1
|
Chapman J, Umebayashi M, deVet T, Kulasek M, Shen A, Julien C, Rauch F, Willie BM. Bone healing response to systemic bisphosphonate-prostaglandin E2 receptor 4 agonist treatment in female rats with a critical-size femoral segmental defect. Injury 2025; 56:112269. [PMID: 40127560 DOI: 10.1016/j.injury.2025.112269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 03/26/2025]
Abstract
Despite the wide body of research into prevention and treatment of nonunion, current bone fracture therapies remain suboptimal in their efficacy. Previous animal studies show that MES-1022, a bone-targeted prodrug that activates the prostaglandin E2 receptor EP4, stimulates bone healing when applied locally in uneventful defects. Here we investigated the healing capacity of systemically administered MES-1022 in a rat femoral critical size segmental defect. Ten-week-old female Sprague-Dawley rats (n = 8/group) underwent a 5 mm osteotomy of the left femoral midshaft, stabilized by a unilateral external fixator. Rats received weekly subcutaneous injections of MES-1022 at 5 mg/kg (MES1022-Hi), 1.7 mg/kg (MES1022-Lo), or Vehicle without a defect site scaffold. Serum bone markers and open field activity were measured pre-osteotomy and throughout the study. Rats were sacrificed after 12 weeks and osteotomized femora were imaged via microcomputed tomography (microCT) followed by histology and immunohistochemistry to assess healing. Complete bridging of the defect occurred in one rat from the MES1022-Hi group and zero from MES1022-Lo and Vehicle groups. However, healing outcomes in both MES-1022 groups for bone volume fraction, bone volume, bridging score, callus tissue composition, callus blood vessel density, P1NP levels, TRAcP-5b levels, and physical activity did not differ from Vehicle. Fracture callus osteoclast density and spleen weight were increased in MES1022-Hi rats relative to Vehicle. Overall, systemic administration of MES-1022 alone may not suffice for treatment of large segmental bone defects. Additional studies are needed to determine whether systemic MES-1022 is a useful therapeutic in conjunction with local scaffolds like bone graft substitutes.
Collapse
Affiliation(s)
- Jack Chapman
- Research Centre, Shriners Hospital for Children-Canada, Montreal, QC, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada; Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Mayumi Umebayashi
- Research Centre, Shriners Hospital for Children-Canada, Montreal, QC, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - Taylor deVet
- Research Centre, Shriners Hospital for Children-Canada, Montreal, QC, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada; Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Michal Kulasek
- Research Centre, Shriners Hospital for Children-Canada, Montreal, QC, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada; Faculté de médicine, Université de Montréal, Montreal, QC, Canada
| | - Aijing Shen
- Research Centre, Shriners Hospital for Children-Canada, Montreal, QC, Canada; Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Catherine Julien
- Research Centre, Shriners Hospital for Children-Canada, Montreal, QC, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - Frank Rauch
- Research Centre, Shriners Hospital for Children-Canada, Montreal, QC, Canada
| | - Bettina M Willie
- Research Centre, Shriners Hospital for Children-Canada, Montreal, QC, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada; Department of Biomedical Engineering, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Li J, Liang X, Wang X, Yang P, Jian X, Fu L, Deng A, Liu C, Liu J. A missense GDF5 variant causes brachydactyly type A1 and multiple-synostoses syndrome 2. JOR Spine 2024; 7:e1302. [PMID: 38222807 PMCID: PMC10782059 DOI: 10.1002/jsp2.1302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/16/2023] [Accepted: 11/02/2023] [Indexed: 01/16/2024] Open
Abstract
Objective This study aimed to identify the molecular defects and clinical manifestations in a Chinese family with brachydactyly (BD) type A1 (BDA1) and multiple-synostoses syndrome 2 (SYNS2). Methods A Chinese family with BDA1 and SYNS2 was enrolled in this study. Whole-exome sequencing was used to analyze the gene variants in the proband. The sequences of the candidate pathogenic variant in GDF5 was validated via Sanger sequencing. I-TASSER and PyMOL were used to analyze the functional domains of the corresponding mutant proteins. Results The family was found to have an autosomal-dominantly inherited combination of BDA1 and SYNS2 caused by the S475N variant in the GDF5 gene. The variant was located within the functional region, and the mutated residue was found to be highly conserved among species. Via bioinformatic analyses, we predicted this variant to be deleterious, which perturb the protein function. The substitution of the negatively charged amino acid S475 with the neutral N475 was predicted to disrupt the formation of salt bridges with Y487 and impair the structure, stability, and function of the protein, consequently, the abnormalities in cartilage and bone development ensue. Conclusions A single genetic variant (S475N) which disrupt the formation of salt bridges with Y487, in the interface of the antagonist- and receptor-binding sites of GDF5 concurrently causes two pathological mechanisms. This is the first report of this variant, identified in a Chinese family with BDA1 and SYNS2.
Collapse
Affiliation(s)
- Juyi Li
- Department of Pharmacy, The Central Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Xiaofang Liang
- Department of Dermatology, The Central Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Xiufang Wang
- Department of Pain, The Central Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Pei Yang
- Department of Radiology, The Central Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Xiaofei Jian
- Department of Orthopedics, The Central Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Lei Fu
- Department of Ultrasound, The Central Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Aiping Deng
- Department of Pharmacy, The Central Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and AngiopathyHubei University of Science and TechnologyXianningHubeiChina
| | - Jianxin Liu
- Department of Ultrasound, The Central Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
3
|
Sachse A, Hasenbein I, Hortschansky P, Schmuck KD, Maenz S, Illerhaus B, Kuehmstedt P, Ramm R, Huber R, Kunisch E, Horbert V, Gunnella F, Roth A, Schubert H, Kinne RW. BMP-2 (and partially GDF-5) coating significantly accelerates and augments bone formation close to hydroxyapatite/tricalcium-phosphate/brushite implant cylinders for tibial bone defects in senile, osteopenic sheep. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:31. [PMID: 37378714 PMCID: PMC10307740 DOI: 10.1007/s10856-023-06734-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
Bilateral defects (diameter 8 mm) in the medial tibial head of senile, osteopenic female sheep (n = 48; 9.63 ± 0.10 years; mean ± SEM) were treated with hydroxyapatite (HA)/beta-tricalcium phosphate (β-TCP)/dicalcium phosphate dihydrate (DCPD; brushite) cylinders coated with BMP-2 (25 or 250 micrograms) or growth differentiation factor (GDF)-5 (125 or 1250 micrograms; left side); cylinders without BMP served as controls (right side). Three, 6, and 9 months post-operation (n = 6 each group), bone structure and formation were analyzed in vivo by X-ray and ex vivo by osteodensitometry, histomorphometry, and micro-computed tomography (micro-CT) at 3 and 9 months. Semi-quantitative X-ray evaluation showed significantly increasing bone densities around all implant cylinders over time. High-dose BMP-2-coated cylinders (3 and 9 months) and low-dose GDF-5-coated cylinders (3 and 6 months) demonstrated significantly higher densities than controls (dose-dependent for BMP-2 at 3 months). This was confirmed by osteodensitometry at 9 months for high-dose BMP-2-coated cylinders (and selected GDF-5 groups), and was again dose-dependent for BMP-2. Osteoinduction by BMP-2 was most pronounced in the adjacent bone marrow (dynamic histomorphometry/micro-CT). BMP-2 (and partially GDF-5) significantly increased the bone formation in the vicinity of HA/TCP/DCPD cylinders used to fill tibial bone defects in senile osteopenic sheep and may be suitable for surgical therapy of critical size, non-load-bearing bone defects in cases of failed tibial head fracture or defect healing.
Collapse
Affiliation(s)
- André Sachse
- Experimental Rheumatology Unit, Orthopedic Professorship, Jena University Hospital, Waldkliniken Eisenberg GmbH, Eisenberg, Germany
- Orthopedic Professorship, Jena University Hospital, Waldkliniken Eisenberg GmbH, Eisenberg, Germany
| | - Ines Hasenbein
- Experimental Rheumatology Unit, Orthopedic Professorship, Jena University Hospital, Waldkliniken Eisenberg GmbH, Eisenberg, Germany
- Orthopedic Professorship, Jena University Hospital, Waldkliniken Eisenberg GmbH, Eisenberg, Germany
| | - Peter Hortschansky
- Leibniz-Institute for Natural Products Research and Infection Biology-Hans-Knoell-Institute, Jena, Germany
| | - Klaus D Schmuck
- Johnson & Johnson Medical GmbH, DePuy Synthes, Norderstedt, Germany
| | - Stefan Maenz
- Chair of Materials Science, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Jena, Germany
| | - Bernhard Illerhaus
- Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Peter Kuehmstedt
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Jena, Germany
| | - Roland Ramm
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Jena, Germany
| | - René Huber
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Elke Kunisch
- Experimental Rheumatology Unit, Orthopedic Professorship, Jena University Hospital, Waldkliniken Eisenberg GmbH, Eisenberg, Germany
| | - Victoria Horbert
- Experimental Rheumatology Unit, Orthopedic Professorship, Jena University Hospital, Waldkliniken Eisenberg GmbH, Eisenberg, Germany
| | - Francesca Gunnella
- Experimental Rheumatology Unit, Orthopedic Professorship, Jena University Hospital, Waldkliniken Eisenberg GmbH, Eisenberg, Germany
| | - Andreas Roth
- Bereich Endoprothetik/Orthopädie, Klinik für Orthopädie, Unfallchirurgie und Plastische Chirurgie, Uniklinik Leipzig AöR, Leipzig, Germany
| | - Harald Schubert
- Institute of Laboratory Animal Sciences and Welfare, Jena University Hospital, Jena, Germany
| | - Raimund W Kinne
- Experimental Rheumatology Unit, Orthopedic Professorship, Jena University Hospital, Waldkliniken Eisenberg GmbH, Eisenberg, Germany.
| |
Collapse
|
4
|
Yan S, Nie H, Bu G, Yuan W, Wang S. The effect of common variants in GDF5 gene on the susceptibility to chronic postsurgical pain. J Orthop Surg Res 2021; 16:420. [PMID: 34210342 PMCID: PMC8247225 DOI: 10.1186/s13018-021-02549-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/09/2021] [Indexed: 11/10/2022] Open
Abstract
Background The growth differentiation factor 5 (GDF5) gene regulates the growth of neuronal axons and dendrites and plays a role in the inflammatory response and tissue damage. The gene may also be associated with chronic postsurgical pain. This study aimed to reveal the relationship between SNPs in the GDF5 gene and orthopedic chronic postsurgical pain in Han Chinese population based on a case-control study. Methods We genotyped 8 SNPs within GDF5 gene in 1048 surgical patients with chronic postsurgical pain as the case group and 2062 surgical patients who were pain free as the control group. SNP and haplotypic analyses were performed, and stratified analyses were conducted to determine the correlations between significant SNPs and clinical characteristics. Results Only rs143384 in the 5′UTR of GDF5 was identified as significantly associated with increased susceptibility to chronic postsurgical pain, and the risk of A allele carriers was increased approximately 1.35-fold compared with that of G allele carriers. Haplotypes AGG and GGG in the LD block rs143384-rs224335-rs739329 also showed similar association patterns. Furthermore, we found that rs143384 was significantly correlated with chronic postsurgical pain in the subgroup aged ≤ 61 years, subgroup with a BMI ≤ 26, subgroup with no-smoking or no pain history, and subgroup with a drinking history. Conclusion Our study provided supportive evidence that genetic variations in the GDF5 gene are potential genetic factors that can increase the risk of chronic postsurgical pain in the Han Chinese population, but further research is necessary to elucidate the underlying mechanism. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-021-02549-5.
Collapse
Affiliation(s)
- Shaoyao Yan
- Department of Pain, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi, China
| | - Huiyong Nie
- Department of Pain, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi, China
| | - Gang Bu
- Department of Pain, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi, China
| | - Weili Yuan
- Department of Pain, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi, China
| | - Suoliang Wang
- Department of Pain, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi, China.
| |
Collapse
|
5
|
Xiao D, Yang F, Zhao Q, Chen S, Shi F, Xiang X, Deng L, Sun X, Weng J, Feng G. Fabrication of a Cu/Zn co-incorporated calcium phosphate scaffold-derived GDF-5 sustained release system with enhanced angiogenesis and osteogenesis properties. RSC Adv 2018; 8:29526-29534. [PMID: 35547329 PMCID: PMC9085280 DOI: 10.1039/c8ra05441j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/15/2018] [Indexed: 01/31/2023] Open
Abstract
Synthetic scaffolds with multifunctional properties, including angiogenesis and osteogenesis capacities, play an essential role in accelerating bone regeneration. In this study, various concentrations of Cu/Zn ions were incorporated into biphasic calcium phosphate (BCP) scaffolds, and then growth differentiation factor-5 (GDF-5)-loaded poly(lactide-co-glycolide) (PLGA) microspheres were attached onto the ion-doped scaffold. The results demonstrated that with increasing concentration of dopants, the scaffold surface gradually changed from smooth grain crystalline to rough microparticles, and further to a nanoflake film. Additionally, the mass ratio of β-tricalcium phosphate/hydroxyapatite increased with the dopant concentration. Furthermore, GDF-5-loaded PLGA microspheres attached onto the BCP scaffold surface exhibited a sustained release. In vitro co-culture of bone mesenchymal stem cells and vascular endothelial cells showed that the addition of Cu/Zn ions and GDF-5 in the BCP scaffold not only accelerated cell proliferation, but also promoted cell differentiation by enhancing the alkaline phosphatase activity and bone-related gene expression. Moreover, the vascular endothelial growth factor secretion level increased with the dopant concentration, and attained a maximum when GDF-5 was added into the ions-doped scaffold. These findings indicated that BCP scaffold co-doped with Cu/Zn ions exhibited a combined effect of both metal ions, including angiogenic and osteogenic capacities. Moreover, GDF-5 addition further enhanced both the angiogenic and osteogenic capacities of the BCP scaffold. The Cu/Zn co-incorporated BCP scaffold-derived GDF-5 sustained release system produced multifunctional scaffolds with improved angiogenesis and osteogenesis properties.
Collapse
Affiliation(s)
- Dongqin Xiao
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College Nanchong Sichuan 637000 China
| | - Fei Yang
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College Nanchong Sichuan 637000 China
| | - Qiao Zhao
- Department of Orthopedics, Southwest Medical University Luzhou Sichuan 646000 China
| | - Shixiao Chen
- Radiology Department, Nanchong Central Hospital Nanchong Sichuan 637000 China
| | - Feng Shi
- China Collaboration Innovation Center for Tissue Repair Material Engineering Technology, China West Normal University Nanchong Sichuan 637000 China
| | - Xiaocong Xiang
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College Nanchong Sichuan 637000 China
| | - Li Deng
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College Nanchong Sichuan 637000 China
| | - Xiao Sun
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College Nanchong Sichuan 637000 China
| | - Jie Weng
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University Chengdu Sichuan 610031 China
| | - Gang Feng
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College Nanchong Sichuan 637000 China
- Department of Orthopedics, Southwest Medical University Luzhou Sichuan 646000 China
| |
Collapse
|
6
|
Schwarz C, Ott CE, Wulsten D, Brauer E, Schreivogel S, Petersen A, Hassanein K, Roewer L, Schmidt T, Willie BM, Duda GN. The Interaction of BMP2-Induced Defect Healing in Rat and Fixator Stiffness Modulates Matrix Alignment and Contraction. JBMR Plus 2018; 2:174-186. [PMID: 30283901 PMCID: PMC6124159 DOI: 10.1002/jbm4.10031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/14/2017] [Accepted: 12/27/2017] [Indexed: 12/15/2022] Open
Abstract
Successful fracture healing requires a tight interplay between mechanical and biological cues. In vitro studies illustrated that mechanical loading modulates bone morphogenetic protein (BMP) signaling. However, in the early phases of large bone defect regeneration in vivo, the underlying mechanisms leading to this mechanosensation remained unknown. We investigated the interaction of BMP2 stimulation and mechanical boundary conditions in a rat critical‐sized femoral defect model (5 mm) stabilized with three distinctly different external fixator stiffness. Defects were treated with 5 μg rhBMP2 loaded on an absorbable collagen sponge. Early matrix alignment was monitored by second‐harmonic generation imaging. Bony bridging of defects and successive healing was monitored by histology at day 7 and day 14 as well as in vivo microCT at days 10, 21, and 42 post‐operation. Femora harvested at day 42 were characterized mechanically assessing torsional load to failure ex vivo. At tissue level, differences between groups were visible at day 14 with manifest bone formation in the microCT. Histologically, we observed prolonged chondrogenesis upon flexible fixation, whereas osteogenesis started earlier after rigid and semirigid fixation. At later time points, there was a boost of bone tissue formation upon flexible fixation, whereas other groups already displayed signs of tissue maturation. Based on gene expression profiling, we analyzed the mechanobiological interplay. Already at day 3, these analyses revealed differences in expression pattern, specifically of genes involved in extracellular matrix formation. Gene regulation correlating with fixator stiffness was pronounced at day 7 comprising genes related to immunological processes and cellular contraction. The influence of loading on matrix contraction was further investigated and confirmed in a 3D bioreactor. Taken together, we demonstrate an early onset of mechanical conditions influencing BMP2‐induced defect healing and shed light on gene regulatory networks associated with extracellular matrix organization and contraction that seemed to directly impact healing outcomes. © 2018 The Authors. JBMR Plus is published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Carolin Schwarz
- Julius Wolff Institute and Center for Musculoskeletal Surgery Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health Berlin Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT) Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health Berlin Germany
| | - Claus-Eric Ott
- Institute for Medical Genetics and Human Genetics Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health Berlin Germany.,Research Group Development and Disease Max Planck Institute for Molecular Genetics Berlin Germany
| | - Dag Wulsten
- Julius Wolff Institute and Center for Musculoskeletal Surgery Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health Berlin Germany
| | - Erik Brauer
- Julius Wolff Institute and Center for Musculoskeletal Surgery Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health Berlin Germany
| | - Sophie Schreivogel
- Julius Wolff Institute and Center for Musculoskeletal Surgery Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health Berlin Germany
| | - Ansgar Petersen
- Julius Wolff Institute and Center for Musculoskeletal Surgery Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health Berlin Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT) Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health Berlin Germany
| | - Kerstin Hassanein
- Julius Wolff Institute and Center for Musculoskeletal Surgery Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health Berlin Germany
| | - Linda Roewer
- Julius Wolff Institute and Center for Musculoskeletal Surgery Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health Berlin Germany
| | - Tanja Schmidt
- Julius Wolff Institute and Center for Musculoskeletal Surgery Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health Berlin Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT) Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health Berlin Germany
| | - Bettina M Willie
- Research Center Shriners Hospitals for Children-Canada Department of Pediatric Surgery McGill University Montreal Canada
| | - Georg N Duda
- Julius Wolff Institute and Center for Musculoskeletal Surgery Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health Berlin Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT) Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health Berlin Germany
| |
Collapse
|
7
|
Abstract
Bone morphogenetic proteins (BMPs) constitute the largest subdivision of the transforming growth factor (TGF)-β family of ligands and exert most of their effects through the canonical effectors Smad1, 5, and 8. Appropriate regulation of BMP signaling is critical for the development and homeostasis of numerous human organ systems. Aberrations in BMP pathways or their regulation are increasingly associated with diverse human pathologies, and there is an urgent and growing need to develop effective approaches to modulate BMP signaling in the clinic. In this review, we provide a wide perspective on diseases and/or conditions associated with dysregulated BMP signal transduction, outline the current strategies available to modulate BMP pathways, highlight emerging second-generation technologies, and postulate prospective avenues for future investigation.
Collapse
Affiliation(s)
- Jonathan W Lowery
- Division of Biomedical Science, Marian University College of Osteopathic Medicine, Indianapolis, Indiana 46222
| | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115
| |
Collapse
|
8
|
GDF5 significantly augments the bone formation induced by an injectable, PLGA fiber-reinforced, brushite-forming cement in a sheep defect model of lumbar osteopenia. Spine J 2017. [PMID: 28642196 DOI: 10.1016/j.spinee.2017.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Biodegradable calcium phosphate cement (CPC) represents a promising option for the surgical treatment of osteoporotic vertebral fractures. Because of augmented local bone catabolism, however, additional targeted delivery of bone morphogenetic proteins with the CPC may be needed to promote rapid and complete bone regeneration. PURPOSE In the present study, an injectable, poly(l-lactide-co-glycolide) acid (PLGA) fiber-reinforced, brushite-forming cement (CPC) containing the bone morphogenetic protein GDF5 was tested in a sheep lumbar osteopenia model. STUDY DESIGN/SETTING This is a prospective experimental animal study. METHODS Defined bone defects (diameter 5 mm) were placed in aged, osteopenic female sheep. Defects were treated with fiber-reinforced CPC alone (L4; CPC+fibers) or with CPC containing different dosages of GDF5 (L5; CPC+fibers+GDF5; 1, 5, 100, and 500 µg GDF5; n=5 or 6 each). The results were compared with those of untouched controls (L1). Three and 9 months postoperation, structural and functional effects of the CPC (±GDF5) were assessed ex vivo by measuring (1) bone mineral density (BMD); (2) bone structure, that is, bone volume/total volume (assessed by micro-computed tomography and histomorphometry), trabecular thickness, and trabecular number; (3) bone formation, that is, osteoid volume/bone volume, osteoid surface/bone surface, osteoid thickness, mineralized surface/bone surface, mineral apposition rate, and bone formation rate/bone surface; (4) bone resorption, that is, eroded surface/bone surface; and (5) compressive strength. RESULTS Compared with untouched controls (L1), both CPC+fibers (L4) and CPC+fibers+GDF5 (L5) numerically or significantly improved all parameters of bone formation, bone resorption, and bone structure. These significant effects were observed both at 3 and 9 months, but for some parameters they were less pronounced at 9 months. Compared with CPC without GDF5, additional significant effects of CPC with GDF5 were demonstrated for BMD and parameters of bone formation and structure (bone volume/total volume, trabecular thickness, and trabecular number, as well as mineralized surface/bone surface). The GDF5 effects were dose-dependent (predominantly in the 5-100 µg range) at 3 and 9 months. CONCLUSIONS GDF5 significantly enhanced the bone formation induced by a PLGA fiber-reinforced CPC in sheep lumbar osteopenia. The results indicated that a local dose as low as ≤100 µg GDF5 may be sufficient to augment middle to long-term bone formation. The novel CPC+GDF5 combination may thus qualify as an alternative to the bioinert, supraphysiologically stiff poly(methyl methacrylate) cement currently applied for vertebroplasty/kyphoplasty of osteoporotic vertebral fractures.
Collapse
|
9
|
Bar-Maisels M, Gabet Y, Shamir R, Hiram-Bab S, Pasmanik-Chor M, Phillip M, Bar-Yoseph F, Gat-Yablonski G. Beta Palmitate Improves Bone Length and Quality during Catch-Up Growth in Young Rats. Nutrients 2017; 9:nu9070764. [PMID: 28718808 PMCID: PMC5537878 DOI: 10.3390/nu9070764] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/04/2017] [Accepted: 07/12/2017] [Indexed: 01/29/2023] Open
Abstract
Palmitic acid (PA) is the most abundant saturated fatty acid in human milk, where it is heavily concentrated in the sn-2-position (termed beta palmitate, BPA) and as such is conserved in all women, regardless of their diet or ethnicity, indicating its physiological and metabolic importance. We hypothesized that BPA improves the efficiency of nutrition-induced catch up growth as compared to sn-1,3 PA, which is present in vegetable oil. Pre-pubertal male rats were subjected to a 17 days food restriction followed by re-feeding for nine days with 1,3 PA or BPA-containing diets. We measured bone length, epiphyseal growth plate height (EGP, histology), bone quality (micro-CT and 3-point bending assay), and gene expression (Affymetrix). The BPA-containing diet improved most growth parameters: humeri length and EGP height were greater in the BPA-fed animals. Further analysis of the EGP revealed that the hypertrophic zone was significantly higher in the BPA group. In addition, Affymetrix analysis revealed that the diet affected the expression of several genes in the liver and EGP. Despite the very subtle difference between the diets and the short re-feeding period, we found a small but significant improvement in most growth parameters in the BPA-fed rats. This pre-clinical study may have important implications, especially for children with growth disorders and children with special nutritional needs.
Collapse
Affiliation(s)
- Meytal Bar-Maisels
- The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petach Tikva 4920235, Israel.
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Yankel Gabet
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Raanan Shamir
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva 4920235, Israel.
- The Molecular Endocrinology Laboratory, Felsenstein Medical Research Center, Petach Tikva 4920235, Israel.
| | - Sahar Hiram-Bab
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Moshe Phillip
- The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petach Tikva 4920235, Israel.
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.
- The Molecular Endocrinology Laboratory, Felsenstein Medical Research Center, Petach Tikva 4920235, Israel.
| | - Fabiana Bar-Yoseph
- Enzymotec Ltd., Sagi 2000 Industrial Park, Migdal HaEmeq 2310001, Israel.
| | - Galia Gat-Yablonski
- The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petach Tikva 4920235, Israel.
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.
- The Molecular Endocrinology Laboratory, Felsenstein Medical Research Center, Petach Tikva 4920235, Israel.
| |
Collapse
|
10
|
A Survey of Strategies to Modulate the Bone Morphogenetic Protein Signaling Pathway: Current and Future Perspectives. Stem Cells Int 2016; 2016:7290686. [PMID: 27433166 PMCID: PMC4940573 DOI: 10.1155/2016/7290686] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/24/2016] [Indexed: 12/14/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) constitute the largest subdivision of the TGF-β family of ligands and are unequivocally involved in regulating stem cell behavior. Appropriate regulation of canonical BMP signaling is critical for the development and homeostasis of numerous human organ systems, as aberrations in the BMP pathway or its regulation are increasingly associated with diverse human pathologies. In this review, we provide a wide-perspective on strategies that increase or decrease BMP signaling. We briefly outline the current FDA-approved approaches, highlight emerging next-generation technologies, and postulate prospective avenues for future investigation. We also detail how activating other pathways may indirectly modulate BMP signaling, with a particular emphasis on the relationship between the BMP and Activin/TGF-β pathways.
Collapse
|
11
|
BMPs in bone regeneration: Less is more effective, a paradigm-shift. Cytokine Growth Factor Rev 2015; 27:141-8. [PMID: 26678813 DOI: 10.1016/j.cytogfr.2015.11.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 11/13/2015] [Indexed: 11/20/2022]
Abstract
Worldwide, the clinical application of BMP2 (bone morphogenetic protein 2) has helped an increasing number of patients achieve bone regeneration in a clinical area lacking simple solutions for difficult bone healing situations. In this review, the historical aspects and current critical clinical issues are summarized and positioned against new research findings on efficacy and function of BMP2. Knowledge concerning how the dose of this growth factor as well as its interaction with mechanical loading influences the efficacy of bone regeneration, might open possible future strategies in cases where bony bridging is unachievable so far. In conclusion, it is apparent that there is a substantial need for continued basic research to unravel the details of its function and the underlying signaling pathways involved, to make BMP2 even more relevant and safe in daily clinical use, even though this growth factor has been known for more than 125 years.
Collapse
|