1
|
Wagner VA, Clark KC, Carrillo-Sáenz L, Holl KA, Velez-Bermudez M, Simonsen D, Grobe JL, Wang K, Thurman A, Solberg Woods LC, Lehmler HJ, Kwitek AE. Bisphenol F Exposure in Adolescent Heterogeneous Stock Rats Affects Growth and Adiposity. Toxicol Sci 2021; 181:246-261. [PMID: 33755180 PMCID: PMC8163043 DOI: 10.1093/toxsci/kfab035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Bisphenol F (BPF) is increasingly substituting bisphenol A in manufacturing polycarbonates and consumer products. The cardiometabolic effects of BPF in either humans or model organisms are not clear, and no studies to date have investigated the role of genetic background on susceptibility to BPF-induced cardiometabolic traits. The primary goal of this project was to determine if BPF exposure influences growth and adiposity in male N:NIH heterogeneous stock (HS) rats, a genetically heterogeneous population. Littermate pairs of male HS rats were randomly exposed to either vehicle (0.1% ethanol) or 1.125 µg/ml BPF in 0.1% ethanol for 5 weeks in drinking water starting at 3 weeks-of-age. Water consumption and body weight was measured weekly, body composition was determined using nuclear magnetic resonance, urine and feces were collected in metabolic cages, and blood and tissues were collected at the end of the study. BPF-exposed rats showed significantly increased body growth and abdominal adiposity, risk factors for cardiometabolic disease. Urine output was increased in BPF-exposed rats, driving a trend in increased creatinine clearance. We also report the first relationship between a bisphenol metabolizing enzyme and a bisphenol-induced phenotype. Preliminary heritability estimates of significant phenotypes suggest that BPF exposure may alter trait variation. These findings support BPF exposure as a cardiometabolic disease risk factor and indicate that the HS rat will be a useful model for dissecting gene by BPF interactions on metabolic health.
Collapse
Affiliation(s)
- Valerie A Wagner
- Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Karen C Clark
- Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Leslie Carrillo-Sáenz
- Division of Endocrinology, Diabetes and Metabolism and Department of Physiology and Biophysics, University of Illinois at Chicago College of Medicine, Chicago, Illinois 60612, USA
| | - Katie A Holl
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Miriam Velez-Bermudez
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, Iowa 52242, USA
| | - Derek Simonsen
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, USA
| | - Justin L Grobe
- Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Kai Wang
- Department of Biostatistics, University of Iowa, Iowa City, Iowa 52242, USA
| | - Andrew Thurman
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Leah C Solberg Woods
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27101, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, USA
| | - Anne E Kwitek
- Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Rat Genome Database, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
2
|
Zinski AL, Carrion S, Michal JJ, Gartstein MA, Quock RM, Davis JF, Jiang Z. Genome-to-phenome research in rats: progress and perspectives. Int J Biol Sci 2021; 17:119-133. [PMID: 33390838 PMCID: PMC7757052 DOI: 10.7150/ijbs.51628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/06/2020] [Indexed: 01/07/2023] Open
Abstract
Because of their relatively short lifespan (<4 years), rats have become the second most used model organism to study health and diseases in humans who may live for up to 120 years. First-, second- and third-generation sequencing technologies and platforms have produced increasingly greater sequencing depth and accurate reads, leading to significant advancements in the rat genome assembly during the last 20 years. In fact, whole genome sequencing (WGS) of 47 strains have been completed. This has led to the discovery of genome variants in rats, which have been widely used to detect quantitative trait loci underlying complex phenotypes based on gene, haplotype, and sweep association analyses. DNA variants can also reveal strain, chromosome and gene functional evolutions. In parallel, phenome programs have advanced significantly in rats during the last 15 years and more than 10 databases host genome and/or phenome information. In order to discover the bridges between genome and phenome, systems genetics and integrative genomics approaches have been developed. On the other hand, multiple level information transfers from genome to phenome are executed by differential usage of alternative transcriptional start (ATS) and polyadenylation (APA) sites per gene. We used our own experiments to demonstrate how alternative transcriptome analysis can lead to enrichment of phenome-related causal pathways in rats. Development of advanced genome-to-phenome assays will certainly enhance rats as models for human biomedical research.
Collapse
Affiliation(s)
- Amy L. Zinski
- Department of Animal Sciences, Washington State University, Pullman, WA 99164-7620
| | - Shane Carrion
- Department of Animal Sciences, Washington State University, Pullman, WA 99164-7620
| | - Jennifer J. Michal
- Department of Animal Sciences, Washington State University, Pullman, WA 99164-7620
| | - Maria A. Gartstein
- Department of Psychology, Washington State University, Pullman, WA 99164-4820
| | - Raymond M. Quock
- Department of Psychology, Washington State University, Pullman, WA 99164-4820
| | - Jon F. Davis
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164-7620
| | - Zhihua Jiang
- Department of Animal Sciences, Washington State University, Pullman, WA 99164-7620
| |
Collapse
|
3
|
Dose-dependent skeletal deficits due to varied reductions in mechanical loading in rats. NPJ Microgravity 2020; 6:15. [PMID: 32435691 PMCID: PMC7235020 DOI: 10.1038/s41526-020-0105-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 03/27/2020] [Indexed: 12/23/2022] Open
Abstract
Reduced skeletal loading leads to marked bone loss. Animal models of hindlimb suspension are widely used to assess alterations in skeleton during the course of complete unloading. More recently, the effects of partial unloading on the musculoskeletal system have been interrogated in mice and rats, revealing dose-dependent effects of partial weight bearing (PWB) on the skeleton and skeletal muscle. Here, we extended these studies to determine the structural and functional skeletal alterations in 14-week-old male Wister rats exposed to 20%, 40%, 70%, or 100% of body weight for 1, 2, or 4 weeks (n = 11-12/group). Using in vivo pQCT, we found that trabecular bone density at the proximal tibia declined in proportion to the degree of unloading and continued progressively with time, without evidence of a plateau by 4 weeks. Ex vivo measurements of trabecular microarchitecture in the distal femur by microcomputed tomography revealed deficits in bone volume fraction, 2 and 4 weeks after unloading. Histologic analyses of trabecular bone in the distal femur revealed the decreased osteoblast number and mineralizing surface in unloaded rats. Three-point bending of the femoral diaphysis indicated modest or no reductions in femoral stiffness and estimated modulus due to PWB. Our results suggest that this rat model of PWB leads to trabecular bone deterioration that is progressive and generally proportional to the degree of PWB, with minimal effects on cortical bone.
Collapse
|
4
|
Suzer B, Petek M, Tufekci K, Arican I, Abdourhamane IM, Yildiz H. Comparison of Some Biomechanical Properties of Tibiotarsus in Four Different Feather Color Lines of 60-Day Old Female Quails. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2020. [DOI: 10.1590/1806-9061-2019-1204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- B Suzer
- Bursa Uludag University, Turkey
| | - M Petek
- Bursa Uludag University, Turkey
| | | | | | | | | |
Collapse
|
5
|
Abstract
In this chapter we will review both the rationale and experimental design for using Heterogeneous Stock (HS) populations for fine-mapping of complex traits in mice and rats. We define an HS as an outbred population derived from an intercross between two or more inbred strains. HS have been used to perform genome-wide association studies (GWAS) for multiple behavioral, physiological, and gene expression traits. GWAS using HS require four key steps, which we review: selection of an appropriate HS population, phenotyping, genotyping, and statistical analysis. We provide advice on the selection of an HS, comment on key issues related to phenotyping, discuss genotyping methods relevant to these populations, and describe statistical genetic analyses that are applicable to genetic analyses that use HS.
Collapse
|
6
|
Genetic architecture of bone quality variation in layer chickens revealed by a genome-wide association study. Sci Rep 2017; 7:45317. [PMID: 28383518 PMCID: PMC5382839 DOI: 10.1038/srep45317] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/23/2017] [Indexed: 11/15/2022] Open
Abstract
Skeletal problems in layer chickens are gaining attention due to animal welfare and economic losses in the egg industry. The genetic improvement of bone traits has been proposed as a potential solution to these issues; however, genetic architecture is not well understood. We conducted a genome-wide association study (GWAS) on bone quality using a sample of 1534 hens genotyped with a 600 K Chicken Genotyping Array. Using a linear mixed model approach, a novel locus close to GSG1L, associated with femur bone mineral density (BMD), was uncovered in this study. In addition, nine SNPs in genes were associated with bone quality. Three of these genes, RANKL, ADAMTS and SOST, were known to be associated with osteoporosis in humans, which makes them good candidate genes for osteoporosis in chickens. Genomic partitioning analysis supports the fact that common variants contribute to the variations of bone quality. We have identified several strong candidate genes and genomic regions associated with bone traits measured in end-of-lay cage layers, which accounted for 1.3–7.7% of the phenotypic variance. These SNPs could provide the relevant information to help elucidate which genes affect bone quality in chicken.
Collapse
|
7
|
Adams DJ, Rowe DW, Ackert-Bicknell CL. Genetics of aging bone. Mamm Genome 2016; 27:367-80. [PMID: 27272104 DOI: 10.1007/s00335-016-9650-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/24/2016] [Indexed: 01/08/2023]
Abstract
With aging, the skeleton experiences a number of changes, which include reductions in mass and changes in matrix composition, leading to fragility and ultimately an increase of fracture risk. A number of aspects of bone physiology are controlled by genetic factors, including peak bone mass, bone shape, and composition; however, forward genetic studies in humans have largely concentrated on clinically available measures such as bone mineral density (BMD). Forward genetic studies in rodents have also heavily focused on BMD; however, investigations of direct measures of bone strength, size, and shape have also been conducted. Overwhelmingly, these studies of the genetics of bone strength have identified loci that modulate strength via influencing bone size, and may not impact the matrix material properties of bone. Many of the rodent forward genetic studies lacked sufficient mapping resolution for candidate gene identification; however, newer studies using genetic mapping populations such as Advanced Intercrosses and the Collaborative Cross appear to have overcome this issue and show promise for future studies. The majority of the genetic mapping studies conducted to date have focused on younger animals and thus an understanding of the genetic control of age-related bone loss represents a key gap in knowledge.
Collapse
Affiliation(s)
- Douglas J Adams
- Department of Orthopaedic Surgery, University of Connecticut Musculoskeletal Institute, University of Connecticut Health, Farmington, CT, 06030, USA
| | - David W Rowe
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, Biomaterials and Skeletal Development, University of Connecticut Health, Farmington, CT, USA
| | - Cheryl L Ackert-Bicknell
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave, Box 665, Rochester, NY, 14624, USA.
| |
Collapse
|
8
|
Sánchez-González A, Esnal A, Río-Álamos C, Oliveras I, Cañete T, Blázquez G, Tobeña A, Fernández-Teruel A. Association between prepulse inhibition of the startle response and latent inhibition of two-way avoidance acquisition: A study with heterogeneous NIH-HS rats. Physiol Behav 2015; 155:195-201. [PMID: 26700617 DOI: 10.1016/j.physbeh.2015.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 12/20/2022]
Abstract
This study presents the first evaluation of the associations between responses in two paradigms related to schizophrenia in the genetically heterogeneous NIH-HS rat stock. NIH-HS rats are a stock of genetically heterogeneous animals that have been derived from eight different inbred strains. A rotational breeding schedule has been followed for more than eighty generations, leading to a high level of genetic recombination that makes the NIH-HS rats a unique tool for studying the genetic basis of (biological, behavioral, disease-related) complex traits. Previous work has dealt with the characterization of coping styles, cognitive and anxiety/fear-related profiles of NIH-HS rats. In the present study we have completed their characterization in two behavioral models, prepulse inhibition (PPI) and latent inhibition (LI) of the two-way active avoidance response, that appear to be related to schizophrenia or to schizophrenia-relevant symptoms. We have found that these rats display PPI for each of the four prepulse intensities tested, allowing their stratification in high, medium and low PPI subgroups. When testing these three subgroups for LI of two-way active avoidance acquisition it has been observed that the LowPPI and MediumPPI subgroups present impaired LI, which, along with the fact that the HighPPI group presents significant LI, allows us to hypothesize that responses in these two paradigms are somehow related and that selection of NIH-HS rats for Low vs HighPPI could make a promising animal model for the study of clusters of schizophrenia-relevant symptoms and their underlying neurobiological mechanisms.
Collapse
Affiliation(s)
- Ana Sánchez-González
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain.
| | - Aitor Esnal
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Cristóbal Río-Álamos
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Ignasi Oliveras
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Toni Cañete
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Gloria Blázquez
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Adolf Tobeña
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Alberto Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain.
| |
Collapse
|
9
|
Alam I, Koller DL, Cañete T, Blázquez G, Mont-Cardona C, López-Aumatell R, Martínez-Membrives E, Díaz-Morán S, Tobeña A, Fernández-Teruel A, Stridh P, Diez M, Olsson T, Johannesson M, Baud A, Econs MJ, Foroud T. Fine mapping of bone structure and strength QTLs in heterogeneous stock rat. Bone 2015; 81:417-426. [PMID: 26297441 PMCID: PMC4641024 DOI: 10.1016/j.bone.2015.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 11/26/2022]
Abstract
We previously demonstrated that skeletal structure and strength phenotypes vary considerably in heterogeneous stock (HS) rats. These phenotypes were found to be strongly heritable, suggesting that the HS rat model represents a unique genetic resource for dissecting the complex genetic etiology underlying bone fragility. The purpose of this study was to identify and localize genes associated with bone structure and strength phenotypes using 1524 adult male and female HS rats between 17 to 20 weeks of age. Structure measures included femur length, neck width, head width; femur and lumbar spine (L3-5) areas obtained by DXA; and cross-sectional areas (CSA) at the midshaft, distal femur and femoral neck, and the 5th lumbar vertebra measured by CT. In addition, measures of strength of the whole femur and femoral neck were obtained. Approximately 70,000 polymorphic SNPs distributed throughout the rat genome were selected for genotyping, with a mean linkage disequilibrium coefficient between neighboring SNPs of 0.95. Haplotypes were estimated across the entire genome for each rat using a multipoint haplotype reconstruction method, which calculates the probability of descent at each locus from each of the 8 HS founder strains. The haplotypes were then tested for association with each structure and strength phenotype via a mixed model with covariate adjustment. We identified quantitative trait loci (QTLs) for structure phenotypes on chromosomes 3, 8, 10, 12, 17 and 20, and QTLs for strength phenotypes on chromosomes 5, 10 and 11 that met a conservative genome-wide empiric significance threshold (FDR=5%; P<3×10(-6)). Importantly, most QTLs were localized to very narrow genomic regions (as small as 0.3 Mb and up to 3 Mb), each harboring a small set of candidate genes, both novel and previously shown to have roles in skeletal development and homeostasis.
Collapse
Affiliation(s)
- Imranul Alam
- Medicine, Indiana University School of Medicine, IN, USA.
| | - Daniel L Koller
- Medical and Molecular Genetics, Indiana University School of Medicine, IN, USA
| | - Toni Cañete
- Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Gloria Blázquez
- Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Carme Mont-Cardona
- Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | | | - Esther Martínez-Membrives
- Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Sira Díaz-Morán
- Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Adolf Tobeña
- Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Alberto Fernández-Teruel
- Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Pernilla Stridh
- Clinical Neuroscience, Center for Molecular Medicine, Neuroimmunolgy Unit, Karolinska Institutet, S171 76 Stockholm, Sweden
| | - Margarita Diez
- Clinical Neuroscience, Center for Molecular Medicine, Neuroimmunolgy Unit, Karolinska Institutet, S171 76 Stockholm, Sweden
| | - Tomas Olsson
- Clinical Neuroscience, Center for Molecular Medicine, Neuroimmunolgy Unit, Karolinska Institutet, S171 76 Stockholm, Sweden
| | - Martina Johannesson
- Clinical Neuroscience, Center for Molecular Medicine, Neuroimmunolgy Unit, Karolinska Institutet, S171 76 Stockholm, Sweden
| | - Amelie Baud
- Wellcome Trust Center for Human Genetics, Oxford OX3 7BN, United Kingdom
| | - Michael J Econs
- Medicine, Indiana University School of Medicine, IN, USA; Medical and Molecular Genetics, Indiana University School of Medicine, IN, USA
| | - Tatiana Foroud
- Medical and Molecular Genetics, Indiana University School of Medicine, IN, USA
| |
Collapse
|
10
|
Genetic regulation of bone strength: a review of animal model studies. BONEKEY REPORTS 2015; 4:714. [PMID: 26157577 DOI: 10.1038/bonekey.2015.83] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 04/16/2015] [Indexed: 12/24/2022]
Abstract
Population- and family-based studies have established that fragility fracture risk is heritable; yet, the genome-wide association studies published to date have only accounted for a small fraction of the known variation for fracture risk of either the femur or the lumbar spine. Much work has been carried out using animal models toward finding genetic loci that are associated with bone strength. Studies using animal models overcome some of the issues associated with using patient data, but caution is needed when interpreting the results. In this review, we examine the types of tests that have been used for forward genetics mapping in animal models to identify loci and/or genes that regulate bone strength and discuss the limitations of these test methods. In addition, we present a summary of the quantitative trait loci that have been mapped for bone strength in mice, rats and chickens. The majority of these loci co-map with loci for bone size and/or geometry and thus likely dictate strength via modulating bone size. Differences in bone matrix composition have been demonstrated when comparing inbred strains of mice, and these matrix differences may be associated with differences in bone strength. However, additional work is needed to identify loci that act on bone strength at the materials level.
Collapse
|
11
|
Alam I, Koller DL, Cañete T, Blázquez G, López-Aumatell R, Martínez-Membrives E, Díaz-Morán S, Tobeña A, Fernández-Teruel A, Stridh P, Diez M, Olsson T, Johannesson M, Baud A, Econs MJ, Foroud T. High-resolution genome screen for bone mineral density in heterogeneous stock rat. J Bone Miner Res 2014; 29:1619-26. [PMID: 24643965 PMCID: PMC4074219 DOI: 10.1002/jbmr.2195] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 01/25/2014] [Accepted: 02/03/2014] [Indexed: 01/09/2023]
Abstract
We previously demonstrated that skeletal mass, structure, and biomechanical properties vary considerably in heterogeneous stock (HS) rat strains. In addition, we observed strong heritability for several of these skeletal phenotypes in the HS rat model, suggesting that it represents a unique genetic resource for dissecting the complex genetics underlying bone fragility. The purpose of this study was to identify and localize genes associated with bone mineral density in HS rats. We measured bone phenotypes from 1524 adult male and female HS rats between 17 and 20 weeks of age. Phenotypes included dual-energy X-ray absorptiometry (DXA) measurements for bone mineral content and areal bone mineral density (aBMD) for femur and lumbar spine (L3-L5), and volumetric BMD measurements by CT for the midshaft and distal femur, femur neck, and fifth lumbar vertebra (L5). A total of 70,000 polymorphic single-nucleotide polymorphisms (SNPs) distributed throughout the genome were selected from genotypes obtained from the Affymetrix rat custom SNPs array for the HS rat population. These SNPs spanned the HS rat genome with a mean linkage disequilibrium coefficient between neighboring SNPs of 0.95. Haplotypes were estimated across the entire genome for each rat using a multipoint haplotype reconstruction method, which calculates the probability of descent for each genotyped locus from each of the eight founder HS strains. The haplotypes were tested for association with each bone density phenotype via a mixed model with covariate adjustment. We identified quantitative trait loci (QTLs) for BMD phenotypes on chromosomes 2, 9, 10, and 13 meeting a conservative genomewide empiric significance threshold (false discovery rate [FDR] = 5%; p < 3 × 10(-6)). Importantly, most QTLs were localized to very small genomic regions (1-3 megabases [Mb]), allowing us to identify a narrow set of potential candidate genes including both novel genes and genes previously shown to have roles in skeletal development and homeostasis.
Collapse
Affiliation(s)
- Imranul Alam
- Medicine, Indiana University School of Medicine, IN, USA
| | - Daniel L. Koller
- Medical and Molecular Genetics, Indiana University School of Medicine, IN, USA
| | - Toni Cañete
- Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Universitat Autònoma deBarcelona, 08193-Bellaterra, Barcelona, Spain
| | - Gloria Blázquez
- Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Universitat Autònoma deBarcelona, 08193-Bellaterra, Barcelona, Spain
| | | | - Esther Martínez-Membrives
- Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Universitat Autònoma deBarcelona, 08193-Bellaterra, Barcelona, Spain
| | - Sira Díaz-Morán
- Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Universitat Autònoma deBarcelona, 08193-Bellaterra, Barcelona, Spain
| | - Adolf Tobeña
- Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Universitat Autònoma deBarcelona, 08193-Bellaterra, Barcelona, Spain
| | - Alberto Fernández-Teruel
- Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Universitat Autònoma deBarcelona, 08193-Bellaterra, Barcelona, Spain
| | - Pernilla Stridh
- Clinical Neuroscience, Center for Molecular Medicine, Neuroimmunolgy Unit, Karolinska Institutet, S171 76 Stockholm, Sweden
| | - Margarita Diez
- Clinical Neuroscience, Center for Molecular Medicine, Neuroimmunolgy Unit, Karolinska Institutet, S171 76 Stockholm, Sweden
| | - Tomas Olsson
- Clinical Neuroscience, Center for Molecular Medicine, Neuroimmunolgy Unit, Karolinska Institutet, S171 76 Stockholm, Sweden
| | - Martina Johannesson
- Clinical Neuroscience, Center for Molecular Medicine, Neuroimmunolgy Unit, Karolinska Institutet, S171 76 Stockholm, Sweden
| | - Amelie Baud
- Wellcome Trust Center for Human Genetics, Oxford OX3 7BN, United Kingdom
| | - Michael J. Econs
- Medicine, Indiana University School of Medicine, IN, USA
- Medical and Molecular Genetics, Indiana University School of Medicine, IN, USA
| | - Tatiana Foroud
- Medicine, Indiana University School of Medicine, IN, USA
- Medical and Molecular Genetics, Indiana University School of Medicine, IN, USA
| |
Collapse
|
12
|
Abstract
Quantitative trait locus (QTL) mapping in animal populations has been a successful strategy for identifying genomic regions that play a role in complex diseases and traits. When conducted in an F2 intercross or backcross population, the resulting QTL is frequently large, often encompassing 30 Mb or more and containing hundreds of genes. To narrow the locus and identify candidate genes, additional strategies are needed. Congenic strains have proven useful but work less well when there are multiple tightly linked loci, frequently resulting in loss of phenotype. As an alternative, we discuss the use of highly recombinant outbred models for directly fine-mapping QTL to only a few megabases. We discuss the use of several currently available models such as the advanced intercross (AI), heterogeneous stocks (HS), the diversity outbred (DO), and commercially available outbred stocks (CO). Once a QTL has been fine-mapped, founder sequence and expression QTL mapping can be used to identify candidate genes. In this regard, the large number of alleles found in outbred stocks can be leveraged to identify causative genes and variants. We end this review by discussing some important statistical considerations when analyzing outbred populations. Fine-resolution mapping in outbred models, coupled with full genome sequence, has already led to the identification of several underlying causative genes for many complex traits and diseases. These resources will likely lead to additional successes in the coming years.
Collapse
Affiliation(s)
- Leah C Solberg Woods
- Department of Pediatrics, Human and Molecular Genetics Center and Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
13
|
Díaz-Morán S, Palència M, Mont-Cardona C, Cañete T, Blázquez G, Martínez-Membrives E, López-Aumatell R, Sabariego M, Donaire R, Morón I, Torres C, Martínez-Conejero JA, Tobeña A, Esteban FJ, Fernández-Teruel A. Gene expression in amygdala as a function of differential trait anxiety levels in genetically heterogeneous NIH-HS rats. Behav Brain Res 2013; 252:422-31. [PMID: 23777796 DOI: 10.1016/j.bbr.2013.05.066] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/07/2013] [Accepted: 05/10/2013] [Indexed: 12/12/2022]
Abstract
To identify genes involved in anxiety/fear traits, we analyzed the gene expression profile in the amygdala of genetically heterogeneous NIH-HS rats. The NIH-HS rat stock has revealed to be a unique genetic resource for the fine mapping of Quantitative Trait Loci (QTLs) to very small genomic regions, due to the high amount of genetic recombinants accumulated along more than 50 breeding generations, and for the same reason it can be expected that those genetically heterogeneous rats should be especially useful for studying differential gene expression as a function of anxiety-(or other)-related traits. We selected high- and low-anxious NIH-HS rats differing in their number of avoidances in a single 50-trial session of the two-way active avoidance task. Rats were also tested in unconditioned anxiety tests (e.g., elevated zero-maze). Three weeks after behavioural testing, the amygdala was dissected and prepared for the microarray study. There appeared 6 significantly down-regulated and 28 up-regulated genes (fold-change >|2|, FDR<0.05) between the low- and high-anxious groups, with central nervous system-related functions. Regression analyses (stepwise) revealed that differential expression of some genes could be predictive of anxiety/fear responses. Among those genes for which the present results suggest a link with individual differences in trait anxiety, six relevant genes were examined with qRT-PCR, four of which (Ucn3, Tacr3, H2-M9 and Arr3) were validated. Remarkably, some of them are characterized by sharing known functions related with hormonal HPA-axis responses to (and/or modulation of) stress, anxiety or fear, and putative involvement in related neurobehavioural functions. The results confirm the usefulness of NIH-HS rats as a good animal model for research on the neurogenetic basis of anxiety and fear, while suggesting the involvement of some neuropeptide/neuroendocrine pathways on the development of differential anxiety profiles.
Collapse
Affiliation(s)
- Sira Díaz-Morán
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, School of Medicine, Universidad Autónoma de Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Díaz-Morán S, Martínez-Membrives E, López-Aumatell R, Cañete T, Blázquez G, Palencia M, Mont-Cardona C, Estanislau C, Tobeña A, Fernández-Teruel A. What can we learn on rodent fearfulness/anxiety from the genetically heterogeneous NIH-HS rat stock? ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojpsych.2013.32022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Díaz-Morán S, Palència M, Mont-Cardona C, Cañete T, Blázquez G, Martínez-Membrives E, López-Aumatell R, Tobeña A, Fernández-Teruel A. Coping style and stress hormone responses in genetically heterogeneous rats: comparison with the Roman rat strains. Behav Brain Res 2011; 228:203-10. [PMID: 22178313 DOI: 10.1016/j.bbr.2011.12.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 11/27/2011] [Accepted: 12/02/2011] [Indexed: 01/22/2023]
Abstract
The purpose of the present study was to evaluate for the first time the stress-induced hypothalamus-pituitary-adrenal (HPA), adrenocorticotropic hormone (ACTH), corticosterone and prolactin responses of the National Institutes of Health genetically heterogeneous rat stock (N/Nih-HS rats) in comparison with responses of the relatively high and low stress-prone Roman Low- (RLA-I) and High-Avoidance (RHA-I) rat strains. The same rats were also compared (experiment 1) with respect to their levels of unconditioned anxiety (elevated zero-maze test), novelty-induced exploratory behavior, conditioned fear and two-way active avoidance acquisition. In experiment 2, naive rats from these three strains/stocks were evaluated for "depressive-like" behavior in the forced swimming test. N/Nih-HS and RLA-I rats showed significantly higher post-stress ACTH, corticosterone and prolactin levels than RHA-I rats. N/Nih-HS rats also presented the highest context-conditioned freezing responses, extremely poor two-way avoidance acquisition and very low novelty-induced exploratory behavior. Experiment 2 showed that, compared to RHA-I rats, N/Nih-HS and RLA-I rats displayed significantly less struggling (escape-directed) and increased immobility responses in the forced swimming test. Factor analysis of data from experiment 1 showed associations among behavioral and hormonal responses, with a first factor comprising high loadings of elevated zero-maze variables and lower loadings of conditioned fear, two-way avoidance acquisition and hormonal measures, while a second factor mainly grouped conditioned fear and two-way avoidance acquisition with novelty-induced exploration and post-stress prolactin. Thus, regarding their anxiety/fearfulness, passive coping style, "depressive-like" and stress-induced hormonal responses the N/Nih-HS rats resemble the phenotype profiles of the relatively high-anxious and stress-prone RLA-I rat strain.
Collapse
Affiliation(s)
- Sira Díaz-Morán
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Dwinell MR, Lazar J, Geurts AM. The emerging role for rat models in gene discovery. Mamm Genome 2011; 22:466-75. [PMID: 21732192 DOI: 10.1007/s00335-011-9346-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 06/04/2011] [Indexed: 12/17/2022]
Abstract
Rat models have been used for many decades to study physiological and pathophysiological mechanisms. Prior to the release of the rat genome and new technologies for targeting gene manipulation, the rat had been the underdog in the genomics era, despite the abundance of physiological data compared to the mouse. The overarching goal of biomedical research is to improve health and advance medical science. Translating human disease gene discovery and validation in the rat, through the use of emerging technologies and integrated tools and databases, is providing power to understand the genetics, environmental influences, and biology of disease. In this review we briefly outline the rat models, bioinformatics tools, and technologies that are changing the landscape of translational research. The strategies used to translate disease traits to genes to function, and, ultimately, to improve human health is discussed. Finally, our perspective on how rat models will continue to positively impact biomedical research is provided.
Collapse
Affiliation(s)
- Melinda R Dwinell
- Department of Physiology, Medical College of Wisconsin, Milwaukee, 53226, USA.
| | | | | |
Collapse
|