1
|
You X, Wang M, Wang X, Wang X, Cheng Y, Zhang C, Miao Q, Feng Y. Gliomedin drives gastric cancer cell proliferation and migration, correlating with a poor prognosis. Heliyon 2024; 10:e38153. [PMID: 39347389 PMCID: PMC11437838 DOI: 10.1016/j.heliyon.2024.e38153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
Gastric cancer (GC) is a prevalent global malignancy, often diagnosed at advanced stage due to a lack of early symptoms and reliable markers. Previous research has identified gliomedin (GLDN) as a potential predictive marker for poor prognosis in cancer patients. However, the specific relationship between GLDN expression and GC prognosis has been unclear. Using the Tumor-Immune System Interaction Database (TISIDB), we examined GLDN expression in GC tissues and found a positive correlation with advanced clinical stages. Kaplan-Meier Plotter analysis further demonstrated that elevated GLDN levels were closely associated with poor prognosis in GC patients. To explore the functional significance of GLDN in GC, we conducted experiments involving GLDN overexpression and knockdown in GC cell lines, as well as subcutaneous tumor formation in nude mice. Our findings provided compelling evidence that GLDN promotes GC cell proliferation, viability, and migration, significantly enhancing tumor growth in vivo. Mechanistically, RNA-sequencing (RNA-seq) combined with bioinformatics analysis revealed that GLDN influences genes enriched in the p53 signaling pathway. Our data suggest that GLDN likely regulates cell proliferation through the p53-p21-CyclinD/CDK4 signaling axis. In conclusion, our study underscores GLDN's critical role in regulating GC cell proliferation and migration, and proposes its potential as a prognostic marker for GC patients.
Collapse
Affiliation(s)
- Xue You
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, 133 Hehua Road, Jining, Shandong, 272067, PR China
| | - Minghe Wang
- College of Second Clinical Medical, Jining Medical University, Jining, Shandong, 272067, PR China
| | - Xuejing Wang
- College of Second Clinical Medical, Jining Medical University, Jining, Shandong, 272067, PR China
| | - Xiaotong Wang
- College of Basic Medicine, Jining Medical University, Jining, Shandong, 272067, PR China
| | - Yuting Cheng
- College of Basic Medicine, Jining Medical University, Jining, Shandong, 272067, PR China
| | - Chuan Zhang
- College of Second Clinical Medical, Jining Medical University, Jining, Shandong, 272067, PR China
| | - Qingrun Miao
- College of Second Clinical Medical, Jining Medical University, Jining, Shandong, 272067, PR China
| | - Ying Feng
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, 133 Hehua Road, Jining, Shandong, 272067, PR China
| |
Collapse
|
2
|
Lyu Y, Guan X, Xu X, Wang P, Li Q, Panigrahi M, Zhang J, Chen N, Huang B, Lei C. A whole genome scan reveals distinct features of selection in Zhaotong cattle of Yunnan province. Anim Genet 2023; 54:731-742. [PMID: 37796667 DOI: 10.1111/age.13363] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 10/07/2023]
Abstract
Over the years, indigenous cattle have not only played an essential role in securing primary food sources but have also been utilized for labor by humans, making them invaluable genetic resources. The Zhaotong cattle, a native Chinese breed from the Yunnan province, possess excellent meat quality and resistance to heat and humidity. Here we used whole genome sequencing data of 104 animals to delve into the population structure, genomic diversity and potential positive selection signals in Zhaotong cattle. The findings of this study demonstrate that the genetic composition of Zhaotong cattle was primarily derived from Chinese indicine cattle and East Asian cattle. The nucleotide diversity of Zhaotong cattle was only lower than that of Chinese indicine cattle, which was much higher than that of other taurine cattle. Genome-wide selection scans detected a series of positive candidate regions containing multiple key genes related to bone development and metabolism (CA10, GABRG3, GLDN and NOTUM), meat quality traits (ALG8, LINGO2, MYO5B, PRKG1 and GABRB1), immune response (ADA2, BMF, LEF1 and PAK6) and heat resistance (EIF2AK4 and LEF1). In summary, this study supplies essential genetic insights into the genome diversity within Zhaotong cattle and provides a foundational framework for comprehending the genetic basis of indigenous cattle breeds.
Collapse
Affiliation(s)
- Yang Lyu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Xiwen Guan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xinglong Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Pengfei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qiaoxian Li
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Jicai Zhang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
3
|
Twelve years of GWAS discoveries for osteoporosis and related traits: advances, challenges and applications. Bone Res 2021; 9:23. [PMID: 33927194 PMCID: PMC8085014 DOI: 10.1038/s41413-021-00143-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/21/2020] [Indexed: 02/03/2023] Open
Abstract
Osteoporosis is a common skeletal disease, affecting ~200 million people around the world. As a complex disease, osteoporosis is influenced by many factors, including diet (e.g. calcium and protein intake), physical activity, endocrine status, coexisting diseases and genetic factors. In this review, we first summarize the discovery from genome-wide association studies (GWASs) in the bone field in the last 12 years. To date, GWASs and meta-analyses have discovered hundreds of loci that are associated with bone mineral density (BMD), osteoporosis, and osteoporotic fractures. However, the GWAS approach has sometimes been criticized because of the small effect size of the discovered variants and the mystery of missing heritability, these two questions could be partially explained by the newly raised conceptual models, such as omnigenic model and natural selection. Finally, we introduce the clinical use of GWAS findings in the bone field, such as the identification of causal clinical risk factors, the development of drug targets and disease prediction. Despite the fruitful GWAS discoveries in the bone field, most of these GWAS participants were of European descent, and more genetic studies should be carried out in other ethnic populations to benefit disease prediction in the corresponding population.
Collapse
|
4
|
Single nucleotide polymorphisms in piRNA-pathway genes: an insight into genetic determinants of human diseases. Mol Genet Genomics 2019; 295:1-12. [DOI: 10.1007/s00438-019-01612-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/22/2019] [Indexed: 12/23/2022]
|
5
|
Lu HF, Hung KS, Chu HW, Wong HSC, Kim J, Kim MK, Choi BY, Tai YT, Ikegawa S, Cho EC, Chang WC. Meta-Analysis of Genome-Wide Association Studies Identifies Three Loci Associated With Stiffness Index of the Calcaneus. J Bone Miner Res 2019; 34:1275-1283. [PMID: 30779856 DOI: 10.1002/jbmr.3703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/27/2019] [Accepted: 02/12/2019] [Indexed: 01/11/2023]
Abstract
The stiffness index (SI) from quantitative ultrasound measurements is a good indicator of BMD and may be used to predict the risk of osteoporotic fracture. We conducted a genomewide association study (GWAS) for SI using 7742 individuals from the Taiwan Biobank, followed by a replication study in a Korean population (n = 2955). Approximately 6.1 million SNPs were subjected to association analysis, and SI-associated variants were identified. We further conducted a meta-analysis of Taiwan Biobank significant SNPs with a Korean population-based cohort. Candidate genes were prioritized according to epigenetic annotations, gene ontology, protein-protein interaction, GWAS catalog, and expression quantitative trait loci analyses. Our results revealed seven significant single-nucleotide polymorphisms (SNPs) within three loci: 7q31.31, 17p13.3, and 11q14.2. Conditional analysis showed that three SNPs, rs2536195 (CPED1/WNT16), rs1231207 (SMG6), and rs4944661 (LOC10050636/TMEM135), were the most important signals within these regions. The associations for the three SNPs were confirmed in a UK Biobank estimated BMD GWAS; these three cytobands were replicated successfully after a meta-analysis with a Korean population cohort as well. However, two SNPs were not replicated. After prioritization, we identified two novel genes, RAB15 and FNTB, as strong candidates for association with SI. Our study identified three SI-associated SNPs and two novel SI-related genes. Overall, these results provide further insight into the genetic architecture of osteoporosis. Further studies in larger East Asian populations are needed. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Hsing-Fang Lu
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Kuo-Sheng Hung
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Department of Neurosurgery, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan.,Graduate Institute of Injury, Prevention and Control, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Hou-Wei Chu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Henry Sung-Ching Wong
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jihye Kim
- Department of Preventive Medicine, College of Medicine, Hanyang University, Seoul, South Korea.,Institute for Health and Society, Hanyang University, Seoul, South Korea
| | - Mi Kyung Kim
- Department of Preventive Medicine, College of Medicine, Hanyang University, Seoul, South Korea.,Institute for Health and Society, Hanyang University, Seoul, South Korea
| | - Bo Youl Choi
- Department of Preventive Medicine, College of Medicine, Hanyang University, Seoul, South Korea.,Institute for Health and Society, Hanyang University, Seoul, South Korea
| | - Yu-Ting Tai
- Department of Anesthesiology, Taipei Medical University, Taipei, Taiwan
| | - Shiro Ikegawa
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Er-Chieh Cho
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chiao Chang
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Department of Pharmacy, Taipei Medical University-Wanfang Hospital, Taipei, Taiwan.,Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medicine Research, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
| |
Collapse
|
6
|
Pei YF, Hu WZ, Yan MW, Li CW, Liu L, Yang XL, Hai R, Wang XY, Shen H, Tian Q, Deng HW, Zhang L. Joint study of two genome-wide association meta-analyses identified 20p12.1 and 20q13.33 for bone mineral density. Bone 2018; 110:378-385. [PMID: 29499414 PMCID: PMC6329308 DOI: 10.1016/j.bone.2018.02.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 01/19/2023]
Abstract
In the present study, aiming to identify loci associated with osteoporosis, we conducted a joint association study of 2 independent genome-wide association meta-analyses of femoral neck and lumbar spine bone mineral densities (BMDs): 1) an in-house study of 6 samples involving 7484 subjects, and 2) the GEFOS-seq study of 7 samples involving 32,965 subjects. The in-house samples were imputed by the 1000 genomes project phase 3 reference panel. SNP-based association test was applied to 7,998,108 autosomal SNPs in each meta-analysis, and for each SNP the 2 association signals were then combined for joint analysis and for mutual replication. Combining the evidence from both studies, we identified 2 novel loci associated with BMDs at the genome-wide significance level (α=5.0×10-8): 20p12.1 (rs73100693 p=2.65×10-8, closest gene MACROD2) and 20q13.33 (rs2380128 p=3.44×10-8, OSBPL2). We also replicated 7 loci that were reported by two recent studies on heel and total body BMD. Our findings provide useful insights that enhance our understanding of bone development, osteoporosis and fracture pathogenesis.
Collapse
Affiliation(s)
- Yu-Fang Pei
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College of Soochow University, Jiangsu, PR China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Jiangsu, PR China
| | - Wen-Zhu Hu
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Jiangsu, PR China; Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Jiangsu, PR China
| | - Min-Wei Yan
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Chang-Wei Li
- Department of Epidemiology and Biostatistics, University of Georgia College of Public Health, Athens, GA, USA
| | - Lu Liu
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Jiangsu, PR China; Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Jiangsu, PR China
| | - Xiao-Lin Yang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Jiangsu, PR China; Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Jiangsu, PR China
| | - Rong Hai
- Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia, PR China
| | - Xiu-Yan Wang
- Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia, PR China
| | - Hui Shen
- Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Qing Tian
- Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Hong-Wen Deng
- Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA.
| | - Lei Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Jiangsu, PR China; Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Jiangsu, PR China.
| |
Collapse
|