1
|
Zojaji M, Yang B, Collins CJ, Crenshaw TD, Ploeg HL. Accurate measurement of a bone surrogate flexural rigidity in three- and four-point bending. J Mech Behav Biomed Mater 2025; 167:106986. [PMID: 40179529 DOI: 10.1016/j.jmbbm.2025.106986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/07/2025] [Accepted: 03/27/2025] [Indexed: 04/05/2025]
Abstract
The mechanical assessment of long bones through bending is an established preclinical approach to evaluate the effectiveness of treatments for osteoporosis and fractures. Three- and four-point bending (3PB and 4PB) tests are the most common methods for mechanical characterization of long bones with Euler-Bernoulli (EB) theory to calculate of bone flexural rigidity (EI). Previous studies demonstrated that EB theory underestimates the EI of long bones due to its reliance on assumptions that are not entirely applicable to long bones. Therefore, the current study aimed to evaluate the factors that affect the percent error (PE) and bias stemming from the omission of contact and shear deflections in the EI estimation using mechanical testing and finite element analysis (FEA). The true EI of a porcine bone surrogate was used to quantify the percent error and bias of EI estimations from three deflection measurement methods and FEA, in 3PB and 4PB. The analysis confirmed that bending was the main component of total deflection, but only contributed to approximately 50 % and 65 % of the total deflection in 3PB and 4PB, respectively. The combined shear and indentation deflections accounted for the remainder of the total deflection. The FEA aligned with 3PB and 4PB tests with less than 10 % deviation. Underestimation of EI was largest with deflection measurements taken from the machine crosshead (PE 74 % in 3PB and 71 % in 4PB). However, these underestimations improved notably when indentation and shear deflections were considered (PE 42 % in 3PB and 39 % in 4PB). The deflection measurements from extensometer and digital image correlation (DIC) underestimated the EI by 66 % and 71 % in 3PB, and 57 % and 59 % in 4PB. When corrected for shear and indentation deflections, the 3PB PE reduced to 16 % and 14 %, respectively. In 4PB, PE reduced to, 10 % and 7 %, respectively, demonstrating the advantage of the 4PB test configuration over 3PB. The bias resulting from shear deflection was not consistent across deflection measurement methods; and therefore, cannot be generalized with a constant bias correction. The current study highlighted that a slight error in deflection measurement can lead to a significant inaccuracy in EI measurements. This sensitivity comes from the hyperbolic relationship between EI and deflection which not only depends on the ratio of support span to diameter of the specimen but also the test configuration and the ratio of the elastic to shear modulus of specimen. In other words, the PE from neglecting shear effects increases as the specimen EI increases. Accuracy with less than 10 % PE in EI estimations can be achieved by: 1. taking deflection measurements with extensometers, DIC, or FEA; 2. testing in 4PB instead of 3PB; and, 3. correcting for indentation and shear deflections.
Collapse
Affiliation(s)
- Mahsa Zojaji
- Queen's University, Mechanical and Materials Engineering, Kingston, ON, Canada.
| | - Baixuan Yang
- Queen's University, Mechanical and Materials Engineering, Kingston, ON, Canada
| | - Caitlyn J Collins
- Virginia Polytechnic Institute and State University, Department of Biomedical Engineering and Mechanics, VA, USA
| | - Thomas D Crenshaw
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Heidi-Lynn Ploeg
- Queen's University, Mechanical and Materials Engineering, Kingston, ON, Canada
| |
Collapse
|
2
|
Levy-Shraga Y, Goldmann S, Gruber N, Tripto-Shkolnik L, Modan-Moses D, Givon U, Ben-Zeev B. Bone health and bisphosphonate treatment in females with Rett syndrome in a national center. Pediatr Res 2025:10.1038/s41390-025-04001-4. [PMID: 40119038 DOI: 10.1038/s41390-025-04001-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/24/2025]
Abstract
BACKGROUND Impaired bone health is a common morbidity in Rett syndrome (RTT). We aimed to assess lumbar bone mineral density (BMD) and trabecular bone score (TBS) in females with RTT, and to evaluate the effectiveness of bisphosphonate treatment. METHODS This retrospective study included 40 females with RTT, aged 5-22 years, who underwent dual-energy X-ray absorptiometry (DXA) scans during 2019-2024 at a national center for RTT. Data collected included medical treatment, anthropometric measurements, and functional scores. RESULTS The median age at the first DXA scan was 10.8 years. The mean L1-4 BMD Z-score was -2.1 ± 1.4, and the mean TBS Z-score was -0.4 ± 1.3. The L1-4 BMD Z-score correlated with height (r = 0.407, p = 0.009), weight (r = 0.551, p < 0.001), BMI (r = 0.644, p < 0.001), and TBS Z-scores (r = 0.594, p = 0.009). Poor L1-4 BMD Z-scores were associated with poor mobility scores (p = 0.05) and valproate treatment (p = 0.016). Nine patients (23%) received zoledronate, for a mean 2 years. The mean age at zoledronate initiation was 9.7 ± 2.3 years. Four completed two DXA scans (pre- and post-treatment); the mean BMD Z-score improved from -2.2 ± 0.9 to -1.4 ± 0.9 after treatment. CONCLUSIONS Females with RTT have reduced lumbar BMD, which was associated with anthropometric factors, TBS, mobility, and valproate use. Zoledronate may be effective for some patients. IMPACT In a retrospective study of 40 females with Rett syndrome (RTT), low bone mineral density (BMD) correlated with lower anthropometric measurements, impaired mobility, and valproic acid use. The association between BMD and trabecular bone score (TBS) in the context of RTT is a novel finding. Our preliminary data support the effectiveness and safety of zoledronate for treating osteoporosis in patients with RTT. Our findings are important in light of the increasing life expectancy of individuals with RTT, and the consequent need to prioritize bone health in this population.
Collapse
Affiliation(s)
- Yael Levy-Shraga
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
- Pediatric Endocrinology and Diabetes Unit, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel.
| | - Simon Goldmann
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Noah Gruber
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Pediatric Endocrinology and Diabetes Unit, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Liana Tripto-Shkolnik
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Dalit Modan-Moses
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Pediatric Endocrinology and Diabetes Unit, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Uri Givon
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Pediatric Orthopedics Unit, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Bruria Ben-Zeev
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Division of Pediatric Neurology, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| |
Collapse
|
3
|
Caffarelli C, Gonnelli S. The Management of Bone Defects in Rett Syndrome. Calcif Tissue Int 2025; 116:11. [PMID: 39751871 DOI: 10.1007/s00223-024-01322-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/29/2024] [Indexed: 01/04/2025]
Abstract
Rett syndrome (RS) is a rare neurodevelopmental disorder primarily caused by mutations in the X-linked methyl-CpG binding protein 2 (MECP2) gene, responsible for encoding MECP2 which plays a pivotal role in regulating gene expression. The neurological and non-neurological manifestations of RS vary widely in severity depending on the specific mutation type. Bone complications, mostly scoliosis but also osteoporosis, hip displacement, and a high rate of fractures, are among the most prevalent non-neurological comorbidities observed in girls with RS. Low bone mineral density (BMD) is primarily due to a slow rate of bone formation due to dysfunctional osteoblast activity. The use of anticonvulsants, immobilization, low physical activity, poor nutrition, and inadequate vitamin D intake all significantly hamper skeletal maturation and the accumulation of bone mass in RS girls, making them more susceptible to fragility fractures. In RS patients, the upper and lower limbs are the most common sites for fractures which are due to both a reduced BMD and a diminished bone size. This review summarizes the knowledge on risk factors for fragility fracture in patients with RS and proposes a potential diagnostic and therapeutic pathway to enhance low BMD and mitigate the risk of fragility fractures. In particular, this review focused on the importance of clinical and instrumental evaluation of bone status as a basis for adequate planning of nutritional, pharmacological, and surgical interventions to be undertaken. Additionally, the management of bone defects in individuals with RS should be customized to meet each person's specific needs, abilities, and general health.
Collapse
Affiliation(s)
- Carla Caffarelli
- Section of Internal Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, Policlinico Le Scotte, Viale Bracci 2, 53100, Siena, Italy.
| | - Stefano Gonnelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
4
|
Tanaka K, Ohara S, Matsuzaka T, Matsugaki A, Ishimoto T, Ozasa R, Kuroda Y, Matsuo K, Nakano T. Quantitative Threshold Determination of Auditory Brainstem Responses in Mouse Models. Int J Mol Sci 2023; 24:11393. [PMID: 37511152 PMCID: PMC10380451 DOI: 10.3390/ijms241411393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The auditory brainstem response (ABR) is a scalp recording of potentials produced by sound stimulation, and is commonly used as an indicator of auditory function. However, the ABR threshold, which is the lowest audible sound pressure, cannot be objectively determined since it is determined visually using a measurer, and this has been a problem for several decades. Although various algorithms have been developed to objectively determine ABR thresholds, they remain lacking in terms of accuracy, efficiency, and convenience. Accordingly, we proposed an improved algorithm based on the mutual covariance at adjacent sound pressure levels. An ideal ABR waveform with clearly defined waves I-V was created; moreover, using this waveform as a standard template, the experimentally obtained ABR waveform was inspected for disturbances based on mutual covariance. The ABR testing was repeated if the value was below the established cross-covariance reference value. Our proposed method allowed more efficient objective determination of ABR thresholds and a smaller burden on experimental animals.
Collapse
Affiliation(s)
- Kenji Tanaka
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Shuma Ohara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Tadaaki Matsuzaka
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Aira Matsugaki
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Ryosuke Ozasa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Yukiko Kuroda
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Koichi Matsuo
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
5
|
Lee HY, Kim DS, Hwang GY, Lee JK, Lee HL, Jung JW, Hwang SY, Baek SW, Yoon SL, Ha Y, Kim KN, Han I, Han DK, Lee CK. Multi-modulation of immune-inflammatory response using bioactive molecule-integrated PLGA composite for spinal fusion. Mater Today Bio 2023; 19:100611. [PMID: 36969699 PMCID: PMC10034518 DOI: 10.1016/j.mtbio.2023.100611] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Accepted: 03/11/2023] [Indexed: 03/15/2023] Open
Abstract
Despite current developments in bone substitute technology for spinal fusion, there is a lack of adequate materials for bone regeneration in clinical applications. Recombinant human bone morphogenetic protein-2 (rhBMP-2) is commercially available, but a severe inflammatory response is a known side effect. Bone graft substitutes that enhance osteogenesis without adverse effects are needed. We developed a bioactive molecule-laden PLGA composite with multi-modulation for bone fusion. This bioresorbable composite scaffold was considered for bone tissue engineering. Among the main components, magnesium hydroxide (MH) aids in reduction of acute inflammation affecting disruption of new bone formation. Decellularized bone extracellular matrix (bECM) and demineralized bone matrix (DBM) composites were used for osteoconductive and osteoinductive activities. A bioactive molecule, polydeoxyribonucleotide (PDRN, PN), derived from trout was used for angiogenesis during bone regeneration. A nano-emulsion method that included Span 80 was used to fabricate bioactive PLGA-MH-bECM/DBM-PDRN (PME2/PN) composite to obtain a highly effective and safe scaffold. The synergistic effect provided by PME2/PN improved not only osteogenic and angiogenic gene expression for bone fusion but also improved immunosuppression and polarization of macrophages that were important for bone tissue repair, using a rat model of posterolateral spinal fusion (PLF). It thus had sufficient biocompatibility and bioactivity for spinal fusion.
Collapse
Affiliation(s)
- Hye Yeong Lee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Da-Seul Kim
- Department of Biomedical Science, CHA University, Gyeonggi-do, 13488, Republic of Korea
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Gwang Yong Hwang
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jun-Kyu Lee
- Department of Biomedical Science, CHA University, Gyeonggi-do, 13488, Republic of Korea
| | - Hye-Lan Lee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Ji-Won Jung
- Department of Biomedical Science, CHA University, Gyeonggi-do, 13488, Republic of Korea
| | - Sae Yeon Hwang
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
- Graduate Program in Bioindustrial Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seung-Woon Baek
- Department of Biomedical Science, CHA University, Gyeonggi-do, 13488, Republic of Korea
| | - Sol lip Yoon
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yoon Ha
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Keung Nyun Kim
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Inbo Han
- Department of Neurosurgery, CHA University School of Medicine, CHA Bungdang Medical Center, Gyeonggi-do, 13496, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, Gyeonggi-do, 13488, Republic of Korea
- Corresponding author.
| | - Chang Kyu Lee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
- Corresponding author.
| |
Collapse
|
6
|
Giuliani A, Sabbatinelli J, Amatori S, Graciotti L, Silvestrini A, Matacchione G, Ramini D, Mensà E, Prattichizzo F, Babini L, Mattiucci D, Busilacchi EM, Bacalini MG, Espinosa E, Lattanzio F, Procopio AD, Olivieri F, Poloni A, Fanelli M, Rippo MR. MiR-422a promotes adipogenesis via MeCP2 downregulation in human bone marrow mesenchymal stem cells. Cell Mol Life Sci 2023; 80:75. [PMID: 36847916 PMCID: PMC9971129 DOI: 10.1007/s00018-023-04719-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 12/16/2022] [Accepted: 01/22/2023] [Indexed: 03/01/2023]
Abstract
Methyl-CpG binding protein 2 (MeCP2) is a ubiquitous transcriptional regulator. The study of this protein has been mainly focused on the central nervous system because alterations of its expression are associated with neurological disorders such as Rett syndrome. However, young patients with Rett syndrome also suffer from osteoporosis, suggesting a role of MeCP2 in the differentiation of human bone marrow mesenchymal stromal cells (hBMSCs), the precursors of osteoblasts and adipocytes. Here, we report an in vitro downregulation of MeCP2 in hBMSCs undergoing adipogenic differentiation (AD) and in adipocytes of human and rat bone marrow tissue samples. This modulation does not depend on MeCP2 DNA methylation nor on mRNA levels but on differentially expressed miRNAs during AD. MiRNA profiling revealed that miR-422a and miR-483-5p are upregulated in hBMSC-derived adipocytes compared to their precursors. MiR-483-5p, but not miR-422a, is also up-regulated in hBMSC-derived osteoblasts, suggesting a specific role of the latter in the adipogenic process. Experimental modulation of intracellular levels of miR-422a and miR-483-5p affected MeCP2 expression through direct interaction with its 3' UTR elements, and the adipogenic process. Accordingly, the knockdown of MeCP2 in hBMSCs through MeCP2-targeting shRNA lentiviral vectors increased the levels of adipogenesis-related genes. Finally, since adipocytes released a higher amount of miR-422a in culture medium compared to hBMSCs we analyzed the levels of circulating miR-422a in patients with osteoporosis-a condition characterized by increased marrow adiposity-demonstrating that its levels are negatively correlated with T- and Z-scores. Overall, our findings suggest that miR-422a has a role in hBMSC adipogenesis by downregulating MeCP2 and its circulating levels are associated with bone mass loss in primary osteoporosis.
Collapse
Affiliation(s)
- Angelica Giuliani
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy.
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy.,SOD Medicina di Laboratorio, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | - Stefano Amatori
- Department of Biomolecular Sciences, Molecular Pathology Laboratory "PaoLa", University of Urbino Carlo Bo, Fano, PU, Italy
| | - Laura Graciotti
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy.,Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Andrea Silvestrini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy
| | - Giulia Matacchione
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy
| | - Deborah Ramini
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | - Emanuela Mensà
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy
| | | | - Lucia Babini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy
| | - Domenico Mattiucci
- Section of Hematology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Elena Marinelli Busilacchi
- Section of Hematology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Maria Giulia Bacalini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Laboratorio Brain Aging, Bologna, Italy
| | - Emma Espinosa
- Geriatrics, Santa Croce Hospital, Azienda Ospedaliera Ospedali Riuniti Marche Nord, Fano, Italy
| | | | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy.,Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy.,Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | - Antonella Poloni
- Section of Hematology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Mirco Fanelli
- Department of Biomolecular Sciences, Molecular Pathology Laboratory "PaoLa", University of Urbino Carlo Bo, Fano, PU, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy.
| |
Collapse
|
7
|
Lv X, Xu J, Jiang J, Wu P, Tan R, Wang B. Genetic animal models of scoliosis: A systematical review. Bone 2021; 152:116075. [PMID: 34174503 DOI: 10.1016/j.bone.2021.116075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
Scoliosis is a complex disease with undetermined pathogenesis and has a strong relationship with genetics. Models of scoliosis in animals have been established for better comprehending its pathogenesis and treatment. In this review, we searched all the genetic animal models with body curvature in databases, and reviewed the related genes and scoliosis types. Meanwhile, we also summarized the pathogenesis of scoliosis reported so far. Summarizing the positive phenotypic animal models contributes to a better understanding on the pathogenesis of scoliosis and facilitates the selection of experimental models when a possible pathogenic factor is concerned.
Collapse
Affiliation(s)
- Xin Lv
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Jinghong Xu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Jiajiong Jiang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Pengfei Wu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Renchun Tan
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Bing Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
8
|
Murine femur micro-computed tomography and biomechanical datasets for an ovariectomy-induced osteoporosis model. Sci Data 2021; 8:240. [PMID: 34526510 PMCID: PMC8443718 DOI: 10.1038/s41597-021-01012-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 07/29/2021] [Indexed: 11/09/2022] Open
Abstract
The development of new effective and safer therapies for osteoporosis, in addition to improved diagnostic and prevention strategies, represents a serious need in the scientific community. Micro-CT image-based analyses in association with biomechanical testing have become pivotal tools in identifying osteoporosis in animal models by assessment of bone microarchitecture and resistance, as well as bone strength. Here, we describe a dataset of micro-CT scans and reconstructions of 15 whole femurs and biomechanical tests on contralateral femurs from C57BL/6JOlaHsd ovariectomized (OVX), resembling human post-menopausal osteoporosis, and sham operated (sham) female mice. Data provided for each mouse include: the acquisition images (.tiff), the reconstructed images (.bmp) and an.xls file containing the maximum attenuations for each reconstructed image. Biomechanical data include an.xls file with the recorded load-displacement, a movie with the filmed test and an.xls file collecting all biomechanical results.
Collapse
|
9
|
Abstract
Rett syndrome (RTT) is a severe X-linked neurodevelopmental disorder characterized by neurodevelopmental regression between 6 and 18 months of life and associated with multi-system comorbidities. Caused mainly by pathogenic variants in the MECP2 (methyl CpG binding protein 2) gene, it is the second leading genetic cause of intellectual disability in girls after Down syndrome. RTT affects not only neurological function but also a wide array of non-neurological organs. RTT-related disorders involve abnormalities of the respiratory, cardiovascular, digestive, metabolic, skeletal, endocrine, muscular, and urinary systems and immune response. Here, we review the different aspects of RTT affecting the main peripheral groups of organs and sometimes occurring independently of nervous system defects.
Collapse
Affiliation(s)
- Emilie Borloz
- Aix Marseille Univ, INSERM, MMG, U1251, Faculté de médecine Timone, 13385, Marseille, France
| | - Laurent Villard
- Aix Marseille Univ, INSERM, MMG, U1251, Faculté de médecine Timone, 13385, Marseille, France
| | - Jean-Christophe Roux
- Aix Marseille Univ, INSERM, MMG, U1251, Faculté de médecine Timone, 13385, Marseille, France
| |
Collapse
|
10
|
Pecorelli A, Cordone V, Schiavone ML, Caffarelli C, Cervellati C, Cerbone G, Gonnelli S, Hayek J, Valacchi G. Altered Bone Status in Rett Syndrome. Life (Basel) 2021; 11:life11060521. [PMID: 34205017 PMCID: PMC8230033 DOI: 10.3390/life11060521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/24/2022] Open
Abstract
Rett syndrome (RTT) is a monogenic neurodevelopmental disorder primarily caused by mutations in X-linked MECP2 gene, encoding for methyl-CpG binding protein 2 (MeCP2), a multifaceted modulator of gene expression and chromatin organization. Based on the type of mutation, RTT patients exhibit a broad spectrum of clinical phenotypes with various degrees of severity. In addition, as a complex multisystem disease, RTT shows several clinical manifestations ranging from neurological to non-neurological symptoms. The most common non-neurological comorbidities include, among others, orthopedic complications, mainly scoliosis but also early osteopenia/osteoporosis and a high frequency of fractures. A characteristic low bone mineral density dependent on a slow rate of bone formation due to dysfunctional osteoblast activity rather than an increase in bone resorption is at the root of these complications. Evidence from human and animal studies supports the idea that MECP2 mutation could be associated with altered epigenetic regulation of bone-related factors and signaling pathways, including SFRP4/WNT/β-catenin axis and RANKL/RANK/OPG system. More research is needed to better understand the role of MeCP2 in bone homeostasis. Indeed, uncovering the molecular mechanisms underlying RTT bone problems could reveal new potential pharmacological targets for the treatment of these complications that adversely affect the quality of life of RTT patients for whom the only therapeutic approaches currently available include bisphosphonates, dietary supplements, and physical activity.
Collapse
Affiliation(s)
- Alessandra Pecorelli
- Animal Science Department, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA;
- Correspondence: (A.P.); (G.V.)
| | - Valeria Cordone
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| | - Maria Lucia Schiavone
- Animal Science Department, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA;
| | - Carla Caffarelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, Policlinico Le Scotte, 53100 Siena, Italy; (C.C.); (S.G.)
| | - Carlo Cervellati
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy;
| | - Gaetana Cerbone
- Division of Medical Genetics, “S.G. Moscati” Hospital, 74100 Avellino, Italy;
| | - Stefano Gonnelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, Policlinico Le Scotte, 53100 Siena, Italy; (C.C.); (S.G.)
| | - Joussef Hayek
- Toscana Life Sciences Foundation, 53100 Siena, Italy;
| | - Giuseppe Valacchi
- Animal Science Department, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA;
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (A.P.); (G.V.)
| |
Collapse
|
11
|
van der Zouwen CI, Boutin J, Fougère M, Flaive A, Vivancos M, Santuz A, Akay T, Sarret P, Ryczko D. Freely Behaving Mice Can Brake and Turn During Optogenetic Stimulation of the Mesencephalic Locomotor Region. Front Neural Circuits 2021; 15:639900. [PMID: 33897379 PMCID: PMC8062873 DOI: 10.3389/fncir.2021.639900] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/08/2021] [Indexed: 12/22/2022] Open
Abstract
A key function of the mesencephalic locomotor region (MLR) is to control the speed of forward symmetrical locomotor movements. However, the ability of freely moving mammals to integrate environmental cues to brake and turn during MLR stimulation is poorly documented. Here, we investigated whether freely behaving mice could brake or turn, based on environmental cues during MLR stimulation. We photostimulated the cuneiform nucleus (part of the MLR) in mice expressing channelrhodopsin in Vglut2-positive neurons in a Cre-dependent manner (Vglut2-ChR2-EYFP) using optogenetics. We detected locomotor movements using deep learning. We used patch-clamp recordings to validate the functional expression of channelrhodopsin and neuroanatomy to visualize the stimulation sites. In the linear corridor, gait diagram and limb kinematics were similar during spontaneous and optogenetic-evoked locomotion. In the open-field arena, optogenetic stimulation of the MLR evoked locomotion, and increasing laser power increased locomotor speed. Mice could brake and make sharp turns (~90°) when approaching a corner during MLR stimulation in the open-field arena. The speed during the turn was scaled with the speed before the turn, and with the turn angle. Patch-clamp recordings in Vglut2-ChR2-EYFP mice show that blue light evoked short-latency spiking in MLR neurons. Our results strengthen the idea that different brainstem neurons convey braking/turning and MLR speed commands in mammals. Our study also shows that Vglut2-positive neurons of the cuneiform nucleus are a relevant target to increase locomotor activity without impeding the ability to brake and turn when approaching obstacles, thus ensuring smooth and adaptable navigation. Our observations may have clinical relevance since cuneiform nucleus stimulation is increasingly considered to improve locomotion function in pathological states such as Parkinson's disease, spinal cord injury, or stroke.
Collapse
Affiliation(s)
- Cornelis Immanuel van der Zouwen
- Département de pharmacologie-physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Joël Boutin
- Département de pharmacologie-physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Maxime Fougère
- Département de pharmacologie-physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Aurélie Flaive
- Département de pharmacologie-physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mélanie Vivancos
- Département de pharmacologie-physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alessandro Santuz
- Department of Medical Neuroscience, Atlantic Mobility Action Project, Brain Repair Center, Dalhousie University, Halifax, NS, Canada.,Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Turgay Akay
- Department of Medical Neuroscience, Atlantic Mobility Action Project, Brain Repair Center, Dalhousie University, Halifax, NS, Canada
| | - Philippe Sarret
- Département de pharmacologie-physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC, Canada.,Centre d'excellence en neurosciences de l'Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de pharmacologie de Sherbrooke, Sherbrooke, QC, Canada
| | - Dimitri Ryczko
- Département de pharmacologie-physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC, Canada.,Centre d'excellence en neurosciences de l'Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de pharmacologie de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
12
|
Caffarelli C, Gonnelli S, Pitinca MDT, Camarri S, Al Refaie A, Hayek J, Nuti R. Methyl-CpG-binding protein 2 (MECP2) mutation type is associated with bone disease severity in Rett syndrome. BMC MEDICAL GENETICS 2020; 21:21. [PMID: 32005172 PMCID: PMC6995101 DOI: 10.1186/s12881-020-0960-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 01/23/2020] [Indexed: 01/04/2023]
Abstract
Background More than 95% of individuals with RTT have mutations in methyl-CpG-binding protein 2 (MECP2), whose protein product modulates gene transcription. The disorder is caused by mutations in a single gene and the disease severity in affected individuals can be quite variable. Specific MECP2 mutations may lead phenotypic variability and different degrees of disease severity. It is known that low bone mass is a frequent and early complication of subjects with Rett syndrome. As a consequence of the low bone mass Rett girls are at an increased risk of fragility fractures. This study aimed to investigate if specific MECP2 mutations may affects the degree of involvement of the bone status in Rett subjects. Methods In 232 women with Rett syndrome (mean age 13.8 ± 8.3 yrs) we measured bone mineral density at whole body and at femur (BMD-FN and BMD-TH) by using a DXA machine (Hologic QDR 4500). QUS parameters were assessed at phalanxes by Bone Profiler-IGEA (amplitude dependent speed of sound: AD-SoS and bone transmission time: BTT). Moreover, ambulation capacity (independent or assisted), fracture history and presence of scoliosis were assessed. We divided the subjects with the most common point mutations in two group based on genotype-phenotype severity; in particular, there has been consensus in recognising that the mutations R106T, R168X, R255X, R270X are considered more severe. Results As aspect, BMD-WB, BMD-FN and BMD-TH were lower in subjects with Rett syndrome that present the most severe mutations with respect to subjects with Rett syndrome with less severe mutations, but the difference was statistically significant only for BMD-FN and BMD-TH (p < 0.05). Also both AD-SoS and BTT values were lower in subjects that present the most severe mutations with respect to less severe mutations but the difference was not statistically significant. Moreover, subjects with Rett syndrome with more severe mutations present a higher prevalence of scoliosis (p < 0.05) and of inability to walk (p < 0.05). Conclusion This study confirms that MECP2 mutation type is a strong predictor of disease severity in subjects with Rett syndrome. In particular, the subjects with more severe mutation present a greater deterioration of bone status, and a higher prevalence of scoliosis and inability to walk.
Collapse
Affiliation(s)
- Carla Caffarelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, Policlinico Le Scotte, Viale Bracci 2, 53100, Siena, Italy.
| | - Stefano Gonnelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, Policlinico Le Scotte, Viale Bracci 2, 53100, Siena, Italy
| | - Maria Dea Tomai Pitinca
- Department of Medicine, Surgery and Neuroscience, University of Siena, Policlinico Le Scotte, Viale Bracci 2, 53100, Siena, Italy
| | - Silvia Camarri
- Department of Medicine, Surgery and Neuroscience, University of Siena, Policlinico Le Scotte, Viale Bracci 2, 53100, Siena, Italy
| | - Antonella Al Refaie
- Department of Medicine, Surgery and Neuroscience, University of Siena, Policlinico Le Scotte, Viale Bracci 2, 53100, Siena, Italy
| | - Joussef Hayek
- Paediatrics Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Ranuccio Nuti
- Department of Medicine, Surgery and Neuroscience, University of Siena, Policlinico Le Scotte, Viale Bracci 2, 53100, Siena, Italy
| |
Collapse
|
13
|
Henderson J, Brown M, Horsburgh S, Duffy L, Wilkinson S, Worrell J, Stratton R, O'Reilly S. Methyl cap binding protein 2: a key epigenetic protein in systemic sclerosis. Rheumatology (Oxford) 2020; 58:527-535. [PMID: 30462328 DOI: 10.1093/rheumatology/key327] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 09/30/2018] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE SSc is an autoimmune connective tissue disease that results in skin fibrosis and currently has no effective treatment. Epigenetic modifications have been described and these may be key in initiating and driving fibroblast activation. Among these epigenetic modifications methylation may be of central importance. The aim of this study was to examine the role of methyl cap binding protein-2 (MeCP2) in SSc fibrosis. METHODS We used healthy and SSc dermal fibroblasts to examine the role of MeCP2, using both small interfering RNA silencing and lentiviral overexpression to determine its effects. We also examined the expression of MeCP2 in SSc fibroblasts by immunoblotting. miRNA132 was quantified by Taqman real time PCR. RESULTS We demonstrated that TGF-β1 induced the expression of MeCP2 in normal cells, and showed that SSc fibroblasts expressed high levels of MeCP2 under basal conditions. MeCP2 positively regulated the expression of extracellular matrix through epigenetic repression of the Wnt antagonist sFRP-1, leading to enhanced Wnt signalling. This mediated fibrosis through glycolysis, as the glycolysis inhibitor 2-deoxyglucose diminished the Wnt-mediated collagen expression. MiR132 expression was reduced in SSc fibroblasts. CONCLUSION The results suggest that an epigenetic loop exists mediating fibrosis. Targeting of MeCP2, as a key epigenetic regulator, may be a promising therapeutic approach, as would targeting the metabolic reprogramming that occurs through aerobic glycolysis.
Collapse
Affiliation(s)
- John Henderson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Max Brown
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Steven Horsburgh
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Laura Duffy
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Sarah Wilkinson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Julie Worrell
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - Richard Stratton
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital, Division of Medicine, University College London, London, UK
| | - Steven O'Reilly
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| |
Collapse
|
14
|
Javaheri B, Carriero A, Wood M, De Souza R, Lee PD, Shefelbine S, Pitsillides AA. Transient peak-strain matching partially recovers the age-impaired mechanoadaptive cortical bone response. Sci Rep 2018; 8:6636. [PMID: 29703931 PMCID: PMC5924380 DOI: 10.1038/s41598-018-25084-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/16/2018] [Indexed: 12/14/2022] Open
Abstract
Mechanoadaptation maintains bone mass and architecture; its failure underlies age-related decline in bone strength. It is unclear whether this is due to failure of osteocytes to sense strain, osteoblasts to form bone or insufficient mechanical stimulus. Mechanoadaptation can be restored to aged bone by surgical neurectomy, suggesting that changes in loading history can rescue mechanoadaptation. We use non-biased, whole-bone tibial analyses, along with characterisation of surface strains and ensuing mechanoadaptive responses in mice at a range of ages, to explore whether sufficient load magnitude can activate mechanoadaptation in aged bone. We find that younger mice adapt when imposed strains are lower than in mature and aged bone. Intriguingly, imposition of short-term, high magnitude loading effectively primes cortical but not trabecular bone of aged mice to respond. This response was regionally-matched to highest strains measured by digital image correlation and to osteocytic mechanoactivation. These data indicate that aged bone’s loading response can be partially recovered, non-invasively by transient, focal high strain regions. Our results indicate that old murine bone does respond to load when the loading is of sufficient magnitude, and bones’ age-related adaptation failure may be due to insufficient mechanical stimulus to trigger mechanoadaptation.
Collapse
Affiliation(s)
- Behzad Javaheri
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK.
| | - Alessandra Carriero
- The City College of New York, Department of Biomedical Engineering, 160 Convent Avenue, New York, NY, 10031, USA
| | - Maria Wood
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - Roberto De Souza
- Universidade Federal de Mato Grosso (UFMT), Departamento de Clínica, Av. Fernando Corrêa da Costa, 2367 - Boa Esperança, Cuiabá, 78060-900, Brazil
| | - Peter D Lee
- Manchester X-Ray Imaging Facility, University of Manchester, Research Complex at Harwell, RAL, Didcot, OX11 0FA, UK
| | - Sandra Shefelbine
- Department of Mechanical and Industrial Engineering, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| | - Andrew A Pitsillides
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| |
Collapse
|
15
|
Ross PD, Guy J, Selfridge J, Kamal B, Bahey N, Tanner KE, Gillingwater TH, Jones RA, Loughrey CM, McCarroll CS, Bailey MES, Bird A, Cobb S. Exclusive expression of MeCP2 in the nervous system distinguishes between brain and peripheral Rett syndrome-like phenotypes. Hum Mol Genet 2018; 25:4389-4404. [PMID: 28173151 PMCID: PMC5886038 DOI: 10.1093/hmg/ddw269] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/22/2022] Open
Abstract
Rett syndrome (RTT) is a severe genetic disorder resulting from mutations in the X-linked MECP2 gene. MeCP2 protein is highly expressed in the nervous system and deficiency in the mouse central nervous system alone recapitulates many features of the disorder. This suggests that RTT is primarily a neurological disorder, although the protein is reportedly widely expressed throughout the body. To determine whether aspects of the RTT phenotype that originate in non-neuronal tissues might have been overlooked, we generated mice in which Mecp2 remains at near normal levels in the nervous system, but is severely depleted elsewhere. Comparison of these mice with wild type and globally MeCP2-deficient mice showed that the majority of RTT-associated behavioural, sensorimotor, gait and autonomic (respiratory and cardiac) phenotypes are absent. Specific peripheral phenotypes were observed, however, most notably hypo-activity, exercise fatigue and bone abnormalities. Our results confirm that the brain should be the primary target for potential RTT therapies, but also strongly suggest that some less extreme but clinically significant aspects of the disorder arise independently of defects in the nervous system.
Collapse
Affiliation(s)
- Paul D Ross
- Institute of Neuroscience and Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Jacky Guy
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Edinburgh, UK
| | - Jim Selfridge
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Edinburgh, UK
| | - Bushra Kamal
- Institute of Neuroscience and Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Noha Bahey
- Institute of Neuroscience and Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK.,Histology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Thomas H Gillingwater
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh, UK
| | - Ross A Jones
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh, UK
| | - Christopher M Loughrey
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK and
| | - Charlotte S McCarroll
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK and
| | - Mark E S Bailey
- School of Life Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Adrian Bird
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Edinburgh, UK
| | - Stuart Cobb
- Institute of Neuroscience and Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
16
|
Elastic Modulus of Osteoporotic Mouse Femur Based on Femoral Head Compression Test. Appl Bionics Biomech 2017; 2017:7201769. [PMID: 29375244 PMCID: PMC5742509 DOI: 10.1155/2017/7201769] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/09/2017] [Indexed: 11/18/2022] Open
Abstract
A biomechanical test is a good evaluation method that describes the structural, functional, and pathological differences in the bones, such as osteoporosis and fracture. The tensile test, compression test, and bending test are generally performed to evaluate the elastic modulus of the bone using mice. In particular, the femoral head compression test is mainly used for verifying the osteoporosis change of the femoral neck. This study conducted bone mineral density analysis using in vivo microcomputed tomography (micro-CT) to observe changes in osteoporosis over time. It proposed a method of identifying the elastic modulus of the femur in the normal group (CON group) and the osteoporotic group (OVX group) through finite element analysis based on the femoral head compression test and also conducted a comparative analysis of the results. Through the femoral head compression test, it was verified that the CON group's ultimate and yield loads were significantly higher than those of the OVX group. It was considered that this result was caused by the fact that the bone mineral density change by osteoporosis occurred in the proximal end more often than in the femur diaphysis. However, the elastic modulus derived from the finite element analysis showed no significant difference between the two groups.
Collapse
|
17
|
Using three-point bending to evaluate tibia bone strength in ovariectomized young mice. J Biol Phys 2017; 43:139-148. [PMID: 28132161 DOI: 10.1007/s10867-016-9439-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022] Open
Abstract
It is well known that estrogen deficiency induces a deterioration of bone strength in aged females. The aim of this study is to determine the effect of estrogen depletion on tibia bone strength in sexually mature mice that are still undergoing skeletal maturation. At 8 weeks of age, C57BL/6 female mice underwent an ovariectomy (OVX) or sham (SHAM) surgery. Mice were killed at 2, 4, or 8 weeks post-surgery. Tibia length and cross-sectional area continued to increase in both treatment groups until 4 weeks post-surgery. Compared to SHAM mice, OVX mice demonstrated a significant reduction in uterine weight and plasma estrogen levels. Three-point bending was used to quantify the mechanical properties (breaking point, stress, stiffness, and elasticity) of the tibia. The tibias from the SHAM mice had a higher breaking point than all the age-matched OVX mice. At 8 weeks post-surgery, the tibias from the SHAM mice demonstrated higher elasticity, stress, and stiffness than the younger SHAM mice and the age-matched OVX mice. Compared to the SHAM mice, our study suggests that (1) there is a reduction in the mechanical strength of tibias from young OVX mice, and (2) the greatest decline in tibia strength of the OVX mice was once they reached skeletal maturity.
Collapse
|
18
|
Leonard H, Cobb S, Downs J. Clinical and biological progress over 50 years in Rett syndrome. Nat Rev Neurol 2016; 13:37-51. [PMID: 27934853 DOI: 10.1038/nrneurol.2016.186] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the 50 years since Andreas Rett first described the syndrome that came to bear his name, and is now known to be caused by a mutation in the methyl-CpG-binding protein 2 (MECP2) gene, a compelling blend of astute clinical observations and clinical and laboratory research has substantially enhanced our understanding of this rare disorder. Here, we document the contributions of the early pioneers in Rett syndrome (RTT) research, and describe the evolution of knowledge in terms of diagnostic criteria, clinical variation, and the interplay with other Rett-related disorders. We provide a synthesis of what is known about the neurobiology of MeCP2, considering the lessons learned from both cell and animal models, and how they might inform future clinical trials. With a focus on the core criteria, we examine the relationships between genotype and clinical severity. We review current knowledge about the many comorbidities that occur in RTT, and how genotype may modify their presentation. We also acknowledge the important drivers that are accelerating this research programme, including the roles of research infrastructure, international collaboration and advocacy groups. Finally, we highlight the major milestones since 1966, and what they mean for the day-to-day lives of individuals with RTT and their families.
Collapse
Affiliation(s)
- Helen Leonard
- Telethon Kids Institute, 100 Roberts Road, Subiaco, Perth, Western Australia 6008, Australia
| | - Stuart Cobb
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Jenny Downs
- Telethon Kids Institute, 100 Roberts Road, Subiaco, Perth, Western Australia 6008, Australia
| |
Collapse
|
19
|
Zanchetta MB, Scioscia MF, Zanchetta JR. Bone microarchitecture in Rett syndrome and treatment with teriparatide: a case report. Osteoporos Int 2016; 27:2873-2877. [PMID: 27068223 DOI: 10.1007/s00198-016-3586-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 03/30/2016] [Indexed: 01/07/2023]
Abstract
We present the case of a 28-year-old female Rett syndrome patient with low bone mass and a recent fracture who was successfully treated with teriparatide. Bone mineral density and microarchitecture substantially improved after treatment. Rett syndrome (RTT), an X-linked progressive neuro-developmental disorder caused by mutations in the methyl-CpG-binding 2 (MECP2) gene, has been consistently associated with low bone mass. Consequently, patients with RTT are at increased risk of skeletal fractures. Teriparatide is a bone-forming agent for the treatment of osteoporosis that has demonstrated its effectiveness in increasing bone strength and reducing the risk of fractures in postmenopausal women, but, recently, its positive action has also been reported in premenopausal women. We present the case of a 28-year-old female RTT patient with low bone mass and a recent fracture who was successfully treated with teriparatide. Both bone mass measured by DXA and microarchitecture assessed by high resolution peripheral computed tomography (HR pQCT) were substantially improved after treatment.
Collapse
Affiliation(s)
- M B Zanchetta
- IDIM, Instituto de Diagnóstico e Investigaciones Metabólicas, Cátedra de Osteología y Metabolismo Mineral, Facultad de Medicina, Universidad del Salvador, Libertad 836, 1st Floor, 1012, Buenos Aires, Argentina.
| | - M F Scioscia
- IDIM, Instituto de Diagnóstico e Investigaciones Metabólicas, Cátedra de Osteología y Metabolismo Mineral, Facultad de Medicina, Universidad del Salvador, Libertad 836, 1st Floor, 1012, Buenos Aires, Argentina
| | - J R Zanchetta
- IDIM, Instituto de Diagnóstico e Investigaciones Metabólicas, Cátedra de Osteología y Metabolismo Mineral, Facultad de Medicina, Universidad del Salvador, Libertad 836, 1st Floor, 1012, Buenos Aires, Argentina
| |
Collapse
|
20
|
Gadalla KKE, Ross PD, Hector RD, Bahey NG, Bailey MES, Cobb SR. Gene therapy for Rett syndrome: prospects and challenges. FUTURE NEUROLOGY 2015. [DOI: 10.2217/fnl.15.29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rett syndrome (RTT) is a neurological disorder that affects females and is caused by loss-of-function mutations in the X-linked gene MECP2. Deletion of Mecp2 in mice results in a constellation of neurological features that resemble those seen in RTT patients. Experiments in mice have demonstrated that restoration of MeCP2, even at adult stages, reverses several aspects of the RTT-like pathology suggesting that the disorder may be inherently treatable. This has provided an impetus to explore several therapeutic approaches targeting RTT at the level of the gene, including gene therapy, activation of MECP2 on the inactive X chromosome and read-through and repair of RTT-causing mutations. Here, we review these different strategies and the challenges of gene-based approaches in RTT.
Collapse
Affiliation(s)
- Kamal KE Gadalla
- University of Glasgow, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, Glasgow, UK
- Pharmacology Department, Faculty of Medicine, Tanta University, Egypt
| | - Paul D Ross
- University of Glasgow, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, Glasgow, UK
| | - Ralph D Hector
- University of Glasgow, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, Glasgow, UK
| | - Noha G Bahey
- University of Glasgow, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, Glasgow, UK
- Histology Department, Faculty of Medicine, Tanta University, Egypt
| | - Mark ES Bailey
- School of Life Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Stuart R Cobb
- University of Glasgow, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, Glasgow, UK
| |
Collapse
|