1
|
Manzano-Moreno FJ, de Luna-Bertos E, Toledano-Osorio M, Urbano-Arroyo P, Ruiz C, Toledano M, Osorio R. Biomimetic Collagen Membranes as Drug Carriers of Geranylgeraniol to Counteract the Effect of Zoledronate. Biomimetics (Basel) 2023; 9:4. [PMID: 38248578 PMCID: PMC10813297 DOI: 10.3390/biomimetics9010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
To counteract the effect of zoledronate and decrease the risk of osteonecrosis of the jaw (BRONJ) development in patients undergoing guided bone regeneration surgery, the use of geranylgeraniol (GGOH) has been proposed. Collagen membranes may act as biomimetical drug carriers. The objective of this study was to determine the capacity of collagen-based membranes doped with GGOH to revert the negative impact of zoledronate on the growth and differentiation of human osteoblasts. MG-63 cells were cultured on collagen membranes. Two groups were established: (1) undoped membranes and (2) membranes doped with geranylgeraniol. Osteoblasts were cultured with or without zoledronate (50 μM). Cell proliferation was evaluated at 48 h using the MTT colorimetric method. Differentiation was tested by staining mineralization nodules with alizarin red and by gene expression analysis of bone morphogenetic proteins 2 and 7, alkaline phosphatase (ALP), bone morphogenetic proteins 2 and 7 (BMP-2 and BMP-7), type I collagen (Col-I), osterix (OSX), osteocalcin (OSC), osteoprotegerin (OPG), receptor for RANK (RANKL), runt-related transcription factor 2 (Runx-2), TGF-β1 and TGF-β receptors (TGF-βR1, TGF-βR2, and TGF-βR3), and vascular endothelial growth factor (VEGF) with real-time PCR. One-way ANOVA or Kruskal-Wallis and post hoc Bonferroni tests were applied (p < 0.05). Scanning electron microscopy (SEM) observations were also performed. Treatment of osteoblasts with 50 μM zoledronate produced a significant decrease in cell proliferation, mineralization capacity, and gene expression of several differentiation markers if compared to the control (p < 0.001). When osteoblasts were treated with zoledronate and cultured on GGOH-doped membranes, these variables were, in general, similar to the control group (p > 0.05). GGOH applied on collagen membranes is able to reverse the negative impact of zoledronate on the proliferation, differentiation, and gene expression of different osteoblasts' markers.
Collapse
Affiliation(s)
- Francisco Javier Manzano-Moreno
- Biomedical Group (BIO277), Department of Stomatology, School of Dentistry, University of Granada, 18071 Granada, Spain;
- Instituto Investigación Biosanitaria, ibs. Granada, 18012 Granada, Spain; (C.R.); (M.T.); (R.O.)
| | - Elvira de Luna-Bertos
- Instituto Investigación Biosanitaria, ibs. Granada, 18012 Granada, Spain; (C.R.); (M.T.); (R.O.)
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, 18016 Granada, Spain
| | - Manuel Toledano-Osorio
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain; (M.T.-O.); (P.U.-A.)
| | - Paula Urbano-Arroyo
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain; (M.T.-O.); (P.U.-A.)
| | - Concepción Ruiz
- Instituto Investigación Biosanitaria, ibs. Granada, 18012 Granada, Spain; (C.R.); (M.T.); (R.O.)
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, 18016 Granada, Spain
- Institute of Neuroscience, University of Granada, Centro de Investigación Biomédica (CIBM), Parque de Tecnológico de la Salud (PTS), 18071 Granada, Spain
| | - Manuel Toledano
- Instituto Investigación Biosanitaria, ibs. Granada, 18012 Granada, Spain; (C.R.); (M.T.); (R.O.)
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain; (M.T.-O.); (P.U.-A.)
| | - Raquel Osorio
- Instituto Investigación Biosanitaria, ibs. Granada, 18012 Granada, Spain; (C.R.); (M.T.); (R.O.)
- Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain; (M.T.-O.); (P.U.-A.)
| |
Collapse
|
2
|
Seist R, Tong M, Landegger LD, Vasilijic S, Hyakusoku H, Katsumi S, McKenna CE, Edge ASB, Stankovic KM. Regeneration of Cochlear Synapses by Systemic Administration of a Bisphosphonate. Front Mol Neurosci 2020; 13:87. [PMID: 32765216 PMCID: PMC7381223 DOI: 10.3389/fnmol.2020.00087] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Sensorineural hearing loss (SNHL) caused by noise exposure and attendant loss of glutamatergic synapses between cochlear spiral ganglion neurons (SGNs) and hair cells is the most common sensory deficit worldwide. We show here that systemic administration of a bisphosphonate to mice 24 h after synaptopathic noise exposure regenerated synapses between inner hair cells and SGNs and restored cochlear function. We further demonstrate that this effect is mediated by inhibition of the mevalonate pathway. These results are highly significant because they suggest that bisphosphonates could reverse cochlear synaptopathy for the treatment of SNHL.
Collapse
Affiliation(s)
- Richard Seist
- Eaton-Peabody Laboratories, Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
- Department of Otorhinolaryngology-Head and Neck Surgery, Paracelsus Medical University, Salzburg, Austria
| | - Mingjie Tong
- Eaton-Peabody Laboratories, Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Lukas D. Landegger
- Eaton-Peabody Laboratories, Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
- Department of Otorhinolaryngology-Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Sasa Vasilijic
- Eaton-Peabody Laboratories, Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Hiroshi Hyakusoku
- Eaton-Peabody Laboratories, Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
- Department of Otorhinolaryngology, Yokosuka Kyosai Hospital, Kanagawa, Japan
| | - Sachiyo Katsumi
- Eaton-Peabody Laboratories, Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Charles E. McKenna
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States
| | - Albert S. B. Edge
- Eaton-Peabody Laboratories, Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
- Speech and Hearing Bioscience and Technology Program, Harvard Medical School, Boston, MA, United States
- Harvard Stem Cell Institute, Cambridge, MA, United States
| | - Konstantina M. Stankovic
- Eaton-Peabody Laboratories, Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
- Speech and Hearing Bioscience and Technology Program, Harvard Medical School, Boston, MA, United States
- Harvard Stem Cell Institute, Cambridge, MA, United States
- Program in Therapeutic Science, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
Vieira JS, Cunha EJ, de Souza JF, Sant'Ana RD, Zielak JC, Costa-Casagrande TA, Giovanini AF. Alendronate induces postnatal maxillary bone growth by stimulating intramembranous ossification and preventing premature cartilage mineralization in the midpalatal suture of newborn rats. Int J Oral Maxillofac Surg 2019; 48:1494-1503. [PMID: 31054875 DOI: 10.1016/j.ijom.2019.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 03/25/2019] [Accepted: 04/01/2019] [Indexed: 12/21/2022]
Abstract
Cleft palate is a common malformation of craniofacial development, and postnatal deficiencies in palate formation may occur. The aim of this study was to determine whether alendronate treatment could induce maxillary mineralization and thus reduce the need for surgical procedures. The effects of alendronate on maxillary bone development, the midpalatal suture, and the levels of transforming growth factor beta-1 (TGF-β1), bone morphogenetic protein 2 (BMP-2), collagen I and II, and V-ATPase were evaluated in newborn rats. Thirty newborn rats were placed in a control group and 30 in a group that received intraperitoneal alendronate (2.5 mg/kg/day). The animals were euthanized on day 7 or 12, and the heads were subjected to histological and immunohistochemical analyses. Specimens from rats that received alendronate presented larger bone matrix deposition in areas of intramembranous ossification of the maxillary bone when compared to controls. Furthermore, higher levels of TGF-β1, BMP-2, and collagen I were observed, whereas osteoclasts showed no V-ATPase. The alendronate group also showed higher levels of TGF-β1 and collagen II in the midpalatal suture, whereas BMP-2 levels were lower than in controls. These results coincided with an expansion of the chondroid. In conclusion, alendronate increased the intramembranous ossification in the maxillary bone in association with increased expression of TGF-β1, BMP-2, and collagen I and decreased V-ATPase. The drug induced an expansion of chondrocytes and a decrease in mineral bone deposition despite the high levels of TGF-β1 in this area. Alendronate may therefore be useful in the treatment of diseases affecting bone growth.
Collapse
Affiliation(s)
- J S Vieira
- Graduate Programme in Clinical Dentistry, Positivo University, Curitiba, Paraná, Brazil
| | - E J Cunha
- Graduate Programme in Clinical Dentistry, Positivo University, Curitiba, Paraná, Brazil
| | - J F de Souza
- Department of Stomatology, School of Dentistry, Federal University of Paraná, UFPR, Paraná, Brazil
| | - R D Sant'Ana
- Graduate Programme in Clinical Dentistry, Positivo University, Curitiba, Paraná, Brazil
| | - J C Zielak
- Graduate Programme in Clinical Dentistry, Positivo University, Curitiba, Paraná, Brazil
| | - T A Costa-Casagrande
- Graduate Programme in Clinical Dentistry, Positivo University, Curitiba, Paraná, Brazil
| | - A F Giovanini
- Graduate Programme in Clinical Dentistry, Positivo University, Curitiba, Paraná, Brazil.
| |
Collapse
|
4
|
Kelly RR, McDonald LT, Jensen NR, Sidles SJ, LaRue AC. Impacts of Psychological Stress on Osteoporosis: Clinical Implications and Treatment Interactions. Front Psychiatry 2019; 10:200. [PMID: 31024360 PMCID: PMC6465575 DOI: 10.3389/fpsyt.2019.00200] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/20/2019] [Indexed: 02/06/2023] Open
Abstract
The significant biochemical and physiological effects of psychological stress are beginning to be recognized as exacerbating common diseases, including osteoporosis. This review discusses the current evidence for psychological stress-associated mental health disorders as risk factors for osteoporosis, the mechanisms that may link these conditions, and potential implications for treatment. Traditional, alternative, and adjunctive therapies are discussed. This review is not intended to provide therapeutic recommendations, but, rather, the goal of this review is to delineate potential interactions of psychological stress and osteoporosis and to highlight potential multi-system implications of pharmacological interventions. Review of the current literature identifies several potentially overlapping mechanistic pathways that may be of interest (e.g., glucocorticoid signaling, insulin-like growth factor signaling, serotonin signaling) for further basic and clinical research. Current literature also supports the potential for cross-effects of therapeutics for osteoporosis and mental health disorders. While studies examining a direct link between osteoporosis and chronic psychological stress are limited, the studies reviewed herein suggest that a multi-factorial, personalized approach should be considered for improved patient outcomes in populations experiencing psychological stress, particularly those at high-risk for development of osteoporosis.
Collapse
Affiliation(s)
- Ryan R Kelly
- Research Services, Ralph H. Johnson VA Medical Center, Charleston, SC, United States.,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Lindsay T McDonald
- Research Services, Ralph H. Johnson VA Medical Center, Charleston, SC, United States.,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Nathaniel R Jensen
- Research Services, Ralph H. Johnson VA Medical Center, Charleston, SC, United States.,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Sara J Sidles
- Research Services, Ralph H. Johnson VA Medical Center, Charleston, SC, United States.,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Amanda C LaRue
- Research Services, Ralph H. Johnson VA Medical Center, Charleston, SC, United States.,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
5
|
Would Be Prophylactic Administrations of Low Concentration of Alendronate an Alternative for Improving the Craniofacial Bone Repair? A Preliminary Study Focused in the Period of Cellular Differentiation and Tissue Organization. J Craniofac Surg 2018; 28:1869-1873. [PMID: 28692499 DOI: 10.1097/scs.0000000000003617] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Alendronate (ALN) is a nitrogen-bisphosphonate that may induce an anabolic effect on craniofacial bone repair when administrated in low doses. Based on this premise, this study analyzed the influence of prophylactic low doses of ALN on bone healing in defects created in rabbit mandible. METHODS A 5 × 2-mm diameter deep defect was created in the calvaria of 28 rabbits. Fourteen of these rabbits received previously 50 μg/kg of 1% sodium ALN for 4 weeks, while the other rabbits received only 0.9% physiological saline solution (control). Animals were euthanized at 15 and 60 days postsurgery (n = 7), and the data were analyzed using histomorphometry and immunohistochemistry using the anti-CD34, bone morphogenetic protein -2 (BMP-2), and transforming growth factor (TGF)-β1 antibodies. RESULTS On the 15th day postsurgery, the specimens that received previous treatment with ALN demonstrated large vascular lumen and intense positivity to CD34 either concentrated in endothelium or cells spread among the reparative tissue. These results coincided with intense positivity for BMP-2+ cells and TGF-β1 that was concentrated in both cells and perivascular area. In contrast, the control group revealed scarce cells that exhibited CD34, BMP-2+, and the TGF-β1 was restricted for perivascular area on well-formed granulation tissue. These patterns of immunohistochemical result, especially found on the 15th day of analysis, seem to be responsible for the development of larger quantities of bone matrix in the specimens that receive ALN on the 60th day postsurgery. CONCLUSION These preliminary results showed that the prophylactic administration of low doses of ALN might be an alternative to craniofacial bone craniofacial bone repair because it increases the immunopositivity for TGF-β1 and consequently improves the CD34+ and BMP-2+ cells on reparative sites.
Collapse
|
6
|
Tamai R, Kiyoura Y. Alendronate augments lipid A-induced IL-1β release and Smad3/NLRP3/ASC-dependent cell death. Life Sci 2018; 198:8-17. [DOI: 10.1016/j.lfs.2018.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/01/2018] [Accepted: 02/09/2018] [Indexed: 12/13/2022]
|
7
|
Manzano-Moreno FJ, Ramos-Torrecillas J, Melguizo-Rodríguez L, Illescas-Montes R, Ruiz C, García-Martínez O. Bisphosphonate Modulation of the Gene Expression of Different Markers Involved in Osteoblast Physiology: Possible Implications in Bisphosphonate-Related Osteonecrosis of the Jaw. Int J Med Sci 2018; 15:359-367. [PMID: 29511371 PMCID: PMC5835706 DOI: 10.7150/ijms.22627] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/05/2018] [Indexed: 12/28/2022] Open
Abstract
The aim of the present study was to elucidate the role of osteoblasts in bisphosphonates-related osteonecrosis of the jaw (BRONJ). The specific objective was to evaluate the effect on osteoblasts of two nitrogen-containing BPs (zoledronate and alendronate) and one non-nitrogen-containing BP (clodronate) by analyzing modulations in their expression of genes essential for osteoblast physiology. Real-time polymerase chain reaction (RT-PCR) was used to study the effects of zoledronate, alendronate, and clodronate at doses of 10-5, 10-7, or 10-9 M on the expression of Runx-2, OSX, ALP, OSC, OPG, RANKL, Col-I, BMP-2, BMP-7, TGF-β1, VEGF, TGF-βR1, TGF-βR2, and TGF-βR3 by primary human osteoblasts (HOBs) and MG-63 osteosarcoma cells. Expression of these markers was found to be dose-dependent, with no substantive differences between these cell lines. In general, results demonstrated a significant increase in TFG-β1, TGF-βR1, TGF-βR2, TGF-βR3, and VEGF expressions and a significant reduction in RUNX-2, Col-1, OSX, OSC, BMP-2, BMP-7, ALP, and RANKL expressions, while OPG expression varied according to the dose and cell line. The results of this in vitro study of HOBS and MG-63 cell lines indicate that low BP doses can significantly affect the expression of genes essential for osteoblast growth and differentiation and of genes involved in regulating osteoblast-osteoclast interaction, possibly by increasing TGF-β1 production. These findings suggest that osteoblasts may play an important role in BRONJ development, without ruling out other factors.
Collapse
Affiliation(s)
- Francisco Javier Manzano-Moreno
- Biomedical Group (BIO277), Department of Stomatology, School of Dentistry, University of Granada, Spain
- Instituto Investigación Biosanitaria, ibs.Granada (Spain)
| | - Javier Ramos-Torrecillas
- Instituto Investigación Biosanitaria, ibs.Granada (Spain)
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences. University of Granada, Spain
| | - Lucia Melguizo-Rodríguez
- Instituto Investigación Biosanitaria, ibs.Granada (Spain)
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences. University of Granada, Spain
| | - Rebeca Illescas-Montes
- Instituto Investigación Biosanitaria, ibs.Granada (Spain)
- Biomedical Group (BIO277), Department of Nursing, Faculty of Nursing, Melilla. University of Granada, Spain
| | - Concepción Ruiz
- Instituto Investigación Biosanitaria, ibs.Granada (Spain)
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences. University of Granada, Spain
- Institute of Neuroscience, Parque Tecnológico Ciencias de la Salud, Armilla (Granada), University of Granada, Spain
| | - Olga García-Martínez
- Instituto Investigación Biosanitaria, ibs.Granada (Spain)
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences. University of Granada, Spain
| |
Collapse
|
8
|
Giovanini AF, de Sousa Passoni GN, Göhringer I, Deliberador TM, Zielak JC, Storrer CLM, Costa-Casagrande TA, Scariot R. Prolonged use of alendronate alters the biology of cranial repair in estrogen-deficient rats' associated simultaneous immunohistochemical expression of TGF-β1+, α-ER+, and BMPR1B. Clin Oral Investig 2017; 22:1959-1971. [PMID: 29197953 DOI: 10.1007/s00784-017-2292-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 11/21/2017] [Indexed: 01/06/2023]
Abstract
OBJECTIVES TGF-β1 is a cytokine that may induce both osteoneogenesis through Runx-2 or fibrosis via the transcription of α-smooth muscle actin (α-SMA). Because it has been previously known that alendronate increases the level of TGF-β1 and that under the usual condition of bone metabolism the estrogen may prevent the fibrotic effect of TGF-β1, the aim of this study was to evaluate if alendronate alters the cellular differentiation process post calvarial surgery in estrogen-deficient specimens. MATERIALS AND METHODS A transosseous defect that was 5 mm in diameter was created on the calvarium of each of 32 female rats with previous ovarian-salpingo-oophorectomy. All defects were treated with autografts, and 16 rats received the administration of 1 mg/kg of alendronate three times a week until euthanasia on the 15th and 60th day post surgery. Histomorphometric and immunohistochemical analyses of the expression of TGF-β1, estrogen receptor alpha nuclear (α-ER), α-SMA, BMPR1B, and Runx-2 were performed, and ELISA was used to measure the level of estrogen. RESULTS All animals demonstrated low levels of estrogen post ovarian-salpingo-oophorectomy. The histological results demonstrated larger bone matrix deposition in specimens treated with alendronate on the 15th day post surgery. The result was associated with a higher co-expression of TGF-β1, BMPR1B, and Runx-2 when compared with the control group. In addition, on the 60th day post surgery, the increase of bone matrix deposition from 15th to 60th day was discrete in specimens treated with alendronate compared with the control group. This result coincided with the intense simultaneous expression of TGF-β1, α-ER, and α-SMA, whereas the expression of BMPR1B and Runx-2 decreased. CONCLUSION The prolonged administration of alendronate altered the cranial repair in ovarian-salpingo-oophorectomized specimens due to the simultaneous occurrence of low estrogen and the presence of TGF-β1+/α-ER+ inducing the presence of α-SMA+, whereas BMPR1B and Runx-2 were suppressed. CLINICAL RELEVANCE The prolonged administration of alendronate alters osteoneogenesis and induces an unusual microenvironment in the bone that seems to imitate the physiological tissue damage that culminates in the loss of the functional layer of endometrium.
Collapse
Affiliation(s)
- Allan Fernando Giovanini
- Master Program in Clinical Dentistry, Positivo University, R Pedro Viriato Parigot de Souza, 5300, Campo Comprido, Curitiba, Paraná, 81280-330, Brazil.
| | - Giuliene Nunes de Sousa Passoni
- Master Program in Clinical Dentistry, Positivo University, R Pedro Viriato Parigot de Souza, 5300, Campo Comprido, Curitiba, Paraná, 81280-330, Brazil
| | - Isabella Göhringer
- Master Program in Clinical Dentistry, Positivo University, R Pedro Viriato Parigot de Souza, 5300, Campo Comprido, Curitiba, Paraná, 81280-330, Brazil
| | - Tatiana Miranda Deliberador
- Master Program in Clinical Dentistry, Positivo University, R Pedro Viriato Parigot de Souza, 5300, Campo Comprido, Curitiba, Paraná, 81280-330, Brazil
| | - João Cesar Zielak
- Master Program in Clinical Dentistry, Positivo University, R Pedro Viriato Parigot de Souza, 5300, Campo Comprido, Curitiba, Paraná, 81280-330, Brazil
| | - Carmem Lucia Muller Storrer
- Master Program in Clinical Dentistry, Positivo University, R Pedro Viriato Parigot de Souza, 5300, Campo Comprido, Curitiba, Paraná, 81280-330, Brazil
| | - Thais Andrade Costa-Casagrande
- Master Program in Biotechnology, Positivo University , 5300, R Pedro Viriato Parigot de Souza, Campo Comprido, Curitiba, 81280-330, Paraná, Brazil
| | - Rafaela Scariot
- Master Program in Clinical Dentistry, Positivo University, R Pedro Viriato Parigot de Souza, 5300, Campo Comprido, Curitiba, Paraná, 81280-330, Brazil
| |
Collapse
|
9
|
Wang T, Jiao J, Zhang H, Zhou W, Li Z, Han S, Wang J, Yang X, Huang Q, Wu Z, Yan W, Xiao J. TGF-β induced PAR-1 expression promotes tumor progression and osteoclast differentiation in giant cell tumor of bone. Int J Cancer 2017; 141:1630-1642. [PMID: 28670703 DOI: 10.1002/ijc.30862] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 06/11/2017] [Accepted: 06/22/2017] [Indexed: 11/07/2022]
Abstract
Although protease activated receptor-1 (PAR-1) has been confirmed as an oncogene in many cancers, the role of PAR-1 in giant cell tumor (GCT) of bone has been rarely reported. The mechanism of PAR-1 in tumor-induced osteoclastogenesis still remains unclear. In the present study, we detected that PAR-1 was significantly upregulated in GCT of bone compared to normal tissues, while TGF-β was also overexpressed in GCT tissues and could promote the expression of PAR-1 in a dose and time dependent manner. Using the luciferase reporter assay, we found that two downstreams of TGF-β, Smad3 and Smad4, could activate the promoter of PAR-1, which might explain the mechanism of TGF-β induced PAR-1 expression. Meanwhile, PAR-1 was also overexpressed in microvesicles from stromal cells of GCT (GCTSCs), and might be transported from GCTSCs to monocytes through microvesicles. In addition, knockout of PAR-1 by TALENs in GCTSCs inhibited tumor growth, angiogenesis and osteoclastogenesis in GCT in vitro. Using the chick CAM models, we further showed that inhibition of PAR-1 suppressed tumor growth and giant cell formation in vivo. Using microarray assay, we detected a number of genes involved in osteoclastogenesis as the possible downstreams of PAR-1, which may partly explain the mechanism of PAR-1 in GCT. In brief, for the first time, these results reveal an upstream regulatory role of TGF-β in PAR-1 expression, and PAR-1 expression promotes tumor growth, angiogenesis and osteoclast differentiation in GCT of bone. Hence, PAR-1 represents a novel potential therapeutic target for GCT of bone.
Collapse
Affiliation(s)
- Ting Wang
- Department of Bone Tumor Surgery, Changzheng Hospital, Second MilitaryMedical University, Shanghai, China
| | - Jian Jiao
- Department of Bone Tumor Surgery, Changzheng Hospital, Second MilitaryMedical University, Shanghai, China
| | - Hao Zhang
- Department of Bone Tumor Surgery, Changzheng Hospital, Second MilitaryMedical University, Shanghai, China
| | - Wang Zhou
- Department of Bone Tumor Surgery, Changzheng Hospital, Second MilitaryMedical University, Shanghai, China
| | - Zhenxi Li
- Department of Bone Tumor Surgery, Changzheng Hospital, Second MilitaryMedical University, Shanghai, China
| | - Shuai Han
- Department of Bone Tumor Surgery, Changzheng Hospital, Second MilitaryMedical University, Shanghai, China
| | - Jing Wang
- Department of Bone Tumor Surgery, Changzheng Hospital, Second MilitaryMedical University, Shanghai, China
| | - Xinghai Yang
- Department of Bone Tumor Surgery, Changzheng Hospital, Second MilitaryMedical University, Shanghai, China
| | - Quan Huang
- Department of Bone Tumor Surgery, Changzheng Hospital, Second MilitaryMedical University, Shanghai, China
| | - Zhipeng Wu
- Department of Bone Tumor Surgery, Changzheng Hospital, Second MilitaryMedical University, Shanghai, China
| | - Wangjun Yan
- Department of Bone Tumor Surgery, Changzheng Hospital, Second MilitaryMedical University, Shanghai, China
- Department of Bone and Soft Tissue Tumor, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Jianru Xiao
- Department of Bone Tumor Surgery, Changzheng Hospital, Second MilitaryMedical University, Shanghai, China
| |
Collapse
|
10
|
Sun X, Liu J, Zhuang C, Yang X, Han Y, Shao B, Song M, Li Y, Zhu Y. Aluminum trichloride induces bone impairment through TGF-β1/Smad signaling pathway. Toxicology 2016; 371:49-57. [DOI: 10.1016/j.tox.2016.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/05/2016] [Indexed: 12/31/2022]
|
11
|
Cheng Q, Tang W, Sheu TJ, Du Y, Gan J, Li H, Hong W, Zhu X, Xue S, Zhang X. Circulating TGF-β1 levels are negatively correlated with sclerostin levels in early postmenopausal women. Clin Chim Acta 2016; 455:87-92. [PMID: 26826396 DOI: 10.1016/j.cca.2016.01.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/10/2015] [Accepted: 01/25/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND TGF-β1 regulates bone metabolism and mediates bone turnover during postmenopause. Sclerostin negatively regulates Wnt signaling pathway and also has an important role in postmenopausal bone loss. Little is known about the relationship between serum TGF-β1 and sclerostin during menopause. METHODS We compared serum levels of TGF-β1 and sclerostin in pre- and postmenopausal women and assessed the potential correlations of these levels with each other and with serum levels of bone turnover markers and bone mineral density. RESULTS A total of 176 women (58 premenopausal, 62 early postmenopausal, and 56 late postmenopausal) were included in this study. Serum TGF-β1 level was significantly higher in early postmenopausal women compared with premenopausal (32.0±7.19 vs. 26.55±6.67 ng/ml, p=0.01) and late postmenopausal (32.0±7.19 vs. 28.65±7.70 pg/ml, p=0.031) women, and no significant differences in serum sclerostin levels were observed among the 3 groups. There was a significant negative correlation between TGF-β1 and sclerostin in early postmenopausal women, but not in other groups of women. Based on multiple regression analysis, only TGF-β1 (β=-0.362; p=0.007) was an independent predictor of sclerostin during early postmenopause. CONCLUSIONS Our findings suggest that serum TGF-β1 level increases during postmenopause and declines in old age. Sclerostin production is inhibited by TGF-β1 during early postmenopause.
Collapse
Affiliation(s)
- Qun Cheng
- Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Department of Osteoporosis and Bone Disease, Huadong Hospital affiliated to Fudan University, China; Research Center on Aging and Medicine, Fudan University, China.
| | - Wenjing Tang
- Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Department of Osteoporosis and Bone Disease, Huadong Hospital affiliated to Fudan University, China; Research Center on Aging and Medicine, Fudan University, China
| | | | - Yanping Du
- Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Department of Osteoporosis and Bone Disease, Huadong Hospital affiliated to Fudan University, China; Research Center on Aging and Medicine, Fudan University, China
| | - Jiemin Gan
- Research Center on Aging and Medicine, Fudan University, China; Central Laboratory, Huadong Hospital affiliated to Fudan University, China
| | - Huilin Li
- Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Department of Osteoporosis and Bone Disease, Huadong Hospital affiliated to Fudan University, China; Research Center on Aging and Medicine, Fudan University, China
| | - Wei Hong
- Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Department of Osteoporosis and Bone Disease, Huadong Hospital affiliated to Fudan University, China; Research Center on Aging and Medicine, Fudan University, China
| | - Xiaoying Zhu
- Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Department of Osteoporosis and Bone Disease, Huadong Hospital affiliated to Fudan University, China; Research Center on Aging and Medicine, Fudan University, China
| | - Sihong Xue
- Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Department of Osteoporosis and Bone Disease, Huadong Hospital affiliated to Fudan University, China; Research Center on Aging and Medicine, Fudan University, China
| | - Xuemei Zhang
- Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Department of Osteoporosis and Bone Disease, Huadong Hospital affiliated to Fudan University, China; Research Center on Aging and Medicine, Fudan University, China
| |
Collapse
|
12
|
High doses of bisphosphonates reduce osteoblast-like cell proliferation by arresting the cell cycle and inducing apoptosis. J Craniomaxillofac Surg 2015; 43:396-401. [DOI: 10.1016/j.jcms.2014.12.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 01/01/2023] Open
|
13
|
Boanini E, Torricelli P, Gazzano M, Della Bella E, Fini M, Bigi A. Combined effect of strontium and zoledronate on hydroxyapatite structure and bone cell responses. Biomaterials 2014; 35:5619-26. [PMID: 24731709 DOI: 10.1016/j.biomaterials.2014.03.053] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/21/2014] [Indexed: 12/24/2022]
Abstract
The influence of the simultaneous presence of the two inhibitors of bone degradation, strontium and zoledronate, on the direct synthesis of hydroxyapatite was explored in the range of Sr concentration up to 50 atom% at two different bisphosphonate concentrations (ZOL7 and ZOL14). The results of structural analysis indicated that HA can be obtained as a single crystalline phase up to a Sr concentration in solution of 20 and 10 atom% within the ZOL7 and ZOL14 series respectively. Both Sr substitution and ZOL incorporation affect the length of the coherently scattering crystalline domains and the dimensions of HA nanocrystals. At greater Sr content, XRD full profile fitting data indicate that zoledronate provokes the segregation of Sr in two crystalline apatitic phases, at different strontium content. Co-cultures of osteoblast-like MG63 cells and human osteoclast show that ZOL displays a greater inhibitory influence than Sr on osteoclast proliferation and activity. On the other hand, the results obtained on osteoblast surnatant and on gene expression indicate that Sr exerts a greater promotion on osteoblast proliferation and differentiation. The co-presence of Sr and ZOL has a combined effect on the differentiation markers, so that HA containing about 4 wt% ZOL and 4 Sr atom%, and even more HA containing about 4 wt% ZOL and 8 Sr atom%, result the best compromise for osteoblast promotion and osteoclast inhibition.
Collapse
Affiliation(s)
- Elisa Boanini
- Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy
| | - Paola Torricelli
- Laboratory of Preclinical and Surgical Studies, Codivilla-Putti Research Institute, Rizzoli Orthopaedic Institute, Bologna, Italy; Department Rizzoli RIT, Rizzoli Orthopedic Institute-IOR, Laboratory of Biocompatibility, Technological Innovations and Advanced Therapies, Bologna, Italy
| | - Massimo Gazzano
- ISOF-CNR, C/o Department of Chemistry "G. Ciamician", Bologna, Italy
| | - Elena Della Bella
- Laboratory of Preclinical and Surgical Studies, Codivilla-Putti Research Institute, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, Codivilla-Putti Research Institute, Rizzoli Orthopaedic Institute, Bologna, Italy; Department Rizzoli RIT, Rizzoli Orthopedic Institute-IOR, Laboratory of Biocompatibility, Technological Innovations and Advanced Therapies, Bologna, Italy
| | - Adriana Bigi
- Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy.
| |
Collapse
|