1
|
Inactivation of Osteoblast PKC Signaling Reduces Cortical Bone Mass and Density and Aggravates Renal Osteodystrophy in Mice with Chronic Kidney Disease on High Phosphate Diet. Int J Mol Sci 2022; 23:ijms23126404. [PMID: 35742850 PMCID: PMC9223847 DOI: 10.3390/ijms23126404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 02/05/2023] Open
Abstract
Chronic kidney disease (CKD) frequently leads to hyperphosphatemia and hyperparathyroidism, mineral bone disorder (CKD-MBD), ectopic calcifications and cardiovascular mortality. PTH activates the osteoanabolic Gαs/PKA and the Gαq/11/PKC pathways in osteoblasts, the specific impact of the latter in CKD-MBD is unknown. We generated osteoblast specific Gαq/11 knockout (KO) mice and established CKD-MBD by subtotal nephrectomy and dietary phosphate load. Bone morphology was assessed by micro-CT, osteoblast function by bone planar scintigraphy at week 10 and 22 and by histomorphometry. Osteoblasts isolated from Gαq/11 KO mice increased cAMP but not IP3 in response to PTH 1-34, demonstrating the specific KO of the PKC signaling pathway. Osteoblast specific Gαq/11 KO mice exhibited increased serum calcium and reduced bone cortical thickness and mineral density at 24 weeks. CKD Gαq/11 KO mice had similar bone morphology compared to WT, while CKD Gαq/11-KO on high phosphate diet developed decreased metaphyseal and diaphyseal cortical thickness and area, as well as a reduction in trabecular number. Gαq/11-KO increased bone scintigraphic tracer uptake at week 10 and mitigated tracer uptake in CKD mice at week 22. Histological bone parameters indicated similar trends. Gαq/11-KO in osteoblast modulates calcium homeostasis, bone formation rate, bone morphometry, and bone mineral density. In CKD and high dietary phosphate intake, osteoblast Gαq/11/PKC KO further aggravates mineral bone disease.
Collapse
|
2
|
Yang D, Liu R, Liu L, Liao H, Wang C, Cao Z. Involvement of CD147 in alveolar bone remodeling and soft tissue degradation in experimental periodontitis. J Periodontal Res 2017; 52:704-712. [PMID: 28198555 DOI: 10.1111/jre.12435] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2016] [Indexed: 10/20/2022]
Affiliation(s)
- D. Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS); Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME); School and Hospital of Stomatology; Wuhan University; Wuhan China
- Department of Periodontology; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - R. Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS); Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME); School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - L. Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS); Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME); School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - H. Liao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS); Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME); School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - C. Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS); Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME); School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Z. Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS); Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME); School and Hospital of Stomatology; Wuhan University; Wuhan China
- Department of Periodontology; School and Hospital of Stomatology; Wuhan University; Wuhan China
| |
Collapse
|
3
|
Dela Cruz A, Grynpas MD, Mitchell J. Overexpression of Gα11 in Osteoblast Lineage Cells Suppresses the Osteoanabolic Response to Intermittent PTH and Exercise. Calcif Tissue Int 2016; 99:423-34. [PMID: 27300035 DOI: 10.1007/s00223-016-0158-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 05/31/2016] [Indexed: 01/31/2023]
Abstract
Intermittent parathyroid hormone (iPTH) treatment and mechanical loading are osteoanabolic stimuli that are partially mediated through actions on G protein-coupled receptors (GPCRs). GPCR signaling can be altered by heterotrimeric G protein Gα subunits levels, which can therefore lead to altered responses to such stimuli. Previous studies have suggested that enhanced signaling through the Gαq/11 pathway inhibits the osteoanabolic actions of PTH. The influence of Gαq/11 signaling on mechanotransduction, however, has not been reported in vivo. Using transgenic mice that specifically overexpress Gα11 in osteoblast lineage cells (G11-Tg mice), we investigated the skeletal effects of elevated Gα11 levels on iPTH and mechanical loading by treadmill exercise. Both regimens increased trabecular and cortical bone in Wild-Type (WT) mice as a result of increased bone formation. In G11-Tg mice, there was no change in trabecular or cortical bone and no increase in bone formation in response to iPTH or exercise. While exercise reduced osteoclast parameters in WT mice, these changes were diminished in G11-Tg mice as expression of M-csf and Trap remained increased. Collectively, our results suggest that osteoblastic upregulation of Gα11 is inhibitory to osteoanabolic actions of both PTH and exercise, and that its suppression may be a promising target for treating bone loss.
Collapse
Affiliation(s)
- Ariana Dela Cruz
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Marc D Grynpas
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada
| | - Jane Mitchell
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Room 4342, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
4
|
Dela Cruz A, Grynpas MD, Mitchell J. Elevated Gα11 expression in osteoblast lineage cells promotes osteoclastogenesis and leads to enhanced trabecular bone accrual in response to pamidronate. Am J Physiol Endocrinol Metab 2016; 310:E811-20. [PMID: 27006198 DOI: 10.1152/ajpendo.00049.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/15/2016] [Indexed: 11/22/2022]
Abstract
Osteoblastic cells indirectly induce osteoclastogenesis in the bone microenvironment by expressing paracrine factors such as RANKL and M-CSF, leading to increased bone resorption. These cytokines can be regulated by a variety of intracellular pathways, which include G protein-coupled receptor signaling. To explore how enhanced signaling of the Gαq/11 pathway in osteoblast lineage cells may mediate osteoclast formation, we cocultured wild-type (WT) preosteoclasts with BMSCs derived from either WT or transgenic mice with osteoblast-specific overexpression of Gα11 (G11-Tg). G11-Tg cocultures had elevated osteoclast numbers with greater resorptive capacity and increased expression of Rankl, Rankl:Opg (osteoprotegerin), and M-csf compared with cocultures with WT BMSCs. As well, cocultures with G11-Tg BMSCs required a higher concentration of OPG to inhibit osteoclast formation and less angiotensin II to increase osteoclast size. These indicate that G11-Tg osteoblasts drive the increased osteoclast formation and osteopenia seen in G11-Tg mice. Pamidronate treatment of G11-Tg mice restored the trabecular bone loss phenotype, as bone mineral density, bone volume, trabecular number, separation, and expressions of osteoblastic and osteoclastic genes were comparable with WT parameters. These changes were characterized by enhanced accumulation of calcified cartilage in trabecular bone, demonstrating that resorption of the cartilaginous intermediate by osteoclasts is more affected by bisphosphonate treatment in G11-Tg mice. In conclusion, overexpression of Gα11 in osteoblastic cells promotes osteoclastogenesis by upregulation of Rankl and M-csf and bone loss by increased osteoclast resorption of the trabecular bone and cartilaginous matrix.
Collapse
Affiliation(s)
- Ariana Dela Cruz
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario Canada
| | - Marc D Grynpas
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; and Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Jane Mitchell
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario Canada;
| |
Collapse
|
5
|
Yoon SH, Sugamori KS, Grynpas MD, Mitchell J. Positive effects of bisphosphonates on bone and muscle in a mouse model of Duchenne muscular dystrophy. Neuromuscul Disord 2015; 26:73-84. [PMID: 26494410 DOI: 10.1016/j.nmd.2015.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 09/25/2015] [Accepted: 09/26/2015] [Indexed: 11/17/2022]
Abstract
Patients with Duchenne muscular dystrophy are at increased risk of decreased bone mineral density and bone fracture as a result of inactivity. To determine if antiresorptive bisphosphonates could improve bone quality and their effects on muscle we studied the Mdx mouse, treated with pamidronate during peak bone growth at 5 and 6 weeks of age, and examined the outcome at 13 weeks of age. Pamidronate increased cortical bone architecture and strength in femurs with increased resistance to fracture. While overall long bone growth was not affected by pamidronate, there was significant inhibition of remodeling in metaphyseal trabecular bone with evidence of residual calcified cartilage. Pamidronate treatment had positive effects on skeletal muscle in the Mdx mice with decreased serum and muscle creatine kinase and evidence of improved muscle histology and grip strength.
Collapse
Affiliation(s)
- Sung-Hee Yoon
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Canada and Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Kim S Sugamori
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Marc D Grynpas
- Canada and Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Jane Mitchell
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Liao N, Huang Y, Ye J, Chen W, Li ZF, Lin R, Li X, Zheng L, Liu X. Protective effects of Tougu Xiaotong capsule on tumor necrosis factor-α-injured UMR-106 cells. Exp Ther Med 2015; 10:1908-1914. [PMID: 26640571 DOI: 10.3892/etm.2015.2739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 08/05/2015] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor-α (TNF-α) plays an important role in the abnormal metabolism of osteoblasts (OBs), which leads to subchondral bone (SB) alterations in osteoarthritis. In the present study, Tougu Xiaotong capsule (TXC), a traditional Chinese medicine, was used to treat TNF-α-injured OB-like cells. The cellular viability, mortality and ultramicroscopic morphology were evaluated. Thereafter, the activity of alkaline phosphatase (ALP), secretion of osteocalcin (OCN) and mineralization of nodules were analyzed. The results showed that TXC treatment significantly promoted cell proliferation, reduced cellular mortality and improved cellular ultrastructure, particularly that of the endoplasmic reticulum and nucleus. These data indicate that TXC is able to promote cell growth, as well as prevent inflammation in OB-like cells. Furthermore, the activity of ALP, secretion of OCN and mineralization of nodules were accelerated, and the calcium content of the TNF-α-injured OB-like cells was promoted by TXC treatment. These results indicate that TXC protected the OB-like cells from TNF-α-induced injuries. This may be a potential mechanism through which TXC regulates SB remodeling in the clinical treatment of osteoarthritis.
Collapse
Affiliation(s)
- Naishun Liao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Yunmei Huang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China ; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China ; National Laboratory of Traditional Chinese Medicine Pharmacology (Cell Structure and Function), Fujian Academy of Integrative Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jinxia Ye
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China ; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Wenlie Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China ; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China ; National Laboratory of Traditional Chinese Medicine Pharmacology (Cell Structure and Function), Fujian Academy of Integrative Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Zuan Fang Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China ; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China ; National Laboratory of Traditional Chinese Medicine Pharmacology (Cell Structure and Function), Fujian Academy of Integrative Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Ruhui Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China ; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China ; National Laboratory of Traditional Chinese Medicine Pharmacology (Cell Structure and Function), Fujian Academy of Integrative Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xihai Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Liangpu Zheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China ; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xianxiang Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China ; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|