometric mineralization and turnover indices and various MRI parameters. MRI-derived trabecular parameters were also significantly related to femoral neck BMD. CONCLUSIONS This study highlights the heterogeneity of bone microarchitecture at differing skeletal sites. MRI demonstrates significant, relevant associations to important bone biopsy and DXA indices and warrants further investigation to assess its potential to non-invasively evaluate changes in bone structure and quality over time.
Collapse
Affiliation(s)
- Ashish K Sharma
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Australia; Department of Medicine (RMH), University of Melbourne, Parkville, Australia.
| | - Nigel D Toussaint
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Australia; Department of Medicine (RMH), University of Melbourne, Parkville, Australia
| | - Grahame J Elder
- Department of Renal Medicine, Westmead Hospital, Westmead, Australia; Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Rosemary Masterson
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Australia; Department of Medicine (RMH), University of Melbourne, Parkville, Australia
| | - Stephen G Holt
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Australia; Department of Medicine (RMH), University of Melbourne, Parkville, Australia
| | - Patricia L Robertson
- Department of Medicine (RMH), University of Melbourne, Parkville, Australia; Department of Radiology, The Royal Melbourne Hospital, Parkville, Australia
| | | | - Paul Baldock
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Rhiannon C Miller
- Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, PA, USA
| | - Chamith S Rajapakse
- Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, PA, USA
| |
Collapse
|
14
|
Di Iorgi N, Maruca K, Patti G, Mora S. Update on bone density measurements and their interpretation in children and adolescents. Best Pract Res Clin Endocrinol Metab 2018; 32:477-498. [PMID: 30086870 DOI: 10.1016/j.beem.2018.06.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Following the increased awareness about the central role of the pediatric age in building bone for life, clinicians face more than ever the necessity of assessing bone health in pediatric subjects at risk for early bone mass derangements or in healthy children, in order to optimize their bone mass accrual and prevent osteoporosis. Although the diagnosis of osteoporosis is not made solely upon bone mineral density measurements during growth, such determination can be very useful in the follow-up of pediatric patients with primary and secondary osteoporosis. The ideal instrument would give information on the mineral content and density of the bone, and on its architecture. It should be able to perform the measurements on the skeletal sites where fractures are more frequent, and it should be minimally invasive, accurate, precise and rapid. Unfortunately, none of the techniques currently utilized fulfills all requirements. In the present review, we focus on the pediatric use of dual-energy X-ray absorptiometry (DXA), quantitative computed tomography (QCT), peripheral QCT (pQCT), and magnetic resonance imaging (MRI), highlighting advantages and limits for their use and providing indications for bone densitometry interpretation and of vertebral fractures diagnosis in pediatric subjects.
Collapse
Affiliation(s)
- Natascia Di Iorgi
- Department of Pediatrics, Istituto Giannina Gaslini, University of Genova, Genova, Italy.
| | - Katia Maruca
- Pediatric Bone Densitormetry Service and Laboratory of Pediatric Endocrinology, IRCCS San Raffaele Institute, Milano, Italy
| | - Giuseppa Patti
- Department of Pediatrics, Istituto Giannina Gaslini, University of Genova, Genova, Italy
| | - Stefano Mora
- Pediatric Bone Densitormetry Service and Laboratory of Pediatric Endocrinology, IRCCS San Raffaele Institute, Milano, Italy.
| |
Collapse
|
15
|
Bone susceptibility mapping with MRI is an alternative and reliable biomarker of osteoporosis in postmenopausal women. Eur Radiol 2018; 28:5027-5034. [PMID: 29948078 DOI: 10.1007/s00330-018-5419-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/10/2018] [Accepted: 03/08/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To investigate the efficacy of quantitative susceptibility mapping (QSM) in the assessment of osteoporosis for postmenopausal women. METHODS Between May and September 2017, a total of 70 postmenopausal women who underwent MRI-based QSM and quantitative computed tomography (QCT) were consecutively enrolled in this prospective study. The measurement of QSM and QCT values was performed on the L3 vertebrae body. On the basis of QCT value, all individuals were divided into three groups (normal, osteopenia and osteoporosis). RESULTS On the basis of QCT, 18 individuals were normal (25.7%), 26 osteopenic (37.1%) and 26 osteoporotic (37.1%). The QSM value was age-related (p = 0.04) and significantly higher in the osteoporosis group than in either the normal or osteopenia group (for all, p < 0.001). In addition, the QSM value was highly correlated with QCT value (r = - 0.720, p < 0.001). For QSM, the area under the curve (AUC), sensitivity and specificity for differentiating osteopenia from non-osteopenia were 0.88, 86.5% and 77.8%, respectively, and for differentiating osteoporosis from non-osteoporosis they were 0.86, 80.8% and 77.3%, respectively. CONCLUSIONS MRI-based QSM could be used for quantifying susceptibility in vertebrae and has the potential to be a new biomarker in the assessment of osteoporosis for postmenopausal women. KEY POINTS • Osteoporosis significantly increases risk of fracture for postmenopausal women. • QSM value was correlated with QCT value (r = - 0.72, p < 0.001). • QSM is feasible in the assessment of osteoporosis for postmenopausal women. • QSM offers the quantification of susceptibility within bone.
Collapse
|
16
|
Haque S, Lau A, Beattie K, Adachi JD. Novel Imaging Modalities in Osteoporosis Diagnosis and Risk Stratification. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2018. [DOI: 10.1007/s40674-018-0099-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
Sharma AK, Toussaint ND. Is there a practical role for a virtual bone biopsy using high-resolution imaging of bone in patients with chronic kidney disease? Nephrology (Carlton) 2018; 22 Suppl 2:27-30. [PMID: 28429549 DOI: 10.1111/nep.13018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Renal osteodystrophy (ROD) refers to alterations in bone turnover, mineralisation, mass and microarchitecture in patients with chronic kidney disease (CKD) and represents the skeletal component of 'CKD-mineral and bone disorder'. Changes in bone structure lead to impaired bone quality, compromised bone strength and increased susceptibility to fractures with associated significant morbidity, mortality and financial cost. Diagnosis and management of ROD is hindered by the inadequacy of currently available diagnostic methods to interpret the complex pathophysiology. Bone biopsy, the perceived gold standard test to assess ROD, is invasive and suboptimal for disease screening and management in routine clinical practice. High-resolution imaging, such as high-resolution peripheral quantitative computed tomography and high-resolution magnetic resonance imaging provide accurate non-invasive quantification of bone microarchitecture and facilitate assessment of mechanical competence of bone, correlating with skeletal fragility. We discuss the potential for these imaging techniques in patients with CKD to provide quantification and assessment of bone structure and strength. When used in conjunction with serum biomarkers, these investigative tools may provide a non-invasive diagnostic virtual bone biopsy.
Collapse
Affiliation(s)
- Ashish K Sharma
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine (RMH), The University of Melbourne, Melbourne, Australia
| | - Nigel D Toussaint
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine (RMH), The University of Melbourne, Melbourne, Australia
| |
Collapse
|
18
|
Chang G, Boone S, Martel D, Rajapakse CS, Hallyburton RS, Valko M, Honig S, Regatte RR. MRI assessment of bone structure and microarchitecture. J Magn Reson Imaging 2017; 46:323-337. [PMID: 28165650 PMCID: PMC5690546 DOI: 10.1002/jmri.25647] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/21/2016] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis is a disease of weak bone and increased fracture risk caused by low bone mass and microarchitectural deterioration of bone tissue. The standard-of-care test used to diagnose osteoporosis, dual-energy x-ray absorptiometry (DXA) estimation of areal bone mineral density (BMD), has limitations as a tool to identify patients at risk for fracture and as a tool to monitor therapy response. Magnetic resonance imaging (MRI) assessment of bone structure and microarchitecture has been proposed as another method to assess bone quality and fracture risk in vivo. MRI is advantageous because it is noninvasive, does not require ionizing radiation, and can evaluate both cortical and trabecular bone. In this review article, we summarize and discuss research progress on MRI of bone structure and microarchitecture over the last decade, focusing on in vivo translational studies. Single-center, in vivo studies have provided some evidence for the added value of MRI as a biomarker of fracture risk or treatment response. Larger, prospective, multicenter studies are needed in the future to validate the results of these initial translational studies. LEVEL OF EVIDENCE 5 Technical Efficacy: Stage 5 J. MAGN. RESON. IMAGING 2017;46:323-337.
Collapse
Affiliation(s)
- Gregory Chang
- Department of Radiology, Center for Biomedical Imaging, NYU Langone Medical Center, New York, New York, USA
| | - Sean Boone
- Department of Radiology, Center for Biomedical Imaging, NYU Langone Medical Center, New York, New York, USA
| | - Dimitri Martel
- Department of Radiology, Center for Biomedical Imaging, NYU Langone Medical Center, New York, New York, USA
| | - Chamith S Rajapakse
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert S Hallyburton
- Department of Radiology, Center for Biomedical Imaging, NYU Langone Medical Center, New York, New York, USA
| | - Mitch Valko
- Department of Radiology, Center for Biomedical Imaging, NYU Langone Medical Center, New York, New York, USA
| | - Stephen Honig
- Osteoporosis Center, Hospital for Joint Diseases, NYU Langone Medical Center, New York, New York, USA
| | - Ravinder R Regatte
- Department of Radiology, Center for Biomedical Imaging, NYU Langone Medical Center, New York, New York, USA
| |
Collapse
|
19
|
Manhard MK, Nyman JS, Does MD. Advances in imaging approaches to fracture risk evaluation. Transl Res 2017; 181:1-14. [PMID: 27816505 PMCID: PMC5357194 DOI: 10.1016/j.trsl.2016.09.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/19/2016] [Accepted: 09/27/2016] [Indexed: 01/23/2023]
Abstract
Fragility fractures are a growing problem worldwide, and current methods for diagnosing osteoporosis do not always identify individuals who require treatment to prevent a fracture and may misidentify those not a risk. Traditionally, fracture risk is assessed using dual-energy X-ray absorptiometry, which provides measurements of areal bone mineral density at sites prone to fracture. Recent advances in imaging show promise in adding new information that could improve the prediction of fracture risk in the clinic. As reviewed herein, advances in quantitative computed tomography (QCT) predict hip and vertebral body strength; high-resolution HR-peripheral QCT (HR-pQCT) and micromagnetic resonance imaging assess the microarchitecture of trabecular bone; quantitative ultrasound measures the modulus or tissue stiffness of cortical bone; and quantitative ultrashort echo-time MRI methods quantify the concentrations of bound water and pore water in cortical bone, which reflect a variety of mechanical properties of bone. Each of these technologies provides unique characteristics of bone and may improve fracture risk diagnoses and reduce prevalence of fractures by helping to guide treatment decisions.
Collapse
Affiliation(s)
- Mary Kate Manhard
- Biomedical Engineering, Vanderbilt University, Nashville, TN; Vanderbilt University Institute of Imaging Science, Nashville, TN
| | - Jeffry S Nyman
- Biomedical Engineering, Vanderbilt University, Nashville, TN; Vanderbilt University Institute of Imaging Science, Nashville, TN; Orthopaedic Surgery and Rehabilitation, Vanderbilt University, Nashville, TN; Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN
| | - Mark D Does
- Biomedical Engineering, Vanderbilt University, Nashville, TN; Vanderbilt University Institute of Imaging Science, Nashville, TN; Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN; Electrical Engineering, Vanderbilt University, Nashville, TN.
| |
Collapse
|
20
|
Krishnasamy R, Hawley CM, Johnson DW. An update on bone imaging and markers in chronic kidney disease. Expert Rev Endocrinol Metab 2016; 11:455-466. [PMID: 30058917 DOI: 10.1080/17446651.2016.1239527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Bone disorders in chronic kidney disease (CKD) are associated with heightened risks of fractures, vascular calcification, poor quality of life and mortality compared to the general population. However, diagnosis and management of these disorders in CKD are complex and appreciably limited by current diagnostic modalities. Areas covered: Bone histomorphometry remains the gold standard for diagnosis but is not widely utilised and lacks feasibility as a monitoring tool. In practice, non-invasive imaging and biochemical markers are preferred to guide therapeutic decisions. Expert commentary: This review aims to summarize the risk factors for, and spectrum of bone disease in CKD, as well as appraise the clinical utility of dual energy X-ray densitometry, peripheral quantitative computed tomography, high-resolution peripheral quantitative computed tomography, and bone turnover markers.
Collapse
Affiliation(s)
- Rathika Krishnasamy
- a Department of Nephrology , Nambour General Hospital , Nambour , Australia
- c School of Medicine , The University of Queensland , Brisbane , Australia
| | - Carmel M Hawley
- b Department of Nephrology , Princess Alexandra Hospital , Brisbane , Australia
- c School of Medicine , The University of Queensland , Brisbane , Australia
- d Department of Nephrology , Translation Research Institute , Brisbane , Australia
| | - David W Johnson
- b Department of Nephrology , Princess Alexandra Hospital , Brisbane , Australia
- c School of Medicine , The University of Queensland , Brisbane , Australia
- d Department of Nephrology , Translation Research Institute , Brisbane , Australia
| |
Collapse
|
21
|
Sharma AK, Masterson R, Holt SG, Toussaint ND. Emerging role of high-resolution imaging in the detection of renal osteodystrophy. Nephrology (Carlton) 2016; 21:801-11. [PMID: 27042945 DOI: 10.1111/nep.12790] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/14/2016] [Accepted: 03/25/2016] [Indexed: 12/17/2022]
Abstract
The term renal osteodystrophy refers to changes in bone morphology induced by chronic kidney disease (CKD) and represents the skeletal component of the entity 'chronic kidney disease - mineral and bone disorder'. Changes in turnover, mineralization, mass and microarchitecture impair bone quality, compromising strength and increasing susceptibility to fractures. Fractures are more common in CKD compared with the general population and result in increased morbidity and mortality. Screening for fracture risk and management of renal osteodystrophy are hindered by the complex, and still only partially understood, pathophysiology and the inadequacy of currently available diagnostic methods. Bone densitometry and bone turnover markers, although potentially helpful, have significant limitations in patients with CKD, and the 'gold standard' test of bone biopsy is infrequently performed in routine clinical practice. However, recent advances in high-resolution bone microarchitecture imaging may offer greater potential for quantification and assessment of bone structure and strength and, when used in conjunction with serum biomarkers, may allow non-invasive testing for a diagnostic virtual bone biopsy.
Collapse
Affiliation(s)
- Ashish K Sharma
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine (RMH), The University of Melbourne, Melbourne, Victoria, Australia
| | - Rosemary Masterson
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine (RMH), The University of Melbourne, Melbourne, Victoria, Australia
| | - Stephen G Holt
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine (RMH), The University of Melbourne, Melbourne, Victoria, Australia
| | - Nigel D Toussaint
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia. .,Department of Medicine (RMH), The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
22
|
Wong AKO, Beattie KA, Min KKH, Merali Z, Webber CE, Gordon CL, Papaioannou A, Cheung AMW, Adachi JD. A Trimodality Comparison of Volumetric Bone Imaging Technologies. Part II: 1-Yr Change, Long-Term Precision, and Least Significant Change. J Clin Densitom 2015; 18:260-9. [PMID: 25129406 PMCID: PMC5092156 DOI: 10.1016/j.jocd.2014.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/13/2014] [Accepted: 07/03/2014] [Indexed: 01/22/2023]
Abstract
The previous article in this 3-part series demonstrated short-term precision and validity for volumetric bone outcome quantification using in vivo peripheral (p) quantitative computed tomography (pQCT) and magnetic resonance imaging (MRI) modalities at resolutions 200 μm or higher. However, 1-yr precision error and clinically significant references are yet to be reported for these modalities. This study examined 59 women with mean age of 75 ± 9 yr and body mass index of 26.84 ± 4.77 kg/m², demonstrating the lowest 1-yr precision error, standard errors of the estimate, and least significant change values for high-resolution (hr) pQCT followed by pQCT, and 1.0-T pMRI for all volumetric bone outcomes except trabecular number. Like short-term precision, 1-yr statistics for trabecular separation were similar across modalities. Excluding individuals with a previous history of fragility fractures, or who were current users of antiresorptives reduced 1-yr change for bone outcomes derived from pQCT and pMR images, but not hr-pQCT images. In Part II of this 3-part series focused on trimodality comparisons of 1-yr changes, hr-pQCT was recommended to be the prime candidate for quantifying change where smaller effect sizes are expected, but pQCT was identified as a feasible alternative for studies expecting larger changes.
Collapse
Affiliation(s)
- Andy K O Wong
- Department of Medicine, McMaster University, Hamilton, ON, Canada.
| | - Karen A Beattie
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Kevin K H Min
- Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Zamir Merali
- Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Colin E Webber
- Department of Nuclear Medicine, Hamilton Health Sciences, Hamilton, ON, Canada
| | | | | | - Angela M W Cheung
- Osteoporosis Program, University Health Network, Toronto, ON, Canada
| | | |
Collapse
|
23
|
Hotca A, Rajapakse CS, Cheng C, Honig S, Egol K, Regatte RR, Saha PK, Chang G. In vivo measurement reproducibility of femoral neck microarchitectural parameters derived from 3T MR images. J Magn Reson Imaging 2015; 42:1339-45. [PMID: 25824566 DOI: 10.1002/jmri.24892] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/08/2015] [Indexed: 01/09/2023] Open
Abstract
PURPOSE To evaluate the within-day and between-day measurement reproducibility of in vivo 3D MRI assessment of trabecular bone microarchitecture of the proximal femur. MATERIALS AND METHODS This Health Insurance Portability and Accountability Act (HIPPA)-compliant, Institutional Review Board (IRB)-approved study was conducted on 11 healthy subjects (mean age = 57.4 ± 14.1 years) with written informed consent. All subjects underwent a 3T MRI hip scan in vivo (0.234 × 0.234 × 1.5 mm) at three timepoints: baseline, second scan same day (intrascan), and third scan 1 week later (interscan). We applied digital topological analysis and volumetric topological analysis to compute the following microarchitectural parameters within the femoral neck: total bone volume, bone volume fraction, markers of trabecular number (skeleton density), connectivity (junctions), plate-like structure (surfaces), plate width, and trabecular thickness. Reproducibility was assessed using root-mean-square coefficient of variation (RMS-CV) and intraclass correlation coefficient (ICC). RESULTS The within-day RMS-CVs ranged from 2.3% to 7.8%, and the between-day RMS-CVs ranged from 4.0% to 7.3% across all parameters. The within-day ICCs ranged from 0.931 to 0.989, and the between-day ICCs ranged from 0.934 to 0.971 across all parameters. CONCLUSION These results demonstrate high reproducibility for trabecular bone microarchitecture measures derived from 3T MR images of the proximal femur. The measurement reproducibility is within a range suitable for clinical cross-sectional and longitudinal studies in osteoporosis.
Collapse
Affiliation(s)
- Alexandra Hotca
- Department of Radiology, NYU Langone Medical Center, Center for Musculoskeletal Care, New York, New York, USA.,Department of Radiology, NYU Langone Medical Center, Center for Biomedical Imaging, New York, New York, USA
| | - Chamith S Rajapakse
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Chen Cheng
- Department of Radiology and Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa, USA
| | - Stephen Honig
- Osteoporosis Center, Hospital for Joint Diseases, NYU Langone Medical Center, New York, New York, USA
| | - Kenneth Egol
- Department of Orthopedic Surgery, Hospital for Joint Diseases, NYU Langone Medical Center, New York, New York, USA
| | - Ravinder R Regatte
- Department of Radiology, NYU Langone Medical Center, Center for Biomedical Imaging, New York, New York, USA
| | - Punam K Saha
- Department of Radiology and Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa, USA
| | - Gregory Chang
- Department of Radiology, NYU Langone Medical Center, Center for Musculoskeletal Care, New York, New York, USA.,Department of Radiology, NYU Langone Medical Center, Center for Biomedical Imaging, New York, New York, USA
| |
Collapse
|
24
|
Wong AKO, Beattie KA, Min KKH, Webber CE, Gordon CL, Papaioannou A, Cheung AMW, Adachi JD. A trimodality comparison of volumetric bone imaging technologies. Part I: Short-term precision and validity. J Clin Densitom 2015; 18:124-35. [PMID: 25129405 PMCID: PMC5094893 DOI: 10.1016/j.jocd.2014.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/13/2014] [Accepted: 07/03/2014] [Indexed: 10/24/2022]
Abstract
In vivo peripheral quantitative computed tomography (pQCT) and peripheral magnetic resonance imaging (pMRI) modalities can measure apparent bone microstructure at resolutions 200 μm or higher. However, validity and in vivo test-retest reproducibility of apparent bone microstructure have yet to be determined on 1.0 T pMRI (196 μm) and pQCT (200 μm). This study examined 67 women with a mean age of 74±9 yr and body mass index of 27.65±5.74 kg/m2, demonstrating validity for trabecular separation from pMRI, cortical thickness, and bone volume fraction from pQCT images compared with high-resolution pQCT (hr-pQCT), with slopes close to unity. However, because of partial volume effects, cortical and trabecular thickness of bone derived from pMRI and pQCT images matched hr-pQCT more only when values were small. Short-term reproducibility of bone outcomes was highest for bone volume fraction (BV/TV) and densitometric variables and lowest for trabecular outcomes measuring microstructure. Measurements at the tibia for pQCT images were more precise than at the radius. In part I of this 3-part series focused on trimodality comparisons of precision and validity, it is shown that pQCT images can yield valid and reproducible apparent bone structural outcomes, but because of longer scan time and potential for more motion, the pMRI protocol examined here remains limited in achieving reliable values.
Collapse
Affiliation(s)
- Andy K O Wong
- Department of Medicine, McMaster University, Hamilton, ON, Canada.
| | - Karen A Beattie
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Kevin K H Min
- Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Colin E Webber
- Department of Nuclear Medicine, McMaster University, Hamilton, ON, Canada
| | | | | | - Angela M W Cheung
- Osteoporosis Program, University Health Network, Toronto, ON, Canada
| | | |
Collapse
|
25
|
Abstract
This review describes new technologies for the diagnosis and treatment, including fracture risk prediction, of postmenopausal osteoporosis. Four promising technologies and their potential for clinical translation and basic science studies are discussed. These include reference point indentation (RPI), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and magnetic resonance imaging (MRI). While each modality exploits different physical principles, the commonality is that none of them require use of ionizing radiation. To provide context for the new developments, brief summaries are provided for the current state of biomarker assays, fracture risk assessment (FRAX), and other fracture risk prediction algorithms and quantitative ultrasound (QUS) measurements.
Collapse
Affiliation(s)
- Bo Gong
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | | | | |
Collapse
|
26
|
McComb C, Harpur A, Yacoubian C, Leddy C, Anderson G, Shepherd S, Perry C, Shaikh MG, Foster J, Ahmed SF. MRI-based abnormalities in young adults at risk of adverse bone health due to childhood-onset metabolic & endocrine conditions. Clin Endocrinol (Oxf) 2014; 80:811-7. [PMID: 24245820 DOI: 10.1111/cen.12367] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 11/09/2013] [Accepted: 11/15/2013] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Traditional methods of bone densitometry may not provide a comprehensive assessment of bone health. We aimed to assess bone micro-architecture and bone marrow adiposity (BMA) by MRI in adults with osteogenesis imperfecta (OI) and endocrinopathy including GH deficiency and/or hypogonadism. MEASUREMENTS High-resolution micro-MRI images were acquired at the tibia using 3T MRI to calculate parameters of bone micro-architecture in seven adults with OI and 10 adults with endocrinopathies. MR Spectroscopy was performed in participants to calculate vertebral BMA, which was expressed as percentage fat fraction (%FF). Lumbar spine DXA was performed to assess bone mineral density. The MRI data were compared with a group of 22 healthy adults who were divided into two age-matched control groups. RESULTS Intra-operator repeatability was high, with an average CoV of 1% for micro-MRI and 2·5% for MRS. The ratio of apparent bone volume to total volume (appBV/TV) in the endocrinopathy and OI groups was lower than in age-matched control groups (P = 0·003 and P = 0·008 respectively). A weak association between DXA BMD and appBV/TV was also observed (r = 0·5, P = 0·045). %FF was higher in the endocrinopathy group than in the age-matched control group (P = 0·005), but no difference in %FF was observed between the OI group and their age-matched control group (P = 0·26). CONCLUSIONS MRI provides valuable detailed information on the micro-architecture and adiposity of bones and is capable of showing clear differences in bone parameters in a range of clinical conditions associated with abnormal bone health.
Collapse
Affiliation(s)
- C McComb
- Department of Clinical Physics, NHS Greater Glasgow & Clyde, Glasgow, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ellouz R, Chapurlat R, van Rietbergen B, Christen P, Pialat JB, Boutroy S. Challenges in longitudinal measurements with HR-pQCT: evaluation of a 3D registration method to improve bone microarchitecture and strength measurement reproducibility. Bone 2014; 63:147-57. [PMID: 24614646 DOI: 10.1016/j.bone.2014.03.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 02/10/2014] [Accepted: 03/02/2014] [Indexed: 02/04/2023]
Abstract
Definition of identical regions between repeated computed tomography (CT) scans is a key factor to monitor changes in bone microarchitecture. In longitudinal studies, accurate determination of the volume of interest (VOI), using three dimensional (3D) registration may improve precision. Therefore, the aim of our study was to investigate the short-term reproducibility of bone geometry, density, microstructure and biomechanical parameters assessed by HR-pQCT and micro-finite element (μFE) derived analyses, using the cross-sectional area (CSA) registration method in comparison with the use of 3D registration, to find overlapping regions between scans. Fifteen healthy individuals (aged 21-47 years) underwent 3 separate scans at the distal radius and tibia, within a one-month interval. Reproducibility was assessed after double contouring the cortical compartment and after applying three different methods to determine the common region between repeated scans: (i) the VOI was determined with no registration, i.e., on 110 slices, (ii) the VOI was determined after CSA-based registration, and (iii) the VOI was determined after 3D registration. Both pre- and post-registration short-term reproducibility for each subject was determined. With no registration, CVrms of geometry parameters ranged from 0.5 to 3.7%, showing a slight variation in the CSA between scans. When the CSA registration method was employed, the variability of geometry (CVrms<1.8%) and density parameters (CVrms<1.8%), was better than that obtained without registration. By removing the effect of repositioning, the 3D registration further improved the reproducibility of cortical bone measurements compared to other methods. Indeed, significant improvements were found for cortical geometry and microstructure measurements (CVrms ranged from 0.4% to 10.7% at both sites; p<0.05), whereas the impact on trabecular bone measurements was restricted to its geometry parameter. The repositioning error was significantly reduced, most markedly at the radius compared to the tibia. For μFE measures, the impact of 3D registration on whole bone stiffness was negligible, indicating adequate assessment of longitudinal changes in estimated biomechanical properties, even without registration. In conclusion, we have shown that the 3D registration improved the identification of the common region retained for longitudinal analysis, contributing to improve the reproducibility of cortical bone parameter measurements. We also quantified the minimally detectable bone changes to help designing future studies with HR-pQCT.
Collapse
Affiliation(s)
| | | | - Bert van Rietbergen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands.
| | - Patrik Christen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands.
| | | | | |
Collapse
|
28
|
Zhang N, Magland JF, Song HK, Wehrli FW. Registration-based autofocusing technique for automatic correction of motion artifacts in time-series studies of high-resolution bone MRI. J Magn Reson Imaging 2014; 41:954-63. [PMID: 24803089 DOI: 10.1002/jmri.24646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 03/28/2014] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To develop a registration-based autofocusing (RAF) motion correction technique for high-resolution trabecular bone (TB) imaging and to evaluate its performance on in vivo MR data. MATERIALS AND METHODS The technique combines serial registration with a previously developed motion correction technique - autofocusing - for automatic correction of subject movement degradation of MR images acquired in longitudinal studies. The method was tested on in vivo images of the distal radius to measure improvements in serial reproducibility of parameters in 12 women (ages 50-75 years), and to compare with the navigator echo-based correction and autofocusing. Furthermore, the technique's ability to optimize the sensitivity to detect simulated bone loss was ascertained. RESULTS The new technique yielded superior reproducibility of image-derived structural and mechanical parameters. Average coefficient of variation across all parameters improved by 12.5%, 27.0%, 33.5%, and 37.0%, respectively, following correction by navigator echoes, autofocusing, and the RAF technique (without and with correction for rotational motion); average intra-class correlation coefficient increased by 1.2%, 2.2%, 2.8%, and 3.2%, respectively. Furthermore, simulated bone loss (5%) was well recovered independent of the choice of reference image (4.71% or 4.86% with respect to using either the original or the image subjected to bone loss) in the time series. CONCLUSION The data suggest that our technique simultaneously corrects for intra-scan motion corruption while improving inter-scan registration. Furthermore, the technique is not biased by small changes in bone architecture between time-points.
Collapse
Affiliation(s)
- Ning Zhang
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
29
|
Cylinders or walls? A new computational model to estimate the MR transverse relaxation rate dependence on trabecular bone architecture. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2013; 27:349-61. [PMID: 24061609 DOI: 10.1007/s10334-013-0402-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/22/2013] [Accepted: 08/22/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Bone density is distributed in a complex network of interconnecting trabecular plates and rods that are interspersed with bone marrow. A computational model to assess the dependence of the relaxation rate on the geometry of bone can consider the distribution of bone material in the form of two components: cylinders and open walls (walls with gaps). We investigate whether the experimentally known dependence of the transverse relaxation rate on the trabecular bone structure can be usefully interpreted in terms of these two components. MATERIALS AND METHODS We established a computer model based on an elementary computational cell. The model includes a variable number of open walls and infinitely long cylinders as well as multiple geometric parameters. The transverse relaxation rate is computed as a function of these parameters. Within the model, increasing the trabecular spacing with a fixed trabecular radius is equivalent to thinning the trabeculae while maintaining constant spacing. RESULTS Increasing the number of cylinder and wall gap elements beyond their nearest neighbors does not change the transverse relaxation rate. Although the absolute contribution to the relaxation due to open walls is on average more important than that due to cylinders, the latter drops off rapidly. The change on transverse relaxation rate is larger for changing cylinder geometry than for changing wall geometry, as it can be seen from the effect on the relaxation rate when trabecular spacing is varied, compared to varying the size of wall gaps. CONCLUSION Our results provide strong evidence that trabecular thinning, which is associated with increasing age, decreases the relaxation rates. The effect of thinning plates and rods on the transverse relaxation can be understood in terms of simple cylinders and open walls. A reduction in the relaxation rate can be seen as an indication of thinning cylinders, corresponding to reduced bone stability and ultimately, osteoporosis.
Collapse
|
30
|
Pritchard JM, Giangregorio LM, Atkinson SA, Beattie KA, Inglis D, Ioannidis G, Gerstein H, Punthakee Z, Adachi JD, Papaioannou A. Changes in trabecular bone microarchitecture in postmenopausal women with and without type 2 diabetes: a two year longitudinal study. BMC Musculoskelet Disord 2013; 14:114. [PMID: 23530948 PMCID: PMC3618189 DOI: 10.1186/1471-2474-14-114] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 03/19/2013] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The risk of experiencing an osteoporotic fracture is greater for adults with type 2 diabetes despite higher than normal bone mineral density (BMD). In addition to BMD, trabecular bone microarchitecture contributes to bone strength, but is not assessed using conventional BMD measurement by dual x-ray absorptiometry (DXA). The aim of this study was to compare two year changes in trabecular bone microarchitecture in women with and without type 2 diabetes. METHODS We used a 1 Tesla magnetic resonance imaging (MRI) scanner to acquire axial images (resolution 195 μm × 195 μm × 1000 μm) of the distal radius. We report the change in the number and size of trabecular bone holes, bone volume fraction (BVTV), trabecular thickness (Tb.Th), number (Tb.N) and separation (Tb.Sp), endosteal area, nodal and branch density for each group. Lumbar spine and proximal femur BMD were measured with DXA (Hologic, Discovery QDR4500A) at baseline and follow-up. Using a multivariable linear regression model, we evaluated whether the percent change in the trabecular bone microarchitecture variables differed between women with and without type 2 diabetes. RESULTS Of the 54 participants at baseline with valid MRI image sets, 37 participants (baseline mean [SD] age, 70.8 [4.4] years) returned for follow-up assessment after 25.4 [1.9] months. Lumbar spine BMD was greater for women with diabetes compared to without diabetes at both baseline and follow-up. After adjustment for ethnicity, women with diabetes had a higher percent increase in number of trabecular bone holes compared to controls (10[1] % versus -7 [2]%, p=0.010), however results were no longer significant after adjustment for multiple comparisons (p=0.090). There were no differences in the change in other trabecular bone microarchitecture variables between groups. CONCLUSION There were no differences in percent change in trabecular bone microarchitecture variables over two years in women with type 2 diabetes compared to women without diabetes. This study provides feasibility data, which will inform future trials assessing change in trabecular bone microarchitecture in women with type 2 diabetes. Larger studies using higher resolution imaging modalities that can assess change in trabecular and cortical bone compartments in women with type 2 diabetes are needed.
Collapse
Affiliation(s)
- Janet M Pritchard
- Faculty of Health Sciences, McMaster University, 1280 Main St West, Hamilton, ON L8S 4K1, Canada
| | - Lora M Giangregorio
- Department of Kinesiology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Stephanie A Atkinson
- Department of Pediatrics, McMaster University, 1280 Main St West, Hamilton, ON L8S 4K1, Canada
| | - Karen A Beattie
- Department of Medicine, McMaster University, Charlton Medical Centre, 501-25 Charlton Ave E, Hamilton, ON L8N 1Y2, Canada
| | - Dean Inglis
- Department of Civil Engineering, McMaster University, 1280 Main St West, Hamilton, ON L8S 4K1, Canada
| | - George Ioannidis
- Department of Medicine, McMaster University, Charlton Medical Centre, 501-25 Charlton Ave E, Hamilton, ON L8N 1Y2, Canada
| | - Hertzel Gerstein
- Department of Medicine, McMaster University, 1280 Main St West, Hamilton, ON L8S 4K1, Canada
| | - Zubin Punthakee
- Department of Medicine, McMaster University, 1280 Main St West, Hamilton, ON L8S 4K1, Canada
| | - Jonathan D Adachi
- Department of Medicine, McMaster University, Charlton Medical Centre, 501-25 Charlton Ave E, Hamilton, ON L8N 1Y2, Canada
| | - Alexandra Papaioannou
- Department of Medicine, McMaster University, 1280 Main St West, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW To give an overview of advanced in-vivo imaging techniques for assessing bone quality beyond bone mineral density that have considerably advanced in recent years. RECENT FINDINGS Quantitative computed tomography and finite element analysis improve fracture risk prediction at the spine, and help to better understand the pathophysiology of skeletal diseases and response to therapy by quantifying bone mineral density in different bone compartments, determining bone strength, and assessing bone geometry. With new high-resolution techniques, trabecular structure at the spine, forearm, and tibia, and cortical porosity at the forearm and tibia can be measured. Hip structure analysis and trabecular bone score have extended the usefulness of dual X-ray absorptiometry. SUMMARY New advanced three-dimensional imaging techniques to quantify bone quality are mature and have proven to be complimentary methods to dual X-ray absorptiometry enhancing our understanding of bone metabolism and treatment.
Collapse
Affiliation(s)
- Klaus Engelke
- Institute of Medical Physics, University of Erlangen, Erlangen, Germany.
| |
Collapse
|
32
|
Abstract
Osteoporosis is becoming an increasingly important public health issue, and effective treatments to prevent fragility fractures are available. Osteoporosis imaging is of critical importance in identifying individuals at risk for fractures who would require pharmacotherapy to reduce fracture risk and also in monitoring response to treatment. Dual x-ray absorptiometry is currently the state-of-the-art technique to measure bone mineral density and to diagnose osteoporosis according to the World Health Organization guidelines. Motivated by a 2000 National Institutes of Health consensus conference, substantial research efforts have focused on assessing bone quality by using advanced imaging techniques. Among these techniques aimed at better characterizing fracture risk and treatment effects, high-resolution peripheral quantitative computed tomography (CT) currently plays a central role, and a large number of recent studies have used this technique to study trabecular and cortical bone architecture. Other techniques to analyze bone quality include multidetector CT, magnetic resonance imaging, and quantitative ultrasonography. In addition to quantitative imaging techniques measuring bone density and quality, imaging needs to be used to diagnose prevalent osteoporotic fractures, such as spine fractures on chest radiographs and sagittal multidetector CT reconstructions. Radiologists need to be sensitized to the fact that the presence of fragility fractures will alter patient care, and these fractures need to be described in the report. This review article covers state-of-the-art imaging techniques to measure bone mineral density, describes novel techniques to study bone quality, and focuses on how standard imaging techniques should be used to diagnose prevalent osteoporotic fractures.
Collapse
Affiliation(s)
- Thomas M Link
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
33
|
Abstract
Osteoporosis is becoming an increasingly important public health issue, and effective treatments to prevent fragility fractures are available. Osteoporosis imaging is of critical importance in identifying individuals at risk for fractures who would require pharmacotherapy to reduce fracture risk and also in monitoring response to treatment. Dual x-ray absorptiometry is currently the state-of-the-art technique to measure bone mineral density and to diagnose osteoporosis according to the World Health Organization guidelines. Motivated by a 2000 National Institutes of Health consensus conference, substantial research efforts have focused on assessing bone quality by using advanced imaging techniques. Among these techniques aimed at better characterizing fracture risk and treatment effects, high-resolution peripheral quantitative computed tomography (CT) currently plays a central role, and a large number of recent studies have used this technique to study trabecular and cortical bone architecture. Other techniques to analyze bone quality include multidetector CT, magnetic resonance imaging, and quantitative ultrasonography. In addition to quantitative imaging techniques measuring bone density and quality, imaging needs to be used to diagnose prevalent osteoporotic fractures, such as spine fractures on chest radiographs and sagittal multidetector CT reconstructions. Radiologists need to be sensitized to the fact that the presence of fragility fractures will alter patient care, and these fractures need to be described in the report. This review article covers state-of-the-art imaging techniques to measure bone mineral density, describes novel techniques to study bone quality, and focuses on how standard imaging techniques should be used to diagnose prevalent osteoporotic fractures.
Collapse
Affiliation(s)
- Thomas M Link
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
34
|
Abstract
Osteoporosis is becoming an increasingly important public health issue, and effective treatments to prevent fragility fractures are available. Osteoporosis imaging is of critical importance in identifying individuals at risk for fractures who would require pharmacotherapy to reduce fracture risk and also in monitoring response to treatment. Dual x-ray absorptiometry is currently the state-of-the-art technique to measure bone mineral density and to diagnose osteoporosis according to the World Health Organization guidelines. Motivated by a 2000 National Institutes of Health consensus conference, substantial research efforts have focused on assessing bone quality by using advanced imaging techniques. Among these techniques aimed at better characterizing fracture risk and treatment effects, high-resolution peripheral quantitative computed tomography (CT) currently plays a central role, and a large number of recent studies have used this technique to study trabecular and cortical bone architecture. Other techniques to analyze bone quality include multidetector CT, magnetic resonance imaging, and quantitative ultrasonography. In addition to quantitative imaging techniques measuring bone density and quality, imaging needs to be used to diagnose prevalent osteoporotic fractures, such as spine fractures on chest radiographs and sagittal multidetector CT reconstructions. Radiologists need to be sensitized to the fact that the presence of fragility fractures will alter patient care, and these fractures need to be described in the report. This review article covers state-of-the-art imaging techniques to measure bone mineral density, describes novel techniques to study bone quality, and focuses on how standard imaging techniques should be used to diagnose prevalent osteoporotic fractures.
Collapse
Affiliation(s)
- Thomas M Link
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
35
|
Lam SCB, Wald MJ, Rajapakse CS, Liu Y, Saha PK, Wehrli FW. Performance of the MRI-based virtual bone biopsy in the distal radius: serial reproducibility and reliability of structural and mechanical parameters in women representative of osteoporosis study populations. Bone 2011; 49:895-903. [PMID: 21784189 PMCID: PMC3167016 DOI: 10.1016/j.bone.2011.07.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/14/2011] [Accepted: 07/08/2011] [Indexed: 11/25/2022]
Abstract
Serial reproducibility and reliability critically determine sensitivity to detect changes in response to intervention and provide a basis for sample size estimates. Here, we evaluated the performance of the MRI-based virtual bone biopsy in terms of 26 structural and mechanical parameters in the distal radius of 20 women in the age range of 50 to 75 years (mean=62.0 years, S.D.=8.1 years), representative of typical study populations in drug intervention trials and fracture studies. Subjects were examined three times at average intervals of 20.2 days (S.D.=14.5 days) by MRI at 1.5 T field strength at a voxel size of 137×137×410 μm(3). Methods involved prospective and retrospective 3D image registration and auto-focus motion correction. Analyses were performed from a central 5×5×5 mm(3) cuboid subvolume and trabecular volume consisting of a 13 mm axial slab encompassing the entire medullary cavity. Whole-volume axial stiffness and sub-regional Young's and shear moduli were computed by finite-element analysis. Whole-volume-derived aggregate mean coefficient of variation of all structural parameters was 4.4% (range 1.8% to 7.7%) and 4.0% for axial stiffness; corresponding data in the subvolume were 6.5% (range 1.6% to 13.0%) for structural, and 5.5% (range 4.6% to 6.5%) for mechanical parameters. Aggregate ICC was 0.976 (range 0.947 to 0.986) and 0.992 for whole-volume-derived structural parameters and axial stiffness, and 0.946 (range 0.752 to 0.991) and 0.974 (range 0.965 to 0.978) for subvolume-derived structural and mechanical parameters, respectively. The strongest predictors of whole-volume axial stiffness were BV/TV, junction density, skeleton density and Tb.N (R(2) 0.79-0.87). The same parameters were also highly predictive of sub-regional axial modulus (R(2) 0.88-0.91). The data suggest that the method is suited for longitudinal assessment of the response to therapy. The underlying technology is portable and should be compatible with all general-purpose MRI scanners, which is appealing considering the very large installed base of this modality.
Collapse
Affiliation(s)
- Shing Chun Benny Lam
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|