1
|
Chapman S, Roberts J, Roberts AJ, Ogden H, Izard R, Smith L, Chichger H, Struszczak L, Rawcliffe AJ. Pre-sleep protein supplementation does not improve performance, body composition, and recovery in British Army recruits (part 1). Front Nutr 2023; 10:1262044. [PMID: 38144428 PMCID: PMC10748761 DOI: 10.3389/fnut.2023.1262044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/13/2023] [Indexed: 12/26/2023] Open
Abstract
Dietary protein is crucial for optimising physical training adaptations such as muscular strength and mass, which are key aims for athletic populations, including British Army recruits. New recruits fail to meet the recommended protein intake during basic training (BT), with negligible amounts consumed in the evening. This study assessed the influence of a daily bolus of protein prior to sleep on performance adaptations, body composition and recovery in British Army recruits. 99 men and 23 women [mean ± standard deviation (SD): age: 21.3 ± 3.5 years, height: 174.8 ± 8.4 cm, body mass 75.4 ± 12.2 kg] were randomised into a dietary control (CON), carbohydrate placebo (PLA), moderate (20 g) protein (MOD) or high (60 g) protein (HIGH) supplementation group. Supplements were isocaloric and were consumed on weekday evenings between 2000 and 2100 for 12 weeks during BT. Performance tests (mid-thigh pull, medicine ball throw, 2 km run time, maximal push-up, and maximal vertical jump) and body composition were assessed at the start and end of BT. Dietary intake, energy expenditure, salivary hormones, urinary nitrogen balance, perceived muscle soreness, rating of perceived exertion, mood, and fatigue were assessed at the start, middle and end of BT. Protein supplementation increased protein intake in HIGH (2.16 ± 0.50 g⸱kg-1⸱day-1) and MOD (1.71 ± 0.48 g⸱kg-1⸱day-1) compared to CON (1.17 ± 0.24 g⸱kg-1⸱day-1) and PLA (1.31 ± 0.29 g⸱kg-1⸱day-1; p < 0.001). Despite this, there was no impact of supplementation on mid-thigh pull performance (CON = 7 ± 19%, PLA = 7 ± 19%, MOD = 0 ± 16%, and HIGH = 4 ± 14%; p = 0.554) or any other performance measures (p > 0.05). Fat-free mass changes were also similar between groups (CON = 4 ± 3%, PLA = 4 ± 4%, MOD = 3 ± 3%, HIGH = 5 ± 4%, p = 0.959). There was no impact of protein supplementation on any other body composition or recovery measure. We conclude no benefits of pre-bed protein supplementation to improve performance, body composition and recovery during BT. It is possible the training stimulus was great enough, limiting the impact of protein supplementation. However, the high degree of inter-participant variability suggests an individualised use of protein supplementation should be explored, particularly in those who consume sub-optimal (<1.6 g⸱kg-1⸱day-1) habitual amounts of protein. Clinical trial registration: The study was registered with ClinicalTrials.gov, U.S. national institutes (identifier: NCT05998590).
Collapse
Affiliation(s)
- Shaun Chapman
- Army Recruit Health and Performance Research, HQ Army Recruiting and Initial Training Command, Medical Branch, UK Ministry of Defence, Upavon, United Kingdom
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, Cambridge, United Kingdom
| | - Justin Roberts
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, Cambridge, United Kingdom
| | - Andrew J. Roberts
- Army Recruit Health and Performance Research, HQ Army Recruiting and Initial Training Command, Medical Branch, UK Ministry of Defence, Upavon, United Kingdom
| | - Henry Ogden
- Army Recruit Health and Performance Research, HQ Army Recruiting and Initial Training Command, Medical Branch, UK Ministry of Defence, Upavon, United Kingdom
| | - Rachel Izard
- Defence Science and Technology, UK Ministry of Defence, Salisbury, United Kingdom
| | - Lee Smith
- Centre for Health, Performance and Wellbeing, Anglia Ruskin University, Cambridge, United Kingdom
| | - Havovi Chichger
- Biomedical Science Research Group, School of Life Science, Anglia Ruskin University, Cambridge, United Kingdom
| | - Lauren Struszczak
- Public Health and Sports Sciences, University of Exeter, Exeter, United Kingdom
| | - Alex J. Rawcliffe
- Army Recruit Health and Performance Research, HQ Army Recruiting and Initial Training Command, Medical Branch, UK Ministry of Defence, Upavon, United Kingdom
- Faculty of Science and Engineering, Anglia Ruskin University, Cambridge, United Kingdom
| |
Collapse
|
2
|
Sekel NM, Hughes JM, Sterczala AJ, Mroz KH, Lovalekar M, Cauley J, Greeves JP, Nindl BC. Utility of HR-pQCT in detecting training-induced changes in healthy adult bone morphology and microstructure. Front Physiol 2023; 14:1266292. [PMID: 37929211 PMCID: PMC10623356 DOI: 10.3389/fphys.2023.1266292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
Healthy bone adjusts its traits in an exceptionally coordinated, compensatory process. Recent advancements in skeletal imaging via High-Resolution Peripheral Quantitative Computed Tomography (HR-pQCT) allows for the in vivo 3-dimensional and longitudinal quantification of bone density, microarchitecture, geometry, and parameters of mechanical strength in response to varying strain stimuli including those resulting from exercise or military training. Further, the voxel size of 61 microns has the potential to capture subtle changes in human bone in as little as 8 weeks. Given the typical time course of bone remodeling, short-term detection of skeletal changes in bone microstructure and morphology is indicative of adaptive bone formation, the deposition of new bone formation, uncoupled from prior resorption, that can occur at mechanistically advantageous regions. This review aims to synthesize existing training-induced HR-pQCT data in three distinct populations of healthy adults excluding disease states, pharmacological intervention and nutritional supplementation. Those included are: 1) military basic or officer training 2) general population and 3) non-osteoporotic aging. This review aims to further identify similarities and contrasts with prior modalities and cumulatively interpret results within the scope of bone functional adaptation.
Collapse
Affiliation(s)
- Nicole M. Sekel
- Neuromuscular Research Laboratory, Warrior Human Performance Research Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Julie M. Hughes
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Adam J. Sterczala
- Neuromuscular Research Laboratory, Warrior Human Performance Research Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kelly H. Mroz
- Neuromuscular Research Laboratory, Warrior Human Performance Research Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mita Lovalekar
- Neuromuscular Research Laboratory, Warrior Human Performance Research Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jane Cauley
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Julie P. Greeves
- Army Health and Performance Research, UK Army, Andover, United Kingdom
| | - Bradley C. Nindl
- Neuromuscular Research Laboratory, Warrior Human Performance Research Center, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Eastman K, O’Leary TJ, Carswell A, Walsh N, Izard R, Fraser W, Greeves J. Distal Tibial Bone Properties and Bone Stress Injury Risk in Young Men Undergoing Arduous Physical Training. Calcif Tissue Int 2023; 113:317-328. [PMID: 37481657 PMCID: PMC10449708 DOI: 10.1007/s00223-023-01111-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/22/2023] [Indexed: 07/24/2023]
Abstract
Trabecular microarchitecture contributes to bone strength, but its role in bone stress injury (BSI) risk in young healthy adults is unclear. Tibial volumetric BMD (vBMD), geometry, and microarchitecture, whole-body areal BMD, lean and fat mass, biochemical markers of bone metabolism, aerobic fitness, and muscle strength and power were measured in 201 British Army male infantry recruits (age 20.7 [4.3] years, BMI 24.0 ± 2.7 kg·m2) in week one of basic training. Tibial scans were performed at the ultra-distal site, 22.5 mm from the distal endplate of the non-dominant leg using High Resolution Peripheral Quantitative Computed Tomography (XtremeCT, Scanco Medical AG, Switzerland). Binary logistic regression analysis was performed to identify associations with lower body BSI confirmed by MRI. 20 recruits (10.0%) were diagnosed with a lower body BSI. Pre-injured participants had lower cortical area, stiffness and estimated failure load (p = 0.029, 0.012 and 0.011 respectively) but tibial vBMD, geometry, and microarchitecture were not associated with BSI incidence when controlling for age, total body mass, lean body mass, height, total 25(OH)D, 2.4-km run time, peak power output and maximum dynamic lift strength. Infantry Regiment (OR 9.3 [95%CI, 2.6, 33.4]) Parachute versus Line Infantry, (p ≤ 0.001) and 2.4-km best effort run time (1.06 [95%CI, 1.02, 1.10], p < 0.033) were significant predictors. Intrinsic risk factors, including ultradistal tibial density, geometry, and microarchitecture, were not associated with lower body BSI during arduous infantry training. The ninefold increased risk of BSI in the Parachute Regiment compared with Line Infantry suggests that injury propensity is primarily a function of training load and risk factors are population-specific.
Collapse
Affiliation(s)
- Katharine Eastman
- Norwich Medical School, University of East Anglia, Norwich, UK
- Army Health and Performance Research, Army Headquarters, Andover, UK
- HQ DPHC, Coltman House, DMS Whittington, Lichfield, WS14 9PY UK
| | - Thomas J. O’Leary
- Army Health and Performance Research, Army Headquarters, Andover, UK
- Division of Surgery and Interventional Science, UCL, London, UK
| | | | - Neil Walsh
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Rachel Izard
- Science and Technology Commissioning, Defence Science and Technology, Porton Down, Salisbury, UK
| | - William Fraser
- Norwich Medical School, University of East Anglia, Norwich, UK
- Departments of Endocrinology and Clinical Biochemistry, Norfolk and Norwich University Hospitals, Norwich, UK
| | - Julie Greeves
- Norwich Medical School, University of East Anglia, Norwich, UK
- Army Health and Performance Research, Army Headquarters, Andover, UK
- Division of Surgery and Interventional Science, UCL, London, UK
| |
Collapse
|
4
|
Greeves JP, Beck B, Nindl BC, O'Leary TJ. Current risks factors and emerging biomarkers for bone stress injuries in military personnel. J Sci Med Sport 2023:S1440-2440(23)00075-0. [PMID: 37188615 DOI: 10.1016/j.jsams.2023.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 04/01/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023]
Abstract
INTRODUCTION Bone stress injuries (BSIs) have plagued the military for over 150 years; they afflict around 5 to 10% of military recruits, more so in women, and continue to place a medical and financial burden on defence. While the tibia generally adapts to the rigours of basic military training, the putative mechanisms for bone maladaptation are still unclear. METHODS This paper provides a review of the published literature on current risk factors and emerging biomarkers for BSIs in military personnel; the potential for biochemical markers of bone metabolism to monitor the response to military training; and, the association of novel biochemical 'exerkines' with bone health. RESULTS The primary risk factor for BSI in military (and athletic) populations is too much training, too soon. Appropriate physical preparation before training will likely be most protective, but routine biomarkers will not yet identify those at risk. Nutritional interventions will support a bone anabolic response to training, but exposure to stress, sleep loss, and medication is likely harmful to bone. Monitoring physiology using wearables-ovulation, sleep and stress-offer potential to inform prevention strategies. CONCLUSIONS The risk factors for BSIs are well described, but their aetiology is very complex particularly in the multi-stressor military environment. Our understanding of the skeletal responses to military training is improving as technology advances, and potential biomarkers are constantly emerging, but sophisticated and integrated approaches to prevention of BSI are warranted.
Collapse
Affiliation(s)
- Julie P Greeves
- Army Health and Performance Research, Army HQ, Andover, United Kingdom; Norwich Medical School, University of East Anglia, United Kingdom; Division of Surgery and Interventional Science, UCL, United Kingdom.
| | - Belinda Beck
- School of Health Sciences and Social Work, Griffith University, Australia; The Bone Clinic, Australia.
| | - Bradley C Nindl
- School of Health and Rehabilitation Sciences, University of Pittsburgh, United States.
| | - Thomas J O'Leary
- Army Health and Performance Research, Army HQ, Andover, United Kingdom; Division of Surgery and Interventional Science, UCL, United Kingdom.
| |
Collapse
|
5
|
Abbott A, Wang C, Stamm M, Mulcahey MK. Part II: Risk Factors for Stress Fractures in Female Military Recruits. Mil Med 2023; 188:93-99. [PMID: 35253041 DOI: 10.1093/milmed/usac033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION Stress fractures (SFx) represent a significant proportion of injuries in military recruits internationally. Stress fractures disproportionately affect female recruits, a disparity that has similarly been consistently demonstrated in female athletes. Stress fractures result in medical morbidity, financial burden, and medical discharge from military service. This review presents current literature regarding SFx risk factors to identify and/or mitigate in this high-risk population. METHODS A literature review was conducted using PubMed to find relevant articles. We utilized keywords stress fracture, military, recruits, female, risk factors, modifiable, non-modifiable, overuse, nutrition, and/or prevention. Articles older than 10 years (published before 2010) were not considered. Review articles were considered, but if a research article was cited by a review, the research was included directly. Articles with primary military data, members of the military as subjects, especially when female recruits were included, were strongly considered for inclusion in this review. RESULTS Modifiable risk factors for SFx include nutritional deficiency, especially of iron, vitamin D, and possibly calcium, poor physical fitness, suboptimal training programming for injury development and recovery, load carriage, and military footwear. Non-modifiable risk factors include female sex, greater height, lower weight and body mass index in females but lower or higher weight and body mass index in males, lower body fat percentage, and lower bone mineral density. In addition, menstrual dysfunction, low energy availability, later age at menarche, and iron deficiency pose unique risks to female recruits. Preventive measures include leadership education, programs with recovery considerations, and risk factor screening. CONCLUSION This review, Part II of a two-part series, guides multidisciplinary management of military recruits, especially females, who are at risk for developing SFx. Unique nuances of the military recruit require specific knowledge to reduce high incidence rates of injury internationally.
Collapse
Affiliation(s)
- Alexandra Abbott
- Department of Pediatrics, University of California, Los Angeles, CA 90095, USA
| | - Cindy Wang
- Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Michaela Stamm
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, LA 70118, USA
| | - Mary K Mulcahey
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, LA 70118, USA
| |
Collapse
|
6
|
Abbott A, Wang C, Stamm M, Mulcahey MK. Part I: Background and Clinical Considerations for Stress Fractures in Female Military Recruits. Mil Med 2023; 188:86-92. [PMID: 35253062 DOI: 10.1093/milmed/usac034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION Stress fractures (SFx) represent a significant proportion of musculoskeletal injuries in military recruits internationally. Incidence rates as high as 40% have been reported, varying by country and branch of military cohorts. Tibial SFx are the most common, followed by other lower extremity sites, and are related to the emphasis on running during training. SFx disproportionately affect female recruits, similarly to a disparity demonstrated in female athletes. METHODS A literature review of articles relevant to our review was conducted using PubMed, utilizing keywords stress fracture, military, recruits, diagnosis, management, treatment, prevention, epidemiology, background, and/or female. Articles older than 10 years old (prior to 2010) were not considered. Review articles were considered, but if a research article was cited by a review, the research was included directly. Articles with primary military data, members of the military as subjects, especially when female recruits were included, were strongly considered for inclusion in this review. RESULTS SFx can cause medical morbidity and financial burden and can require discharge from military service. SFx management in the military has cost the United States approximately $100 million annually, which may be underestimated due to lost duty hours or medical discharge with resulting compensation. However, SFx incidence rates have been demonstrated to be reducible with concerted efforts in military cohorts. CONCLUSION This review, Part I of a two-part series, provides updated information for multidisciplinary management of SFx in female military recruits. There are many similarities to management in athletes, but unique nuances of the military recruit require specific knowledge to reduce the high incidence rates of injury.
Collapse
Affiliation(s)
- Alexandra Abbott
- Department of Pediatrics, University of California, Los Angeles, CA 90095, USA
| | - Cindy Wang
- Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Michaela Stamm
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, LA 70118, USA
| | - Mary K Mulcahey
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, LA 70118, USA
| |
Collapse
|
7
|
Costa TMDRL, Borba VZC, Correa RGP, Moreira CA. Stress fractures. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2022; 66:765-773. [PMID: 36382766 PMCID: PMC10118812 DOI: 10.20945/2359-3997000000562] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Stress fractures (SF) represent 10%-20% of all injuries in sport medicine. An SF occurs when abnormal and repetitive loading is applied on normal bone: The body cannot adapt quickly enough, leading to microdamage and fracture. The etiology is multifactorial with numerous risk factors involved. Diagnosis of SF can be achieved by identifying intrinsic and extrinsic factors, obtaining a good history, performing a physical exam, and ordering laboratory and imaging studies (magnetic resonance imaging is the current gold standard). Relative energy deficiency in sport (RED-S) is a known risk factor. In addition, for women, it is very important know the menstrual status to identify long periods of amenorrhea in the past and the present. Early detection is important to improve the chance of symptom resolution with conservative treatment. Common presentation involves complaints of localized pain, with or without swelling, and tenderness on palpation of bony structures that begins earlier in training and progressively worsens with activity over a 2- to 3-week period. Appropriate classification of SF based on type, location, grading, and low or high risk is critical in guiding treatment strategies and influencing the time to return to sport. Stress injuries at low-risk sites are typically managed conservatively. Studies have suggested that calcium and vitamin D supplementation might be helpful. Moreover, other treatment regimens are not well established. Understanding better the pathophysiology of SFs and the potential utility of current and future bone-active therapeutics may well yield approaches that could treat SFs more effectively.
Collapse
|
8
|
Koltun KJ, Sekel NM, Bird MB, Lovalekar M, Mi Q, Martin BJ, Nindl BC. Tibial Bone Geometry Is Associated With Bone Stress Injury During Military Training in Men and Women. Front Physiol 2022; 13:803219. [PMID: 35222074 PMCID: PMC8874318 DOI: 10.3389/fphys.2022.803219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/17/2022] [Indexed: 12/03/2022] Open
Abstract
Bone stress injuries (BSI) are a common musculoskeletal condition among exercising and military populations and present a major burden to military readiness. The purpose of this investigation was to determine whether baseline measures of bone density, geometry, and strength, as assessed via peripheral quantitative computed tomography (pQCT), are predictive of tibial BSI during Marine Officer Candidates School training. Tibial pQCT scans were conducted prior to the start of physical training (n = 504; Male n = 382; Female n = 122) to measure volumetric bone mineral density (vBMD), geometry, robustness, and estimates of bone strength. Bone parameters were assessed at three tibial sites including the distal metaphysis (4% of tibial length measured from the distal endplate), mid-diaphysis (38% of tibial length measured from the distal endplate), and proximal diaphysis (66% of tibial length measured from the distal endplate). Injury surveillance data was collected throughout training. Four percent (n = 21) of the sample were diagnosed with a BSI at any anatomical site during training, 10 injuries were of the tibia. Baseline bone parameters were then tested for associations with the development of a tibial BSI during training and it was determined that cortical bone measures at diaphyseal (38 and 66%) sites were significant predictors of a prospective tibial BSI. At the mid-diaphysis (38% site), in a simple model and after adjusting for sex, age, and body size, total area [Odds Ratio (OR): 0.987, 0.983], endosteal circumference (OR: 0.853, 0.857), periosteal circumference (OR: 0.863, 0.824), and estimated bending strength (SSI; OR: 0.998, 0.997) were significant predictors of a BSI during training, respectively, such that lower values were associated with an increased likelihood of injury. Similarly, at the proximal diaphysis (66% site), total area (OR: 0.989, 0.985), endosteal circumference (OR: 0.855, 0.854), periosteal circumference (OR: 0.867, 0.823), robustness (OR: 0.007, 0.003), and SSI (OR: 0.998, 0.998) were also significant predictors of BSI in the simple and adjusted models, respectively, such that lower values were associated with an increased likelihood of injury. Results from this investigation support that narrower bones, with reduced circumference, lower total area, and lower estimated strength are associated with increased risk for tibial BSI during military training.
Collapse
Affiliation(s)
- Kristen J. Koltun
- Neuromuscular Research Laboratory, Department of Sports Medicine and Nutrition, Warrior Human Performance Research Center, University of Pittsburgh, Pittsburgh, PA, United States
| | | | | | | | | | | | | |
Collapse
|
9
|
The Relationship Between Stress Fractures and Bone Turnover Markers Is Unclear in Athletic and Military Populations: A Critically Appraised Topic. INTERNATIONAL JOURNAL OF ATHLETIC THERAPY AND TRAINING 2022. [DOI: 10.1123/ijatt.2021-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Clinical Scenario: Having an indication of how bone is remodeling in response to training load could help identify athletes and military personnel at increased stress fracture (SFx) risk. Direct assessment of bone remodeling is impractical. Biochemical markers of bone turnover are used as an indirect measure of bone remodeling and have potential to inform prevention and treatment efforts. To date, the relationship between bone turnover markers and SFxs in athletes or military personnel remains unclear. Clinical Question: Are SFxs related to bone turnover markers in athletes and military personnel? Summary of Key Findings: Seven met eligibility criteria. In five studies, an association between SFxs and bone turnover markers existed. Clinical Bottom Line: The evidence supporting a relationship between SFxs and bone turnover markers in athletes and military personnel is mixed. While five of the seven studies reported some type of relationship, no studies prospectively measured bone turnover markers in a group of athletes or military personnel without an SFx or without SFx history and followed them over time to reassess bone turnover markers upon SFx occurrence. Strength of Clinical Recommendation: In accordance with the Strength of Recommendation Taxonomy, Grade C is the most appropriate strength of recommendation rating.
Collapse
|
10
|
Sammito S, Hadzic V, Karakolis T, Kelly KR, Proctor SP, Stepens A, White G, Zimmermann WO. Risk factors for musculoskeletal injuries in the military: a qualitative systematic review of the literature from the past two decades and a new prioritizing injury model. Mil Med Res 2021; 8:66. [PMID: 34886915 PMCID: PMC8662851 DOI: 10.1186/s40779-021-00357-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 11/12/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Musculoskeletal injuries (MSkIs) are a leading cause of health care utilization, as well as limited duty and disability in the US military and other armed forces. MSkIs affect members of the military during initial training, operational training, and deployment and have a direct negative impact on overall troop readiness. Currently, a systematic overview of all risk factors for MSkIs in the military is not available. METHODS A systematic literature search was carried out using the PubMed, Ovid/Medline, and Web of Science databases from January 1, 2000 to September 10, 2019. Additionally, a reference list scan was performed (using the "snowball method"). Thereafter, an international, multidisciplinary expert panel scored the level of evidence per risk factor, and a classification of modifiable/non-modifiable was made. RESULTS In total, 176 original papers and 3 meta-analyses were included in the review. A list of 57 reported potential risk factors was formed. For 21 risk factors, the level of evidence was considered moderate or strong. Based on this literature review and an in-depth analysis, the expert panel developed a model to display the most relevant risk factors identified, introducing the idea of the "order of importance" and including concepts that are modifiable/non-modifiable, as well as extrinsic/intrinsic risk factors. CONCLUSIONS This is the qualitative systematic review of studies on risk factors for MSkIs in the military that has attempted to be all-inclusive. A total of 57 different potential risk factors were identified, and a new, prioritizing injury model was developed. This model may help us to understand risk factors that can be addressed, and in which order they should be prioritized when planning intervention strategies within military groups.
Collapse
Affiliation(s)
- Stefan Sammito
- Section Experimental Aerospace Medicine Research, German Air Force Centre of Aerospace Medicine, Flughafenstraße 1, 51147 Cologne, Germany
- Occupational Medicine, Faculty of Medicine, Otto-Von-Guericke-University of Magdeburg, 39120 Magdeburg, Germany
| | - Vedran Hadzic
- Faculty of Sport, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Thomas Karakolis
- Defence Research and Development Canada, Toronto, ON M3K 2C9 Canada
| | - Karen R. Kelly
- Warfighter Performance, Naval Health Research Center, San Diego, CA 92106-3599 USA
| | - Susan P. Proctor
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA 01760 USA
- Research Service, VA Boston Healthcare System, Boston, MA 02130 USA
| | - Ainars Stepens
- Centre for Military Medicine Research, Riga Stradins University, Riga, 1007 Latvia
| | - Graham White
- Human and Social Sciences Group, Defense Science and Technology Laboratory, Portsdown Hill Road, Fareham, PO17 6AD UK
| | - Wes O. Zimmermann
- Department of Military Sports Medicine, Royal Netherlands Army, 3584 AB Utrecht, The Netherlands
- Department of Military/Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA
| |
Collapse
|
11
|
Baker BS, Buchanan SR, Black CD, Bemben MG, Bemben DA. Bone, Biomarker, Body Composition, and Performance Responses to 8 Weeks of ROTC Training. J Athl Train 2021; 57:571-580. [PMID: 34279654 DOI: 10.4085/1062-6050-0634.20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CONTEXT Military personnel engage in vigorous exercise, often resulting in higher bone mineral density; however, lower leg bone injuries are common in this population. Predictors of change in tibial bone quality and strength need to be characterized in this high-risk population. OBJECTIVE This study aimed to examine the effects of an eight-week military training intervention on total body and site-specific bone density and tibial bone quality, serum biomarkers (parathyroid hormone and sclerostin), body composition, and physical performance. Additionally, we sought to investigate what outcome variables (biomarkers, body composition, physical performance) would be predictive of estimated tibial bone strength in college-aged Reserve Officers' Training Corps (ROTC) members. DESIGN Prospective Cohort Study. SETTING XXX University. Patients of Other Participants: ROTC (n=14 male; n=4 female) were matched for sex, age, and body mass to physically active Controls (n=14 male; n=4 female). ROTC engaged in an eight-week training intervention, while physically active Controls made no changes to their exercise routines. MAIN OUTCOME MEASURES Pre general health questionnaires and pre, mid, and post intervention bone scans (DXA, pQCT), serum blood draws (parathyroid hormone and sclerostin), and physical performance measures (muscle strength and aerobic capacity) were tested. RESULTS ROTC participants exhibited significantly increased hip bone density and content (all p≤0.03) after the eight-week intervention. Sclerostin, not PTH, was a significant positive correlate and predictor in all ROTC models for estimated bone strength at the fracture prone 38% tibial site. Both groups decreased total body and regional fat mass and ROTC increased aerobic capacity (all p≤0.05). CONCLUSIONS All bone, body composition, and performance measures either improved or were maintained in response to ROTC training and sclerostin should be further investigated as a potential early indicator of changes in estimated tibial bone strength in military cohorts.
Collapse
Affiliation(s)
- Breanne S Baker
- Department of Orthopaedic Surgery, Missouri Orthopaedic Institute, University of Missouri, 1100 Virginia Ave, Columbia, MO 65212, Office: 573-882-3038, , Twitter @DrBreeBaker-Also affiliated with the Department of Health and Exercise Science, University of Oklahoma, Norman, OK, 73071
| | - Samuel R Buchanan
- Department of Health and Human Performance, University of Texas Rio Grande Valley, Edinburg, TX, 78539. -Also affiliated with the Department of Health and Exercise Science, University of Oklahoma, Norman, OK, 73071
| | - Christopher D Black
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, 73071, Twitter @ChrisBlack_PhD
| | - Michael G Bemben
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, 73071
| | - Debra A Bemben
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, 73071
| |
Collapse
|
12
|
Nattiv A, De Souza MJ, Koltun KJ, Misra M, Kussman A, Williams NI, Barrack MT, Kraus E, Joy E, Fredericson M. The Male Athlete Triad-A Consensus Statement From the Female and Male Athlete Triad Coalition Part 1: Definition and Scientific Basis. Clin J Sport Med 2021; 31:335-348. [PMID: 34091537 DOI: 10.1097/jsm.0000000000000946] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 04/23/2021] [Indexed: 02/02/2023]
Abstract
ABSTRACT The Male Athlete Triad is a syndrome of 3 interrelated conditions most common in adolescent and young adult male endurance and weight-class athletes and includes the clinically relevant outcomes of (1) energy deficiency/low energy availability (EA) with or without disordered eating/eating disorders, (2) functional hypothalamic hypogonadism, and (3) osteoporosis or low bone mineral density with or without bone stress injury (BSI). The causal role of low EA in the modulation of reproductive function and skeletal health in the male athlete reinforces the notion that skeletal health and reproductive outcomes are the primary clinical concerns. At present, the specific intermediate subclinical outcomes are less clearly defined in male athletes than those in female athletes and are represented as subtle alterations in the hypothalamic-pituitary-gonadal axis and increased risk for BSI. The degree of energy deficiency/low EA associated with such alterations remains unclear. However, available data suggest a more severe energy deficiency/low EA state is needed to affect reproductive and skeletal health in the Male Athlete Triad than in the Female Athlete Triad. Additional research is needed to further clarify and quantify this association. The Female and Male Athlete Triad Coalition Consensus Statements include evidence statements developed after a roundtable of experts held in conjunction with the American College of Sports Medicine 64th Annual Meeting in Denver, Colorado, in 2017 and are in 2 parts-Part I: Definition and Scientific Basis and Part 2: The Male Athlete Triad: Diagnosis, Treatment, and Return-to-Play. In this first article, we discuss the scientific evidence to support the Male Athlete Triad model.
Collapse
Affiliation(s)
- Aurelia Nattiv
- Division of Sports Medicine and Non-Operative Orthopaedics, Departments of Family Medicine and Orthopaedic Surgery, University of California Los Angeles, Los Angeles, California
| | - Mary Jane De Souza
- Department of Kinesiology, Penn State University, University Park, Pennsylvania
| | - Kristen J Koltun
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Madhusmita Misra
- Division of Pediatric Endocrinology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andrea Kussman
- Department of Orthopaedic Surgery, Stanford University, Stanford, California
| | - Nancy I Williams
- Department of Kinesiology, Penn State University, University Park, Pennsylvania
| | - Michelle T Barrack
- Department of Family and Consumer Sciences, California State University, Long Beach, Long Beach, California; and
| | - Emily Kraus
- Department of Orthopaedic Surgery, Stanford University, Stanford, California
| | | | - Michael Fredericson
- Department of Orthopaedic Surgery, Stanford University, Stanford, California
| |
Collapse
|
13
|
O'Leary TJ, Rice HM, Greeves JP. Biomechanical Basis of Predicting and Preventing Lower Limb Stress Fractures During Arduous Training. Curr Osteoporos Rep 2021; 19:308-317. [PMID: 33635518 DOI: 10.1007/s11914-021-00671-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Stress fractures at weight-bearing sites, particularly the tibia, are common in military recruits and athletes. This review presents recent findings from human imaging and biomechanics studies aimed at predicting and preventing stress fractures. RECENT FINDINGS Peripheral quantitative computed tomography (pQCT) provides evidence that cortical bone geometry (tibial width and area) is associated with tibial stress fracture risk during weight-bearing exercise. The contribution of bone trabecular microarchitecture, cortical porosity, and bone material properties in the pathophysiology of stress fractures is less clear, but high-resolution pQCT and new techniques such as impact microindentation may improve our understanding of the role of microarchitecture and material properties in stress fracture prediction. Military studies demonstrate osteogenic outcomes from high impact, repetitive tibial loading during training. Kinetic and kinematic characteristics may influence stress fracture risk, but there is no evidence that interventions to modify biomechanics can reduce the incidence of stress fracture. Strategies to promote adaptive bone formation, in combination with improved techniques to assess bone strength, present exciting opportunities for future research to prevent stress fractures.
Collapse
Affiliation(s)
- Thomas J O'Leary
- Army Health and Performance Research, Army Headquarters, Andover, Hampshire, UK
- Division of Surgery and Interventional Science, UCL, London, UK
| | - Hannah M Rice
- Sport and Health Sciences, University of Exeter, Exeter, UK
| | - Julie P Greeves
- Army Health and Performance Research, Army Headquarters, Andover, Hampshire, UK.
- Division of Surgery and Interventional Science, UCL, London, UK.
- Norwich Medical School, University of East Anglia, Norwich, UK.
| |
Collapse
|
14
|
Armstrong RA, Davey T, Allsopp AJ, Lanham-New SA, Oduoza U, Cooper JA, Montgomery HE, Fallowfield JL. Low serum 25-hydroxyvitamin D status in the pathogenesis of stress fractures in military personnel: An evidenced link to support injury risk management. PLoS One 2020; 15:e0229638. [PMID: 32208427 PMCID: PMC7092979 DOI: 10.1371/journal.pone.0229638] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/24/2020] [Indexed: 11/19/2022] Open
Abstract
Stress fractures are common amongst healthy military recruits and athletes. Reduced vitamin D availability, measured by serum 25-hydroxyvitamin D (25OHD) status, has been associated with stress fracture risk during the 32-week Royal Marines (RM) training programme. A gene-environment interaction study was undertaken to explore this relationship to inform specific injury risk mitigation strategies. Fifty-one males who developed a stress fracture during RM training (n = 9 in weeks 1-15; n = 42 in weeks 16-32) and 141 uninjured controls were genotyped for the vitamin D receptor (VDR) FokI polymorphism. Serum 25OHD was measured at the start, middle and end (weeks 1, 15 and 32) of training. Serum 25OHD concentration increased in controls between weeks 1-15 (61.8±29.1 to 72.6±28.8 nmol/L, p = 0.01). Recruits who fractured did not show this rise and had lower week-15 25OHD concentration (p = 0.01). Higher week-15 25OHD concentration was associated with reduced stress fracture risk (adjusted OR 0.55[0.32-0.96] per 1SD increase, p = 0.04): the greater the increase in 25OHD, the greater the protective effect (p = 0.01). The f-allele was over-represented in fracture cases compared with controls (p<0.05). Baseline 25OHD status interacted with VDR genotype: a higher level was associated with reduced fracture risk in f-allele carriers (adjusted OR 0.39[0.17-0.91], p = 0.01). Improved 25OHD status between weeks 1-15 had a greater protective effect in FF genotype individuals (adjusted OR 0.31[0.12-0.81] vs. 1.78[0.90-3.49], p<0.01). Stress fracture risk in RM recruits is impacted by the interaction of VDR genotype with vitamin D status. This further supports the role of low serum vitamin D concentrations in causing stress fractures, and hence prophylactic vitamin D supplementation as an injury risk mitigation strategy.
Collapse
Affiliation(s)
- Richard A. Armstrong
- University College London Centre for Human Health and Performance and Institute for Sport, Exercise and Health, London, United Kingdom
| | - Trish Davey
- Institute of Naval Medicine, Alverstoke, Hampshire, United Kingdom
| | | | - Susan A. Lanham-New
- Nutritional Sciences Department, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Uche Oduoza
- University College London Centre for Human Health and Performance and Institute for Sport, Exercise and Health, London, United Kingdom
| | - Jacqueline A. Cooper
- University College London Centre for Human Health and Performance and Institute for Sport, Exercise and Health, London, United Kingdom
| | - Hugh E. Montgomery
- University College London Centre for Human Health and Performance and Institute for Sport, Exercise and Health, London, United Kingdom
| | | |
Collapse
|
15
|
Schanda JE, Kocijan R, Resch H, Baierl A, Feichtinger X, Mittermayr R, Plachel F, Wakolbinger R, Wolff K, Fialka C, Gruther W, Muschitz C. Bone Stress Injuries Are Associated With Differences in Bone Microarchitecture in Male Professional Soldiers. J Orthop Res 2019; 37:2516-2523. [PMID: 31410876 DOI: 10.1002/jor.24442] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/07/2019] [Indexed: 02/04/2023]
Abstract
Bone stress injuries are commonly due to repetitive loading, as often described in competitive athletes or military recruits. The underlying pathophysiology of bone stress injuries is multifactorial. The present cross-sectional study investigated (i) cortical and trabecular bone microstructure as well as volumetric bone mineral density in subjects with bone stress injuries at the tibial diaphysis, measured at the distal tibia and the distal radius by means of high-resolution peripheral quantitative computed tomography (CT), (ii) areal bone mineral density using dual-energy X-ray absorptiometry as well as calcaneal dual X-ray absorptiometry and laser, and (iii) the influence on bone turnover markers of formation and resorption at the early phase after injury. A total of 26 Caucasian male professional soldiers with post-training bone stress injury at the tibial diaphysis were included (case group). A total of 50 male, Caucasian professional soldiers from the same military institution served as controls (control group). High-resolution peripheral quantitative CT revealed a higher total area at the radius within the case group. Cortical bone mineral density was reduced at the radius and tibia within the case group. The trabecular number and trabecular thickness were reduced at the tibia in the case group. The trabecular network was more inhomogeneous at the radius and tibia within the case group. Calcaneal dual X-ray absorptiometry and laser was significantly reduced in the case group. This study quantified differences in bone microstructure among otherwise healthy individuals. Differences in bone microarchitecture may impair the biomechanical properties by increasing the susceptibility to sustain bone stress injuries. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2516-2523, 2019.
Collapse
Affiliation(s)
- Jakob E Schanda
- Department of Trauma Surgery, AUVA Trauma Center Meidling, Kundratstrasse 37, Vienna, A-1120, Austria
| | - Roland Kocijan
- Medical Department II-VINFORCE Study Group, St. Vincent Hospital, Academic Teaching Hospital of the Medical University of Vienna, Stumpergasse 13, Vienna, A-1060, Austria
| | - Heinrich Resch
- Medical Department II-VINFORCE Study Group, St. Vincent Hospital, Academic Teaching Hospital of the Medical University of Vienna, Stumpergasse 13, Vienna, A-1060, Austria.,Karl Landsteiner Institute for Gastroenterology, Rheumatology, and Osteology, Stumpergasse 13, Vienna, A-1060, Austria.,Medical Faculty, Bone Diseases Unit, Sigmund Freud University, Freudplatz 1, Vienna, A-1020, Austria
| | - Andreas Baierl
- Department of Statistics and Operations Research, University of Vienna, Oskar-Morgenstern-Platz 1, Vienna, A-1090, Austria
| | - Xaver Feichtinger
- Department of Trauma Surgery, AUVA Trauma Center Meidling, Kundratstrasse 37, Vienna, A-1120, Austria
| | - Rainer Mittermayr
- Department of Trauma Surgery, AUVA Trauma Center Meidling, Kundratstrasse 37, Vienna, A-1120, Austria
| | - Fabian Plachel
- Charité-Universitätsmedizin Berlin, Campus Virchow, Center for Musculoskeletal Surgery, Augustenburger Platz 1, Berlin, D-13353, Germany
| | - Robert Wakolbinger
- Department of Physical Medicine and Rehabilitation, Danube Hospital-Social Medical Center East, Langobardenstrasse 122, Vienna, A-1220, Austria
| | - Klaus Wolff
- Department of Surgery, Austrian Armed Forces, Military Medical Cluster East, Bruenner Strasse 238, Vienna, A-1210, Austria
| | - Christian Fialka
- Department of Trauma Surgery, AUVA Trauma Center Meidling, Kundratstrasse 37, Vienna, A-1120, Austria.,Medical Faculty, Traumatology Unit, Sigmund Freund University, Freudplatz 1, Vienna, A-1020, Austria
| | - Wolfgang Gruther
- Department of Physical Medicine, Rehabilitation and Occupational Medicine, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
| | - Christian Muschitz
- Medical Department II-VINFORCE Study Group, St. Vincent Hospital, Academic Teaching Hospital of the Medical University of Vienna, Stumpergasse 13, Vienna, A-1060, Austria
| |
Collapse
|
16
|
Schermann H, Ankory R, Shlaifer A, Dolkart O, Rotman D, Yoffe V, Karakis I, Chechik O. Lower risk of stress fractures in young adults with ADHD under chronic treatment with methylphenidate. Bone 2019; 120:20-24. [PMID: 30267775 DOI: 10.1016/j.bone.2018.09.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/08/2018] [Accepted: 09/25/2018] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Methylphenidate (MP) use is highly prevalent among children and young adults. Previous basic and epidemiological research demonstrated an adverse effect of MP on bone mass. Studies in military recruits have shown that history of MP use before conscription was a risk factor for stress fractures (SF) during the service. METHODS This study is part of the project in which the association between MP use and incidence of SF was retrospectively investigated in a cohort of healthy conscripts aged 18-25, who served for at least 12 months between 2008 and 2017. Baseline information included sex, age, weight, height, geographic origin, socioeconomic status, and education. Subjects were divided into five groups: subjects without ADHD; untreated subjects with ADHD; and subjects with ADHD and prescriptions of 1-90, 91-180, or 181+ tablets during the study period. The primary outcome was at least one diagnosis of stress fracture during the study. RESULTS Among 682,110 subjects (409,175 men [60%]), 29,888 (4.4%) had fractures. MP was used by 1681 (0.4%) men and 2828 (1%) women. In both men and women, SF incidence was significantly higher among subjects with untreated ADHD (7.9% and 5.4%, respectively) and significantly lower in subjects with treated ADHD (1.9-3%; 0.3-4.3%), compared to healthy controls (5.3% and 2.9%). After multivariate adjustment, subjects with untreated ADHD remained at an increased risk of fracture (men OR = 1.66, p < 0.001 and women OR = 1.33, p = 0.007), whereas only subjects with highest exposure to MP (180+ tablets) had significantly lower chances for fracture (men OR = 0.49, p = 0.08 and women OR = 0.09, p = 0.02), compared to healthy controls. DISCUSSION The study has demonstrated lower risk of stress fractures with concurrent MP use. The findings in this population challenge our understanding of the MP effect on bone integrity and prompt further basic research.
Collapse
Affiliation(s)
- Haggai Schermann
- Division of Orthopedics, Tel Aviv Sourasky Medical Center affiliated with Tel Aviv University, Tel Aviv, Israel.
| | - Ran Ankory
- Division of Orthopedics, Tel Aviv Sourasky Medical Center affiliated with Tel Aviv University, Tel Aviv, Israel
| | - Amir Shlaifer
- Division of Orthopedics, Tel Aviv Sourasky Medical Center affiliated with Tel Aviv University, Tel Aviv, Israel
| | - Oleg Dolkart
- Division of Orthopedics, Tel Aviv Sourasky Medical Center affiliated with Tel Aviv University, Tel Aviv, Israel
| | - Dani Rotman
- Division of Orthopedics, Tel Aviv Sourasky Medical Center affiliated with Tel Aviv University, Tel Aviv, Israel
| | - Vicky Yoffe
- Division of Orthopedics, Tel Aviv Sourasky Medical Center affiliated with Tel Aviv University, Tel Aviv, Israel
| | - Isabella Karakis
- Environmental Epidemiology Department, Public Health Services, Ministry of Health, Israel; Ashkelon Academic College, Ashkelon, Israel
| | - Ofir Chechik
- Division of Orthopedics, Tel Aviv Sourasky Medical Center affiliated with Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
17
|
Serum 25-hydroxyvitamin D fluctuations in military personnel during 6-month summer operational deployments in Afghanistan. Br J Nutr 2019; 121:384-392. [DOI: 10.1017/s000711451800346x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
AbstractSoldier operational performance is determined by their fitness, nutritional status, quality of rest/recovery, and remaining injury/illness free. Understanding large fluctuations in nutritional status during operations is critical to safeguarding health and well-being. There are limited data world-wide describing the effect of extreme climate change on nutrient profiles. This study investigated the effect of hot-dry deployments on vitamin D status (assessed from 25-hydroxyvitamin D (25(OH)D) concentration) of young, male, military volunteers. Two data sets are presented (pilot study, n 37; main study, n 98), examining serum 25(OH)D concentrations before and during 6-month summer operational deployments to Afghanistan (March to October/November). Body mass, percentage of body fat, dietary intake and serum 25(OH)D concentrations were measured. In addition, parathyroid hormone (PTH), adjusted Ca and albumin concentrations were measured in the main study to better understand 25(OH)D fluctuations. Body mass and fat mass (FM) losses were greater for early (pre- to mid-) deployment compared with late (mid- to post-) deployment (P<0·05). Dietary intake was well-maintained despite high rates of energy expenditure. A pronounced increase in 25(OH)D was observed between pre- (March) and mid-deployment (June) (pilot study: 51 (sd 20) v. 212 (sd 85) nmol/l, P<0·05; main study: 55 (sd 22) v. 167 (sd 71) nmol/l, P<0·05) and remained elevated post-deployment (October/November). In contrast, PTH was highest pre-deployment, decreasing thereafter (main study: 4·45 (sd 2·20) v. 3·79 (sd 1·50) pmol/l, P<0·05). The typical seasonal cycling of vitamin D appeared exaggerated in this active male population undertaking an arduous summer deployment. Further research is warranted, where such large seasonal vitamin D fluctuations may be detrimental to bone health in the longer-term.
Collapse
|
18
|
Dixon S, Nunns M, House C, Rice H, Mostazir M, Stiles V, Davey T, Fallowfield J, Allsopp A. Prospective study of biomechanical risk factors for second and third metatarsal stress fractures in military recruits. J Sci Med Sport 2018; 22:135-139. [PMID: 30057365 DOI: 10.1016/j.jsams.2018.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/12/2018] [Accepted: 06/21/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVES This prospective study investigated anatomical and biomechanical risk factors for second and third metatarsal stress fractures in military recruits during training. DESIGN Prospective cohort study. METHODS Anatomical and biomechanical measures were taken for 1065 Royal Marines recruits at the start of training when injury-free. Data included passive range of ankle dorsi-flexion, dynamic peak ankle dorsi-flexion and plantar pressures during barefoot running. Separate univariate regression models were developed to identify differences between recruits who developed second (n=7) or third (n=14) metatarsal stress fracture and a cohort of recruits completing training with no injury (n=150) (p<0.05). A multinomial logistic regression model was developed to predict the risk of injury for the two sites compared with the no-injury group. Multinomial logistic regression results were back transformed from log scale and presented in Relative Risk Ratios (RRR) with 95% confidence intervals (CI). RESULTS Lower dynamic arch index (high arch) (RRR: 0.75, CI: 0.63-0.89, p<0.01) and lower foot abduction (RRR: 0.87, CI: 0.80-0.96, p<0.01) were identified as increasing risk for second metatarsal stress fracture, while younger age (RRR: 0.78, CI: 0.61-0.99, p<0.05) and later peak pressure at the second metatarsal head area (RRR: 1.19, CI: 1.04-1.35, p<0.01) were identified as risk factors for third metatarsal stress fracture. CONCLUSIONS For second metatarsal stress fracture, aspects of foot type have been identified as influencing injury risk. For third metatarsal stress fracture, a delayed forefoot loading increases injury risk. Identification of these different injury mechanisms can inform development of interventions for treatment and prevention.
Collapse
Affiliation(s)
- Sharon Dixon
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, UK.
| | - Michael Nunns
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, UK
| | - Carol House
- Institute of Naval Medicine, Alverstoke, Hampshire, PO12 2DL, UK
| | - Hannah Rice
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, UK
| | - Mohammod Mostazir
- Department of Psychology, College of Life and Environmental Sciences, University of Exeter, UK
| | - Victoria Stiles
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, UK
| | - Trish Davey
- Institute of Naval Medicine, Alverstoke, Hampshire, PO12 2DL, UK
| | | | - Adrian Allsopp
- Institute of Naval Medicine, Alverstoke, Hampshire, PO12 2DL, UK
| |
Collapse
|
19
|
Ben-Ami IS, Ankory R, Kadar A, Rotman D, Snir N, Schermann H. The Effect of Previous Methylphenidate Use on Incidence of Stress Fractures in Military Recruits: A Retrospective Cohort. J Bone Joint Surg Am 2018; 100:930-935. [PMID: 29870443 DOI: 10.2106/jbjs.17.01267] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Previous research has detected an increased risk of stress fractures among subjects who reported previous use of methylphenidate. Conversely, stimulant medication use has been associated with traumatic fracture risk reduction, possibly because of the improved control of the underlying symptoms of attention deficit hyperactivity disorder (ADHD). The goal of this study was to investigate the effect of previous methylphenidate use on the incidence of traumatic and stress fractures among combat soldiers with previously treated and untreated ADHD. METHODS The retrospective cohort included 100,000 combat soldiers recruited to the Israeli Defense Forces from 2005 through 2015. Diagnosis of ADHD and previous exposure to methylphenidate were determined on the basis of self-reported recruitment questionnaires and medical records. Accordingly, the cohort was divided into 3 groups: subjects with ADHD who were previously treated with methylphenidate (n = 689), untreated subjects with ADHD reporting no medication use (n = 762), and controls having no ADHD diagnosis (n = 98,549). Logistic regressions were fitted to determine the odds ratios (ORs) of study subjects for stress and non-stress (traumatic) fractures. Multivariate analysis incorporated baseline characteristics, including age, sex, weight, duration of service, and diagnosis of anemia, at some point during the service. RESULTS After adjustment for sex, anemia, weight, age, and duration of service, the risk of traumatic fractures was increased in both subjects with treated ADHD (OR, 1.03 [95% confidence interval (CI), 1.00 to 1.05]) and subjects with untreated ADHD (OR, 1.04 [95% CI, 1.02 to 1.07]) compared with controls. Subjects in the treated ADHD group were at a higher risk of stress fractures (OR, 1.04 [95% CI, 1.02 to 1.07]). Interestingly, a diagnosis of anemia was an independent predictor of stress fractures (OR, 1.05 [95% CI, 1.04 to 1.06]). CONCLUSIONS Methylphenidate use is associated with an increased risk of stress fractures but a decreased risk of traumatic fractures in individuals diagnosed with ADHD. These and previous findings may serve as sufficient basis for screening for other risk factors and perhaps taking prevention measures in all those using stimulant medications, especially those planning to engage in strenuous physical activity. LEVEL OF EVIDENCE Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Ilan S Ben-Ami
- Orthopaedic Surgery Division, Tel-Aviv Sourasky Medical Center, Affiliated with Tel-Aviv University, Tel-Aviv, Israel.,Unit of Military Physiology, Heller Institute of Medical Research at Sheba Tel-Hashomer Medical Center, Affiliated with Tel-Aviv University, Ramat Gan, Israel
| | - Ran Ankory
- Orthopaedic Surgery Division, Tel-Aviv Sourasky Medical Center, Affiliated with Tel-Aviv University, Tel-Aviv, Israel
| | - Assaf Kadar
- Orthopaedic Surgery Division, Tel-Aviv Sourasky Medical Center, Affiliated with Tel-Aviv University, Tel-Aviv, Israel
| | - Dani Rotman
- Orthopaedic Surgery Division, Tel-Aviv Sourasky Medical Center, Affiliated with Tel-Aviv University, Tel-Aviv, Israel
| | - Nimrod Snir
- Orthopaedic Surgery Division, Tel-Aviv Sourasky Medical Center, Affiliated with Tel-Aviv University, Tel-Aviv, Israel
| | - Haggai Schermann
- Orthopaedic Surgery Division, Tel-Aviv Sourasky Medical Center, Affiliated with Tel-Aviv University, Tel-Aviv, Israel.,Unit of Military Physiology, Heller Institute of Medical Research at Sheba Tel-Hashomer Medical Center, Affiliated with Tel-Aviv University, Ramat Gan, Israel
| |
Collapse
|
20
|
Schermann H, Ben-Ami IS, Tudor A, Amar E, Rath E, Yanovich R. Past Methylphenidate Exposure and Stress Fractures in Combat Soldiers: A Case-Control Study. Am J Sports Med 2018; 46:728-733. [PMID: 29236514 DOI: 10.1177/0363546517741705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Previous research has revealed decreased bone mineral density (BMD) among children and adolescents who receive methylphenidate (MP) treatment for attention deficit hyperactivity disorder (ADHD). These findings have major clinical implications given that the prevalence of medication-treated ADHD is on the rise worldwide. We decided to investigate the clinical effect of MP exposure on the incidence of stress fractures, for which a low BMD is a risk factor. HYPOTHESIS Exposure to MP is a risk factor for stress fractures. STUDY DESIGN Case-control study; Level of evidence, 3. METHODS This is a case-control study of combat soldiers who served in the military for 3 years between 2005 and 2015. The case group included 2400 soldiers with at least 1 stress fracture diagnosed by a bone scan. The control group comprised 6187 combat soldiers without a diagnosis of a stress fracture. The use of MP was determined by an automated text search of medical records and manual sorting of the results. Other study variables included age; sex; weight; height; body mass index (BMI); place of birth; and characterization of fractures by location, side, and grade. Odds ratios of stress fractures, the attributable proportion among the exposed, and the population attributable fraction were calculated using standard contingency tables. Logistic regression was fitted after adjusting for covariates. RESULTS The previous use of MP was associated with a higher risk of stress fractures (odds ratio, 1.15 [95% CI, 1.07-1.24]). The attributable proportion was 13.2%, and the population attributable fraction was 0.3%. Logistic regression demonstrated an increased risk of stress fractures associated with past MP use, preserved after adjusting for BMI, sex, and place of birth ( P = .005). Female sex, BMI ≤20 kg/m2, and 20 < BMI ≤25 kg/m2 were independent positive predictors of a stress fracture, while African origin was a negative predictor. Most participants who used MP had only 1 fracture (77.8%), while the majority of participants who did not use MP in the past had ≥2 coincident fractures (53.5%) ( P = .003). CONCLUSION This study supports the hypothesis that an MP-associated reduction in BMD has a clinical effect in the form of an increased incidence of stress fractures. The high percentage of fractures attributed to MP use may serve as a basis for risk stratification, that is, the referral of patients with a history of MP use to BMD measurements.
Collapse
Affiliation(s)
- Haggai Schermann
- Orthopedic Surgery Division, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel.,Unit of Military Physiology, Heller Institute of Medical Research, Sheba Medical Center at Tel HaShomer, Tel Aviv University, Ramat Gan, Israel
| | - Ilan Shalom Ben-Ami
- Orthopedic Surgery Division, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Adrian Tudor
- Orthopedic Surgery Division, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Eyal Amar
- Orthopedic Surgery Division, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Ehud Rath
- Orthopedic Surgery Division, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Ran Yanovich
- Unit of Military Physiology, Heller Institute of Medical Research, Sheba Medical Center at Tel HaShomer, Tel Aviv University, Ramat Gan, Israel
| |
Collapse
|
21
|
Sanchez-Santos MT, Davey T, Leyland KM, Allsopp AJ, Lanham-New SA, Judge A, Arden NK, Fallowfield JL. Development of a Prediction Model for Stress Fracture During an Intensive Physical Training Program: The Royal Marines Commandos. Orthop J Sports Med 2017; 5:2325967117716381. [PMID: 28804727 PMCID: PMC5533266 DOI: 10.1177/2325967117716381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Stress fractures (SFs) are one of the more severe overuse injuries in military training, and therefore, knowledge of potential risk factors is needed to assist in developing mitigating strategies. PURPOSE To develop a prediction model for risk of SF in Royal Marines (RM) recruits during an arduous military training program. STUDY DESIGN Case-control study; Level of evidence, 3. METHODS RM recruits (N = 1082; age range, 16-33 years) who enrolled between September 2009 and July 2010 were prospectively followed through the 32-week RM training program. SF diagnosis was confirmed from a positive radiograph or magnetic resonance imaging scan. Potential risk factors assessed at week 1 included recruit characteristics, anthropometric assessment, dietary supplement use, lifestyle habits, fitness assessment, blood samples, 25(OH)D, bone strength as measured by heel broadband ultrasound attention, history of physical activity, and previous and current food intake. A logistic least absolute shrinkage and selection operator (LASSO) regression with 10-fold cross-validation was used to select potential predictors among 47 candidate variables. Model performance was assessed using measures of discrimination (c-index) and calibration. Bootstrapping was used for internal validation of the developed model and to quantify optimism. RESULTS A total of 86 (8%) volunteer recruits presented at least 1 SF during training. Twelve variables were identified as the most important risk factors of SF. Variables strongly associated with SF were age, body weight, pretraining weightbearing exercise, pretraining cycling, and childhood intake of milk and milk products. The c-index for the prediction model, which represents the model performance in future volunteers, was 0.73 (optimism-corrected c-index, 0.68). Although 25(OH)D and VO2max had only a borderline statistically significant association with SF, the inclusion of these factors improved the performance of the model. CONCLUSION These findings will assist in identifying recruits at greater risk of SF during training and will support interventions to mitigate this injury risk. However, external validation of the model is still required.
Collapse
Affiliation(s)
- Maria T Sanchez-Santos
- NIHR Musculoskeletal Biomedical Research Unit, University of Oxford, Botnar Institute of Musculoskeletal Sciences, Oxford, UK.,Arthritis Research UK Sports, Exercise and Osteoarthritis Centre, University of Oxford, Botnar Institute of Musculoskeletal Sciences, Oxford, UK
| | - Trish Davey
- Environmental Medicine and Sciences Division, Institute of Naval Medicine, Hampshire, UK
| | - Kirsten M Leyland
- NIHR Musculoskeletal Biomedical Research Unit, University of Oxford, Botnar Institute of Musculoskeletal Sciences, Oxford, UK.,Arthritis Research UK Sports, Exercise and Osteoarthritis Centre, University of Oxford, Botnar Institute of Musculoskeletal Sciences, Oxford, UK
| | - Adrian J Allsopp
- Environmental Medicine and Sciences Division, Institute of Naval Medicine, Hampshire, UK
| | - Susan A Lanham-New
- Nutritional Sciences Department, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Surrey, UK
| | - Andrew Judge
- NIHR Musculoskeletal Biomedical Research Unit, University of Oxford, Botnar Institute of Musculoskeletal Sciences, Oxford, UK.,MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Nigel K Arden
- NIHR Musculoskeletal Biomedical Research Unit, University of Oxford, Botnar Institute of Musculoskeletal Sciences, Oxford, UK.,Arthritis Research UK Sports, Exercise and Osteoarthritis Centre, University of Oxford, Botnar Institute of Musculoskeletal Sciences, Oxford, UK.,MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Joanne L Fallowfield
- Environmental Medicine and Sciences Division, Institute of Naval Medicine, Hampshire, UK
| |
Collapse
|
22
|
Bulathsinhala L, Hughes JM, McKinnon CJ, Kardouni JR, Guerriere KI, Popp KL, Matheny RW, Bouxsein ML. Risk of Stress Fracture Varies by Race/Ethnic Origin in a Cohort Study of 1.3 Million US Army Soldiers. J Bone Miner Res 2017; 32:1546-1553. [PMID: 28300324 DOI: 10.1002/jbmr.3131] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/08/2017] [Accepted: 03/12/2017] [Indexed: 11/11/2022]
Abstract
Stress fractures (SF) are common and costly injuries in military personnel. Risk for SF has been shown to vary with race/ethnicity. Previous studies report increased SF risk in white and Hispanic Soldiers compared with black Soldiers. However, these studies did not account for the large ethnic diversity in the US military. We aimed to identify differences in SF risk among racial/ethnic groups within the US Army. A retrospective cohort study was conducted using data from the Total Army Injury and Health Outcomes Database from 2001 until 2011. SF diagnoses were identified from ICD-9 codes. We used Cox-proportional hazard models to calculate time to SF by racial/ethnic group after adjusting for age, education, and body mass index. We performed a sex-stratified analysis to determine whether the ethnic variation in SF risk depends on sex. We identified 21,549 SF cases in 1,299,332 Soldiers (more than 5,228,525 person-years of risk), revealing an overall incidence rate of 4.12 per 1000 person-years (7.47 and 2.05 per 1000 person-years in women and men, respectively). Using non-Hispanic blacks as the referent group, non-Hispanic white women had the highest risk of SF, with a 92% higher risk of SF than non-Hispanic black women (1.92 [1.81-2.03]), followed by American Indian/Native Alaskan women (1.72 [1.44-1.79]), Hispanic women (1.65 [1.53-1.79]), and Asian women (1.32 [1.16-1.49]). Similarly, non-Hispanic white men had the highest risk of SF, with a 59% higher risk of SF than non-Hispanic black men (1.59 [1.50-1.68]), followed by Hispanic men (1.19 [1.10-1.29]). When examining the total US Army population, we found substantial differences in the risk of stress fracture among racial/ethnic groups, with non-Hispanic white Soldiers at greatest risk and Hispanic, American Indian/Native Alaskan, and Asian Soldiers at an intermediate risk. Additional studies are needed to determine the factors underlying these race- and ethnic-related differences in stress fracture risk. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Lakmini Bulathsinhala
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Julie M Hughes
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Craig J McKinnon
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Joseph R Kardouni
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Katelyn I Guerriere
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Kristin L Popp
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Ronald W Matheny
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Mary L Bouxsein
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA.,Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Department of Orthopedic Surgery, Harvard Medical School, Boston MA, USA
| |
Collapse
|
23
|
Rice H, Fallowfield J, Allsopp A, Dixon S. Influence of a 12.8-km military load carriage activity on lower limb gait mechanics and muscle activity. ERGONOMICS 2017; 60:649-656. [PMID: 27462759 DOI: 10.1080/00140139.2016.1206624] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The high stress fracture occurrence in military populations has been associated with frequent load carriage activities. This study aimed to assess the influence of load carriage and of completing a load carriage training activity on gait characteristics. Thirty-two Royal Marine recruits completed a 12.8-km load carriage activity as part of their military training. Data were collected during walking in military boots, pre and post-activity, with and without the additional load (35.5 kg). Ground contact time, lower limb sagittal plane kinematics and kinetics, and electromyographic variables were obtained for each condition. When carrying load, there was increased ground contact time, increased joint flexion and joint moments, and increased plantar flexor and knee extensor muscle activity. Post-activity, there were no changes to kinematic variables, knee extensor moments were reduced, and there was evidence of plantar flexor muscle fatigue. The observed gait changes may be associated with stress fracture development. Practitioner Summary: This study identified gait changes due to load carriage and after a military load carriage training activity. Such activities are associated with lower limb stress fractures. A pre-post study design was used. Gait mechanics changed to a greater extent when carrying load, than after completion of the activity when assessed without load.
Collapse
Affiliation(s)
- Hannah Rice
- a School of Sport and Health Sciences , University of Exeter , Exeter , UK
| | | | | | - Sharon Dixon
- a School of Sport and Health Sciences , University of Exeter , Exeter , UK
| |
Collapse
|
24
|
Izard RM, Fraser WD, Negus C, Sale C, Greeves JP. Increased density and periosteal expansion of the tibia in young adult men following short-term arduous training. Bone 2016; 88:13-19. [PMID: 27046087 DOI: 10.1016/j.bone.2016.03.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 03/23/2016] [Accepted: 03/28/2016] [Indexed: 12/16/2022]
Abstract
PURPOSE Few human studies have reported early structural adaptations of bone to weight-bearing exercise, which provide a greater contribution to improved bone strength than increased density. This prospective study examined site- and regional-specific adaptations of the tibia during arduous training in a cohort of male military (infantry) recruits to better understand how bone responds in vivo to mechanical loading. METHODS Tibial bone density and geometry were measured in 90 British Army male recruits (ages 21±3years, height: 1.78±0.06m, body mass: 73.9±9.8kg) in weeks 1 (Baseline) and 10 of initial military training. Scans were performed at the 4%, 14%, 38% and 66% sites, measured from the distal end plate, using pQCT (XCT2000L, Stratec Pforzheim, Germany). Customised software (BAMPack, L-3 ATI) was used to examine whole bone cross-section and regional sectors. T-tests determined significant differences between time points (P<0.05). RESULTS Bone density of trabecular and cortical compartments increased significantly at all measured sites. Bone geometry (cortical area and thickness) and bone strength (i, MMi and BSI) at the diaphyseal sites (38 and 66%) were also significantly higher in week 10. Regional changes in density and geometry were largely observed in the anterior, medial-anterior and anterior-posterior sectors. Calf muscle density and area (66% site) increased significantly at week 10 (P<0.01). CONCLUSIONS In vivo mechanical loading improves bone strength of the human tibia by increased density and periosteal expansion, which varies by site and region of the bone. These changes may occur in response to the nature and distribution of forces originating from bending, torsional and shear stresses of military training. These improvements are observed early in training when the osteogenic stimulus is sufficient, which may be close to the fracture threshold in some individuals.
Collapse
Affiliation(s)
| | | | - Charles Negus
- L-3 ATI, Simulation, Engineering, and Testing, San Diego, CA, USA
| | - Craig Sale
- Sport, Health and Performance Enhancement Research Centre, Nottingham Trent University, UK
| | | |
Collapse
|
25
|
Marcia S, Saba L, Marras M, Suri JS, Calabria E, Masala S. Percutaneous stabilization of lumbar spine: a literature review and new options in treating spine pain. Br J Radiol 2016; 89:20150436. [PMID: 27351691 DOI: 10.1259/bjr.20150436] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Vertebral fracture (VF) is a common condition with >160,000 patients affected every year in North America and most of them with affected lumbar vertebrae. The management of VF is well known and defined by many protocols related to associated clinical neurological symptoms, especially in case of the presence or absence of myelopathy or radicular deficit. In this article, we will explore the percutaneous stabilization of the lumbar spine by showing the newest approaches for this condition.
Collapse
Affiliation(s)
- Stefano Marcia
- 1 Department of Radiology, SS Trinità Hospital, Cagliari, Italy
| | - Luca Saba
- 2 Department of Radiology, Azienda Ospedaliero, Universitaria (AOU) di Cagliari-Polo di Monserrato, Cagliari, Italy
| | | | - Jasjit S Suri
- 4 Diagnostic and Monitoring Division, AtheroPoint™ LLC, Roseville, CA, USA.,5 Department of Biomedical Engineering, University of Idaho (Affiliated), ID, USA
| | - Eros Calabria
- 6 Department of Diagnostic and Molecular Imaging, Interventional Radiology and Radiation Therapy, University of Rome Tor Vergata, Rome, Italy
| | - Salvatore Masala
- 6 Department of Diagnostic and Molecular Imaging, Interventional Radiology and Radiation Therapy, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
26
|
Nunns M, House C, Rice H, Mostazir M, Davey T, Stiles V, Fallowfield J, Allsopp A, Dixon S. Four biomechanical and anthropometric measures predict tibial stress fracture: a prospective study of 1065 Royal Marines. Br J Sports Med 2016; 50:1206-10. [DOI: 10.1136/bjsports-2015-095394] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2015] [Indexed: 11/04/2022]
Abstract
BackgroundTibial stress fractures (TSFs) cause a significant burden to Royal Marines recruits. No prospective running gait analyses have previously been performed in military settings.AimWe aimed to identify biomechanical gait factors and anthropometric variables associated with increased risk of TSF.Methods1065 Royal Marines recruits were assessed in week 2 of training. Bilateral plantar pressure and three-dimensional lower limb kinematics were obtained for barefoot running at 3.6 m/s, providing dynamic arch index, peak heel pressure and lower limb joint angles. Age, bimalleolar breadth, calf girth, passive hip internal/external range of motion and body mass index (BMI) were also recorded. 10 recruits who sustained a TSF during training were compared with 120 recruits who completed training injury-free using a binary logistic regression model to identify injury risk factors.Results4 variables significantly (p<0.05) predicted increased risk of TSF (ORs and 95% CI): smaller bimalleolar width (0.73, 0.58 to 0.93), lower BMI (0.56, 0.33 to 0.95), greater peak heel pressure (1.25, 1.07 to 1.46) and lower range of tibial rotation (0.78, 0.63 to 0.96).SummaryReduced impact attenuation and ability to withstand load were implicated in tibial stress fracture risk.
Collapse
|