1
|
Guo R, Fang X, Mao H, Sun B, Zhou J, An Y, Wang B. A Novel Missense Variant of HOXD13 Caused Atypical Synpolydactyly by Impairing the Downstream Gene Expression and Literature Review for Genotype-Phenotype Correlations. Front Genet 2021; 12:731278. [PMID: 34777468 PMCID: PMC8579070 DOI: 10.3389/fgene.2021.731278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
Synpolydactyly (SPD) is a hereditary congenital limb malformation with distinct syndactyly designated as SPD1, SPD2, and SPD3. SPD1 is caused by mutations of HOXD13, which is a homeobox transcription factor crucial for limb development. More than 143 SPD patients have been reported to carry HOXD13 mutations, but there is a lack of genotype-phenotype correlation. We report a novel missense mutation of c. 925A > T (p.I309F) in an individual with atypical synpolydactyly inherited from her father with mild clinodactyly and three other different alanine insertion mutations in HOXD13 identified by whole exome sequencing (WES) in 12 Chinese SPD families. Unlike polyalanine extension, which tends to form α-helix and causes protein aggregation in the cytoplasm as shown by molecular simulation and immunofluorescence, the c. 925A > T mutation impairs downstream transcription of EPHA7. We compiled literature findings and analyzed genotype-phenotype features in 173 SPD individuals of 53 families, including 12 newly identified families. Among the HOXD13-related individuals, mutations were distributed in three regions: polyalanine, homeobox, and non-homeobox. Polyalanine extension was the most common variant (45%), followed by missense mutations (32%) mostly in the homeobox compared with the loss-of-function (LOF) variants more likely in non-homeobox. Furthermore, a more severe degree and classic SPD were associated with polyalanine mutations although missense variants were associated with brachydactyly and syndactyly in hands and feet and LOF variants with clinodactyly in hands. Our study broadens the HOXD13 mutation spectrum and reveals the profile of three different variants and their severity of SPD, the genotype-phenotype correlation related to the HOXD13 mutation site provides clinical insight, including for genetic counseling.
Collapse
Affiliation(s)
- Ruiji Guo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Fang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hailei Mao
- Department of Anesthesiology and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bin Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiateng Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu An
- Human Phenome Institute, MOE Key Laboratory of Contemporary Anthropology, and School of Life Sciences, Fudan University, Shanghai, China
| | - Bin Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Zu B, Wang Z, Xu Y, You G, Fu Q. Nonframeshifting indel variations in polyalanine repeat of
HOXD13
gene underlies hereditary limb malformation for two Chinese families. Dev Dyn 2021; 250:1220-1228. [DOI: 10.1002/dvdy.310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 12/18/2022] Open
Affiliation(s)
- Bailing Zu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Zhigang Wang
- Department of Pediatric Orthopedic Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yunlan Xu
- Department of Pediatric Orthopedic Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Guoling You
- Department of Laboratory Medicine Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Qihua Fu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center Shanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
3
|
A heterozygous duplication variant of the HOXD13 gene caused synpolydactyly type 1 with variable expressivity in a Chinese family. BMC MEDICAL GENETICS 2019; 20:203. [PMID: 31870337 PMCID: PMC6929446 DOI: 10.1186/s12881-019-0908-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 10/15/2019] [Indexed: 11/19/2022]
Abstract
Background Synpolydactyly type 1 (SPD1), also known as syndactyly type II, is an autosomal dominant limb deformity generally results in webbing of 3rd and 4th fingers, duplication of 4th or 5th toes. It is most commonly caused by mutation in HOXD13 gene. In this study, a five-generation Chinese family affected with SPD1 disease were collected. We tried to identify the pathogenic variations associated with SPD1 involved in the family. Methods We used the whole genome sequencing (WGS) to identify the pathogenic variant in this family which was later confirmed by PCR-Sanger sequencing. The genetic variation were evaluated with the frequencies in the 1000 Genome Project and Exome Aggregation Consortium (ExAC) dataset. The significance of variants were assessed using different mutation predictor softwares like Mutation Taster, PROVEAN and SIFT. The classification of variants was assessed according to American College of Medical Genetics and Genomics (ACMG) guidelines. Results Our results showed the mutation of 24-base pair duplication (c.183_206dupAGCGGCGGCTGCGGCGGCGGCGGC) in exon one of HOXD13 in heterozygous form which was predicted to result in eight extra alanine (A) residues in N-terminal domain of HOXD13 protein. The mutation was detected in all affected members of the family. Conclusion Based on our mutation analysis of variant c.183_206dupAGCGGCGGCTGCGGCGGCGGCGGC in HOXD13 and its cosegregation in all affected family members, we found this variant as likely pathogenic to this SPD1 family. Our study highlights variable expressivity of HOXD13 mutation. Our results also widen the spectrum of HOXD13 mutation responsible for SPD1.
Collapse
|
4
|
WITHDRAWN: A 24-base pair duplication in exon one of HOXD13 gene linked to synpolydactyly type 1 in a Chinese family. Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
5
|
Dai T, Li B, He B, Yan L, Gu L, Liu X, Qi J, Li P, Zhou X. A novel mutation in the conserved sequence of vascular endothelial growth factor receptor 3 leads to primary lymphoedema. J Int Med Res 2018; 46:3162-3171. [PMID: 29896974 PMCID: PMC6134653 DOI: 10.1177/0300060518773264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Objective To investigate whether lymphoedema in a Chinese family showed the hereditary and clinical characteristics of Milroy disease, an autosomal dominant form of congenital lymphoedema, typically characterized by chronic lower limb tissue swelling due to abnormal lymphatic vasculature development, and to perform mutational analyses of vascular endothelial growth factor receptor (VEGFR)3. Methods Individuals from a three-generation family affected by congenital lymphoedema were clinically assessed for Milroy disease. Mutation analysis of VEGFR3 was performed using DNA from family members and healthy controls. Results Out of 20 family members, eight were diagnosed with hereditary lymphoedema. Mutation analyses revealed a novel mutation site for c.3163 G>A, resulting in a p.1055D>N mutation in the second tyrosine kinase domain of VEGFR3, which was present in affected individuals only (absent in all unaffected family members and 130 healthy controls). Computed functional analyses showed the mutation may lead to structural alterations with a probability of 0.99999 of being disease causing. Conclusion A novel mutation associated with Milroy disease was identified in a Chinese family, expanding our knowledge of VEGFR3 gene function and providing a potential molecular target for treating hereditary lymphoedema.
Collapse
Affiliation(s)
- Ting Dai
- 1 GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Bohan Li
- 2 Department of Microsurgery, Trauma and Hand Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bo He
- 2 Department of Microsurgery, Trauma and Hand Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liwei Yan
- 2 Department of Microsurgery, Trauma and Hand Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liqiang Gu
- 2 Department of Microsurgery, Trauma and Hand Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaolin Liu
- 2 Department of Microsurgery, Trauma and Hand Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jian Qi
- 2 Department of Microsurgery, Trauma and Hand Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ping Li
- 2 Department of Microsurgery, Trauma and Hand Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiang Zhou
- 2 Department of Microsurgery, Trauma and Hand Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Deng H, Tan T, He Q, Lin Q, Yang Z, Zhu A, Guan L, Xiao J, Song Z, Guo Y. Identification of a missense HOXD13 mutation in a Chinese family with syndactyly type I-c using exome sequencing. Mol Med Rep 2017; 16:473-477. [PMID: 28498426 DOI: 10.3892/mmr.2017.6576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/02/2017] [Indexed: 11/05/2022] Open
Abstract
Syndactyly is one of the most common hereditary limb malformations, and is characterized by the fusion of specific fingers and/or toes. Syndactyly type I‑c is associated with bilateral cutaneous or bony webbing of the third and fourth fingers and occasionally of the third to fifth fingers, with normal feet. The aim of the present study was to identify the genetic basis of syndactyly type I‑c in four generations of a Chinese Han family by exome sequencing. Exome sequencing was conducted in the proband of the family, followed by direct sequencing of other family members of the same ancestry, as well as 100 ethnically‑matched, unrelated normal controls. A missense mutation, c.917G>A (p.R306Q), was identified in the homeobox D13 gene (HOXD13). Sanger sequencing verified the presence of this mutation in all of the affected family members. By contrast, this mutation was absent in the unaffected family members and the 100 ethnically‑matched normal controls. The results suggest that the c.917G>A (p.R306Q) mutation in the HOXD13 gene, may be responsible for syndactyly type I‑c in this family. Exome sequencing may therefore be a powerful tool for identifying mutations associated with syndactyly, which is a disorder with high genetic and clinical heterogeneity. The results provide novel insights into the etiology and diagnosis of syndactyly, and may influence genetic counseling and the clinical management of the disease.
Collapse
Affiliation(s)
- Hao Deng
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Ting Tan
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Quanyong He
- Department of Burn and Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Qiongfen Lin
- BGI‑Shenzhen, Shenzhen, Guangdong 518083, P.R. China
| | - Zhijian Yang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Anding Zhu
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Liping Guan
- BGI‑Shenzhen, Shenzhen, Guangdong 518083, P.R. China
| | - Jingjing Xiao
- BGI‑Shenzhen, Shenzhen, Guangdong 518083, P.R. China
| | - Zhi Song
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yi Guo
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
7
|
Wang B, Li N, Geng J, Wang Z, Fu Q, Wang J, Xu Y. Exome sequencing identifies a novel nonsense mutation of HOXD13 in a Chinese family with synpolydactyly. Congenit Anom (Kyoto) 2017; 57:4-7. [PMID: 27254532 DOI: 10.1111/cga.12173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/24/2016] [Accepted: 05/30/2016] [Indexed: 12/30/2022]
Abstract
Synpolydactyly (SPD) is an autosomal dominant limb malformation with a distinctive combination of syndactyly and polydactyly. SPD is clinically heterogeneous and could be genetically classified into three types. The clinical phenotype of SPD is complicated by its variable expressivity. In the present study, whole exome sequencing (WES) was used to identify the affected gene(s) in a Chinese family with atypical SPD phenotype. Our results showed that a novel heterogenous nonsense mutation (c.556C > T, p.R186X) in HOXD13 was associated with this SPD case. Due to variable expressivity, the diagnosis of a clinical heterogenous disease such as SPD is usually difficult. Our results also suggested that WES is an efficient tool to assist with these diagnoses.
Collapse
Affiliation(s)
- Bo Wang
- Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Niu Li
- Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Juan Geng
- Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhigang Wang
- Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qihua Fu
- Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jian Wang
- Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yunlan Xu
- Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Wall LB, Bae DS, Oishi SN, Calfee RP, Goldfarb CA. Synpolydactyly of the hand: a radiographic classification. J Hand Surg Eur Vol 2016; 41:301-7. [PMID: 26269507 DOI: 10.1177/1753193415598281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/30/2015] [Indexed: 02/03/2023]
Abstract
UNLABELLED Synpolydactyly is an uncommon congenital anomaly characterized by polydactyly with syndactyly in the central hand. The purpose of this investigation was to develop and assess the reliability of a radiographic classification system for synpolydactyly. We identified 56 hands with central synpolydactyly and developed a radiographic classification system that categorizes by the location within the hand, the bony level of polydactyly, and the presence of a delta phalanx. Four paediatric hand surgeons independently reviewed each radiograph to establish reliability. There was exact agreement among raters in 40 cases (71%). The inter-rater reliability was 0.97 and intra-rater reliability was at least 0.87. Seven of 16 bilateral cases had symmetric deformity classification. The most common presentations were types 1A and 2A. We present a new, reliable radiographic classification system for synpolydactyly that will allow improved communication between clinicians and serve as a foundation for future investigations. LEVEL OF EVIDENCE 2.
Collapse
Affiliation(s)
- L B Wall
- Department of Orthopaedic Surgery, Shriner's Hospital for Children and St. Louis Children's Hospital at Washington University School of Medicine, St Louis, MO, USA
| | - D S Bae
- Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, MA, USA
| | - S N Oishi
- Texas Scottish Rite Hospital, Dallas, TX, USA
| | - R P Calfee
- Department of Orthopaedic Surgery, Shriner's Hospital for Children and St. Louis Children's Hospital at Washington University School of Medicine, St Louis, MO, USA
| | - C A Goldfarb
- Department of Orthopaedic Surgery, Shriner's Hospital for Children and St. Louis Children's Hospital at Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
9
|
Dai L, Liu D, Song M, Xu X, Xiong G, Yang K, Zhang K, Meng H, Guo H, Bai Y. Mutations in the homeodomain of HOXD13 cause syndactyly type 1-c in two Chinese families. PLoS One 2014; 9:e96192. [PMID: 24789103 PMCID: PMC4006867 DOI: 10.1371/journal.pone.0096192] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 04/04/2014] [Indexed: 11/18/2022] Open
Abstract
Background Syndactyly type 1 (SD1) is an autosomal dominant limb malformation characterized in its classical form by complete or partial webbing between the third and fourth fingers and/or the second and third toes. Its four subtypes (a, b, c, and d) are defined based on variable phenotypes, but the responsible gene is yet to be identified. SD1-a has been mapped to chromosome 3p21.31 and SD1-b to 2q34–q36. SD1-c and SD1-d are very rare and, to our knowledge, no gene loci have been identified. Methods and Results In two Chinese families with SD1-c, linkage and haplotype analyses mapped the disease locus to 2q31-2q32. Copy number variation (CNV) analysis, using array-based comparative genomic hybridization (array CGH), excluded the possibility of microdeletion or microduplication. Sequence analyses of related syndactyly genes in this region identified c.917G>A (p.R306Q) in the homeodomain of HOXD13 in family A. Analysis on family B identified the mutation c.916C>G (p.R306G) and therefore confirmed the genetic homogeneity. Luciferase assays indicated that these two mutations affected the transcriptional activation ability of HOXD13. The spectrum of HOXD13 mutations suggested a close genotype-phenotype correlation between the different types of HOXD13-Syndactyly. Overlaps of the various phenotypes were found both among and within families carrying the HOXD13 mutation. Conclusions Mutations (p.R306Q and p.R306G) in the homeodomain of HOXD13 cause SD1-c. There are affinities between SD1-c and synpolydactyly. Different limb malformations due to distinct classes of HOXD13 mutations should be considered as a continuum of phenotypes and further classification of syndactyly should be done based on phenotype and genotype.
Collapse
Affiliation(s)
- Limeng Dai
- Department of Medical Genetics, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Dan Liu
- Department of Medical Genetics, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Min Song
- Department of Medical Genetics, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Xueqing Xu
- Department of Medical Genetics, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Gang Xiong
- Department of Thoracic and Cardiac Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Kang Yang
- Department of Thoracic and Cardiac Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Kun Zhang
- Department of Medical Genetics, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Hui Meng
- Department of Medical Genetics, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Hong Guo
- Department of Medical Genetics, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
- * E-mail: (YB); (HG)
| | - Yun Bai
- Department of Thoracic and Cardiac Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
- * E-mail: (YB); (HG)
| |
Collapse
|