1
|
Briggs P, Iyengar S. Tales from "the Deli" to the "Clinic"! Managing menopausal women who have spinal injuries. Post Reprod Health 2022; 28:111-113. [PMID: 35670709 DOI: 10.1177/20533691221107333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
| | - Sucheta Iyengar
- Buckinghamshire Healthcare NHS Trust, Wycombe General Hospital, Buckinghamshire, UK
| |
Collapse
|
2
|
Antoniou G, Benetos IS, Vlamis J, Pneumaticos SG. Bone Mineral Density Post a Spinal Cord Injury: A Review of the Current Literature Guidelines. Cureus 2022; 14:e23434. [PMID: 35494917 PMCID: PMC9038209 DOI: 10.7759/cureus.23434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 11/05/2022] Open
|
3
|
Ghasem-Zadeh A, Galea MP, Nunn A, Panisset M, Wang XF, Iuliano S, Boyd SK, Forwood MR, Seeman E. Heterogeneity in microstructural deterioration following spinal cord injury. Bone 2021; 142:115778. [PMID: 33253932 DOI: 10.1016/j.bone.2020.115778] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Modelling and remodelling adapt bone morphology to accommodate strains commonly encountered during loading. If strains exceed a threshold threatening fracture, modelling-based bone formation increases bone volume reducing these strains. If unloading reduces strains below a threshold that inhibits resorption, increased remodelling-based bone resorption reduces bone volume restoring strains, but at the price of compromised bone volume and microstructure. As weight-bearing regions are adapted to greater strains, we hypothesized that microstructural deterioration will be more severe than at regions commonly adapted to low strains following spinal cord injury. METHODS We quantified distal tibial, fibula and radius volumetric bone mineral density (vBMD) using high-resolution peripheral quantitative computed tomography in 31 men, mean age 43.5 years (range 23.5-75.0), 12 with tetraplegia and 19 with paraplegia of 0.7 to 18.6 years duration, and 102 healthy age- and sex-matched controls. Differences in morphology relative to controls were expressed as standardized deviation (SD) scores (mean ± SD). Standardized between-region differences in vBMD were expressed as SDs (95% confidence intervals, CI). RESULTS Relative to controls, men with tetraplegia had deficits in total vBMD of -1.72 ± 1.38 SD at the distal tibia (p < 0.001) and - 0.68 ± 0.69 SD at distal fibula (p = 0.041), but not at the distal radius, despite paralysis. Deficits in men with paraplegia were -2.14 ± 1.50 SD (p < 0.001) at the distal tibia and -0.83 ± 0.98 SD (p = 0.005) at the distal fibula while distal radial total vBMD was 0.23 ± 1.02 (p = 0.371), not significantly increased, despite upper limb mobility. Comparing regions, in men with tetraplegia, distal tibial total vBMD was 1.04 SD (95%CI 0.07, 2.01) lower than at the distal fibula (p = 0.037) and 1.51 SD (95%CI 0.45, 2.57) lower than at the distal radius (p = 0.007); the latter two sites did not differ from each other. Results were similar in men with paraplegia, but total vBMD at the distal fibula was 1.06 SD (95%CI 0.35, 1.77) lower than at the distal radius (p = 0.004). CONCLUSION Microarchitectural deterioration following spinal cord injury is heterogeneous, perhaps partly because strain thresholds regulating the cellular activity of mechano-transduction are region specific.
Collapse
Affiliation(s)
- Ali Ghasem-Zadeh
- Depts of Medicine and Endocrinology, Austin Health, The University of Melbourne, Melbourne, Australia; Dept of Endocrinology, Austin Health, The University of Melbourne, Melbourne, Australia.
| | - Mary P Galea
- Depts of Medicine and Endocrinology, Austin Health, The University of Melbourne, Melbourne, Australia; Depts of Medicine and Victorian Spinal Cord Service, Austin Health, The University of Melbourne, Melbourne, Australia
| | - Andrew Nunn
- Depts of Medicine and Endocrinology, Austin Health, The University of Melbourne, Melbourne, Australia; Depts of Medicine and Victorian Spinal Cord Service, Austin Health, The University of Melbourne, Melbourne, Australia
| | - Maya Panisset
- Depts of Medicine and Endocrinology, Austin Health, The University of Melbourne, Melbourne, Australia; Depts of Medicine and Victorian Spinal Cord Service, Austin Health, The University of Melbourne, Melbourne, Australia
| | - Xiao-Fang Wang
- Depts of Medicine and Endocrinology, Austin Health, The University of Melbourne, Melbourne, Australia; Dept of Endocrinology, Austin Health, The University of Melbourne, Melbourne, Australia
| | - Sandra Iuliano
- Depts of Medicine and Endocrinology, Austin Health, The University of Melbourne, Melbourne, Australia; Dept of Endocrinology, Austin Health, The University of Melbourne, Melbourne, Australia
| | - Steven K Boyd
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Mark R Forwood
- School of Medical Science and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Ego Seeman
- Depts of Medicine and Endocrinology, Austin Health, The University of Melbourne, Melbourne, Australia; Dept of Endocrinology, Austin Health, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
4
|
Cervinka T, Giangregorio L, Sievanen H, Cheung AM, Craven BC. Peripheral Quantitative Computed Tomography: Review of Evidence and Recommendations for Image Acquisition, Analysis, and Reporting, Among Individuals With Neurological Impairment. J Clin Densitom 2018; 21:563-582. [PMID: 30196052 DOI: 10.1016/j.jocd.2018.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/07/2018] [Accepted: 10/07/2018] [Indexed: 02/06/2023]
Abstract
In 2015, the International Society for Clinical Densitometry (ISCD) position statement regarding peripheral quantitative computed tomography (pQCT) did not recommend routine use of pQCT, in clinical settings until consistency in image acquisition and analysis protocols are reached, normative studies conducted, and treatment thresholds identified. To date, the lack of consensus-derived recommendations regarding pQCT implementation remains a barrier to implementation of pQCT technology. Thus, based on description of available evidence and literature synthesis, this review recommends the most appropriate pQCT acquisition and analysis protocols for clinical care and research purposes, and recommends specific measures for diagnosis of osteoporosis, assigning fracture risk, and monitoring osteoporosis treatment effectiveness, among patients with neurological impairment. A systematic literature search of MEDLINE, EMBASE©, CINAHL, and PubMed for available pQCT studies assessing bone health was carried out from inception to August 8th, 2017. The search was limited to individuals with neurological impairment (spinal cord injury, stroke, and multiple sclerosis) as these groups have rapid and severe regional declines in bone mass. Of 923 references, we identified 69 that met review inclusion criteria. The majority of studies (n = 60) used the Stratec XCT 2000/3000 pQCT scanners as reflected in our evaluation of acquisition and analysis protocols. Overall congruence with the ISCD Official Positions was poor. Only 11% (n = 6) studies met quality reporting criteria for image acquisition and 32% (n = 19) reported their data analysis in a format suitable for reproduction. Therefore, based on current literature synthesis, ISCD position statement standards and the authors' expertise, we propose acquisition and analysis protocols at the radius, tibia, and femur sites using Stratec XCT 2000/3000 pQCT scanners among patients with neurological impairment for clinical and research purposes in order to drive practice change, develop normative datasets and complete future meta-analysis to inform fracture risk and treatment efficacy evaluation.
Collapse
Affiliation(s)
- T Cervinka
- Neural Engineering and Therapeutics Team, Toronto Rehabilitation Research Institute-University Health Network, Toronto, Ontario, Canada.
| | - L Giangregorio
- Neural Engineering and Therapeutics Team, Toronto Rehabilitation Research Institute-University Health Network, Toronto, Ontario, Canada; Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - H Sievanen
- Bone Research Group, UKK Institute, Tampere, Finland
| | - A M Cheung
- Centre of Excellence in Skeletal Health Assessment, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - B C Craven
- Neural Engineering and Therapeutics Team, Toronto Rehabilitation Research Institute-University Health Network, Toronto, Ontario, Canada; Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada; Centre of Excellence in Skeletal Health Assessment, University Health Network, Toronto, Ontario, Canada; Brain and Spinal Cord Rehabilitation Program, Toronto Rehabilitation Institute-University Health Network, Toronto, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|