1
|
Tang Y, Jin Z, Lu Y, Chen L, Lv S, Xu T, Tong P, Chen G. Comparing the Efficacy of Antiosteoporotic Drugs in Preventing Periprosthetic Bone Loss Following Total Hip Arthroplasty: A Systematic Review and Bayesian Network Meta-Analysis. Orthop Surg 2024; 16:2344-2354. [PMID: 39056482 PMCID: PMC11456730 DOI: 10.1111/os.14165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Periprosthetic bone loss is a well-known phenomenon following total hip arthroplasty (THA). However, the choice of drugs for prevention remains controversial. Therefore, the aim of this study was to determine the best drug to treat periprosthetic bone loss by comparing changes in bone mineral density (BMD) at different times after THA. METHODS A comprehensive search of five databases and two clinical trial registration platforms was undertaken from their inception through to August 31, 2023 to identify eligible randomized controlled trials. A Bayesian network meta-analysis (NMA) was carried out for calculating the standardized mean difference (SMD) and the surface under cumulative ranking curve (SUCRA) of the BMD in calcar (Gruen zone 7) at 6 months, 12 months, and 24 months and over. RESULTS Twenty-nine trials involving 1427 patients and 10 different interventions were included. The results demonstrated that at 6 months, denosumab had the highest ranking (SUCRA = 0.90), followed by alendronate (SUCRA = 0.76), and zoledronate (SUCRA = 0.73). At 12 months, clodronate ranked highest (SUCRA = 0.96), followed by denosumab (SUCRA = 0.84) and teriparatide (SUCRA = 0.82). For interventions with a duration of 24 months and over, denosumab had the highest SUCRA value (SUCRA = 0.96), followed by raloxifene (SUCRA = 0.90) and zoledronate (SUCRA = 0.75). CONCLUSION Investigating the existing body of evidence revealed that denosumab demonstrates potential as an intervention of superior efficacy at the three specifically examined time points. However, it remains crucial to conduct further research to confirm these findings and determine the most effective treatment strategy.
Collapse
Affiliation(s)
- Yi Tang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)ZhejiangChina
| | - Zhaokai Jin
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)ZhejiangChina
| | - Yichen Lu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)ZhejiangChina
| | - Lei Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)ZhejiangChina
| | - Shuaijie Lv
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)ZhejiangChina
| | - Taotao Xu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)ZhejiangChina
| | - Peijian Tong
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)ZhejiangChina
| | - Guoqian Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)ZhejiangChina
| |
Collapse
|
2
|
Li X, Wang Z, Wang Q, Akhmet N, Zhu H, Guo Z, Pan C, Lan X, Zhang S. Relationships between the mutations of the goat GATA binding protein 4 gene and growth traits. Gene 2024; 898:148095. [PMID: 38128793 DOI: 10.1016/j.gene.2023.148095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/30/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Osteogenesis is a complex multilevel process regulated by multiple genes. The GATA binding protein 4 (GATA4) gene has been extensively studied for its pivotal role in bone genesis and bone differentiation. However, its relationship with the growth traits of Shaanbei white cashmere (SBWC) and Guizhou black (GB) goats remains unclear. This work aims to investigate the potential influence of genetic mutations in the GATA4 gene on the growth traits goats. Thus, two Insertion/deletion (InDel) polymorphisms (8-bp-InDel and 9-bp-InDel) were screened and detected in a total of 1161 goats (including 980 SBWC goats and 181 GB goats) using PCR and agarose gel electrophoresis. The analyses revealed that there were two genotypes (ID and DD) for these two loci. In SBWC goats, 8-bp-InDel and 9-bp-InDel loci were significantly associated with heart girth (HG) and hip width (HW). Notably, individuals with DD genotype of 8-bp-InDel locus were superior while those with DD genotype of 9-bp-InDel locus were inferior. Correlation analyses of the four combined genotypes revealed significant associations with cannon circumference (CC), body height (BH), HG and HW. This work provides a foundation for the application of molecular marker-assisted selection (MAS) in goat breeding programs. Furthermore, the findings highlight the potential of the GATA4 gene and its genetic variations as valuable indicators for selecting goats with desirable growth traits.
Collapse
Affiliation(s)
- Xin Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhiying Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Qian Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Nazar Akhmet
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Haijing Zhu
- Life Science Research Center, Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China
| | - Zhengang Guo
- Bijie Institute of Animal Husbandry and Veterinary Science, Guizhou Province,Bijie 551700, China
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Sihuan Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
3
|
Zhang Y, Qiao W, Ji Y, Meng L. GATA4 inhibits odontoblastic differentiation of dental pulp stem cells through targeting IGFBP3. Arch Oral Biol 2023; 154:105756. [PMID: 37451139 DOI: 10.1016/j.archoralbio.2023.105756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVE The odontogenic differentiation of human dental pulp stem cells (HDPSCs) is associated with reparative dentinogenesis. Transcription factor GATA binding protein 4 (GATA4) is proved to be essential for osteoblast differentiation and bone remodeling. This study clarified the function of GATA4 in HDPSCs odontoblast differentiation. METHODS The change in GATA4 expression during reparative dentin formation was detected by immunohistochemistry staining. The expression of GATA4 during HDPSCs odontoblastic differentiation was detected by western blot and quantitative polymerase chain reaction. The effect of GATA4 on odontoblast differentiation was investigated following overexpression lentivirus transfection. RNA sequencing, dual luciferase assay and chromatin immunoprecipitation (CHIP) were conducted to verify downstream targets of GATA4. GATA4 overexpression lentivirus and small interference RNA targeting IGFBP3 were co-transfected to investigate the regulatory mechanism of GATA4. RESULTS Upregulated GATA4 was observed during reparative dentin formation in vivo and the odontoblastic differentiation of HDPSCs in vitro. GATA4 overexpression suppressed the odontoblastic potential of HDPSCs, demonstrated by decreased alkaline phosphatase activity (p < 0.0001), mineralized nodules formation (p < 0.01), and odonto/osteogenic differentiation markers levels (p < 0.05). RNA sequencing revealed IGFBP3 was a potential target of GATA4. CHIP and dual luciferase assays identified GATA4 could activate IGFBP3 transcription. Additionally, IGFBP3 knockdown recovered the odontoblastic differentiation defect caused by GATA4 overexpression (p < 0.05). CONCLUSIONS GATA4 inhibited odontoblastic differentiation of HDPSCs via activating the transcriptional activity of IGFBP3, identifying its promising role in regulating HDPSCs odontoblast differentiation and reparative dentinogenesis.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Weiwei Qiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaoting Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Liuyan Meng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
4
|
Suthon S, Lin J, Perkins RS, Miranda-Carboni GA, Krum SA. Regulation and Function of FOXC1 in Osteoblasts. J Dev Biol 2023; 11:38. [PMID: 37754840 PMCID: PMC10531946 DOI: 10.3390/jdb11030038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Estrogens, which bind to estrogen receptor alpha (ERα), are important for proper bone mineral density. When women go through menopause, estrogen levels decrease, and there is a decrease in bone quality, along with an increased risk for fractures. We previously identified an enhancer near FOXC1 as the most significantly enriched binding site for estrogen receptor alpha (ERα) in osteoblasts. FOXC1 is a transcription factor belonging to a large group of proteins known as forkhead box genes and is an important regulator of bone formation. Here, we demonstrate that 17β-estradiol (E2) increases the mRNA and protein levels of FOXC1 in primary mouse and human osteoblasts. GATA4 is a pioneer factor for ERα and it is also recruited to enhancers near Foxc1. Knockdown of Gata4 in mouse osteoblasts in vitro decreases Foxc1 expression as does knockout of Gata4 in vivo. Functionally, GATA4 and FOXC1 interact and regulate osteoblast proteins such as RUNX2, as demonstrated by ChIP-reChIP and luciferase assays. The most enriched motif in GATA4 binding sites from ChIP-seq is for FOXC1, supporting the notion that GATA4 and FOXC1 cooperate in regulating osteoblast differentiation. Together, these data demonstrate the interactions of the transcription factors ERα, GATA4, and FOXC1 to regulate each other's expression and other osteoblast differentiation genes.
Collapse
Affiliation(s)
- Sarocha Suthon
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jianjian Lin
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Rachel S. Perkins
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Gustavo A. Miranda-Carboni
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Susan A. Krum
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
5
|
Huang X, Jie S, Li W, Liu C. GATA4-activated lncRNA MALAT1 promotes osteogenic differentiation through inhibiting NEDD4-mediated RUNX1 degradation. Cell Death Discov 2023; 9:150. [PMID: 37156809 PMCID: PMC10167365 DOI: 10.1038/s41420-023-01422-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/10/2023] Open
Abstract
Postmenopausal osteoporosis (PMOP) brings a lot of inconvenience to patients and serious economic burden to society. The osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) plays vital role in the process of PMOP treatment. However, the functional mechanism remains unclear. In this study, GATA4, MALAT1 and KHSRP were downregulated in bone tissues of PMOP patients, while NEDD4 was overexpressed. Through functional experiments, GATA4 overexpression strikingly accelerated osteogenic differentiation of BMSCs and promoted bone formation in vitro and in vivo, while these effects were dramatically reversed after MALAT1 silence. Intermolecular interaction experiments confirmed that GATA4 activated the transcription of MALAT1, which could form a 'RNA-protein' complex with KHSRP to decay NEDD4 mRNA. NEDD4 promoted the degradation of Runx1 by ubiquitination. Moreover, NEDD4 silencing blocked the inhibitory effects of MALAT1 knockdown on BMSCs osteogenic differentiation. In sum up, GATA4-activated MALAT1 promoted BMSCs osteogenic differentiation via regulating KHSPR/NEDD4 axis-regulated RUNX1 degradation, ultimately improving PMOP.
Collapse
Affiliation(s)
- Xianzhe Huang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, PR China
| | - Shuo Jie
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, PR China
| | - Wenzhao Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, PR China
| | - Chan Liu
- International Medical Department, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, PR China.
| |
Collapse
|
6
|
GATA4 and estrogen receptor alpha bind at SNPs rs9921222 and rs10794639 to regulate AXIN1 expression in osteoblasts. Hum Genet 2022; 141:1849-1861. [PMID: 35678873 DOI: 10.1007/s00439-022-02463-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/21/2022] [Indexed: 11/04/2022]
Abstract
Osteoporosis is a serious public health problem that affects 200 million people worldwide. Genome-wide association studies have revealed the association between several single nucleotide polymorphisms (SNPs) near WNT/β-catenin signaling genes and bone mineral density (BMD). The activation of β-catenin by WNT ligands is required for osteoblast differentiation. SNP rs9921222 is an intronic variant of AXIN1 (a scaffold protein in the destruction complex that regulates β-catenin signaling) that correlates with BMD. However, the biological mechanism of SNP rs9921222 has never been reported. Here, we show that the genotype of SNP rs9921222 correlates with the expression of AXIN1 in human osteoblasts. RNA and genomic DNA were analyzed from primary osteoblasts from 111 different individuals. Homozygous TT at rs9921222 correlates with a higher expression of AXIN1 than homozygous CC. Regional association analysis showed that rs9921222 is in high linkage disequilibrium (LD) with SNP rs10794639. In silico transcription factor analysis predicted that rs9921222 is within a GATA4 motif and rs10794639 is adjacent to an estrogen receptor alpha (ERα) motif. Mechanistically, GATA4 and ERα bind at SNPs rs9921222 and rs10794639 as detected by ChIP-qPCR. Luciferase assays demonstrate that rs9921222 is the causal SNP to alter ERα and GATA4 binding. GATA4 promoted the expression, and in contrast, ERα suppressed the expression of AXIN1 via the histone deacetylase complex member SIN3A. Functionally, the level of AXIN1 negatively correlates with the level of transcriptionally active β-catenin. In summary, we have discovered a molecular mechanism of the SNP rs9921222 to regulate AXIN1 through GATA4 and ERα binding in human osteoblasts.
Collapse
|
7
|
Li Y, Yang C, Jia K, Wang J, Wang J, Ming R, Xu T, Su X, Jing Y, Miao Y, Liu C, Lin N. Fengshi Qutong capsule ameliorates bone destruction of experimental rheumatoid arthritis by inhibiting osteoclastogenesis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114602. [PMID: 34492323 DOI: 10.1016/j.jep.2021.114602] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bone destruction plays a key role in damaging the joint function of rheumatoid arthritis (RA). Fengshi Qutong capsule (FSQTC) consisting of 19 traditional Chinese medicines has been used for treating RA in China for many years. Preliminary studies show that FSQTC has analgesic activity and inhibits synovial angiogenesis of collagen-induced arthritis (CIA), but its role on bone destruction of RA is still unclear. AIM OF THE STUDY To explore the effect of FSQTC on bone destruction of RA and the possible mechanism of osteoclastogenesis in vivo and in vitro. MATERIALS AND METHODS LC-MS system was used to detect the quality control components of FSQTC. The anti-arthritic effect of FSQTC on CIA rats was evaluated by arthritis score, arthritis incidence and histopathology evaluation of inflamed joints. The effect of treatment with FSQTC on bone destruction of joint tissues was determined with X-ray and micro-CT quantification, and on bone resorption marker CTX-I and formation marker osteocalcin in sera were detected by ELISA. Then, osteoclast differentiation and mature were evaluated by TRAP staining, actin ring immunofluorescence and bone resorption assay both in joints and RANKL-induced RAW264.7 cells. In addition, RANKL, OPG, IL-1β and TNFα in sera were evaluated by ELISA. The molecular mechanisms of the inhibitions were elucidated by analyzing the protein and gene expression of osteoclastic markers CTSK, MMP-9 and β3-Integrin, transcriptional factors c-Fos and NFATc1, as well as phosphorylation of ERK1/2, JNK and P38 in joints and in RANKL-induced RAW264.7 cells using western blot and/or qPCR. RESULTS In this study, 12 major quality control components were identified. Our data showed that FSQTC significantly increased bone mineral density, volume fraction, trabecular thickness, and decreased trabecular separation of inflamed joints both at periarticular and extra-articular locations in CIA rats. FSQTC also diminished the level of CTX-I and simultaneously increased osteocalcin in sera of CIA rats. The effects were accompanied by reductions of osteoclast differentiation, bone resorption, and expression of osteoclastic markers (CTSK, MMP-9 and β3-Integrin) in joints. Interestingly, FSQTC treatment could reduce the protein level of RANKL, increase the expression of OPG, and decrease the ratio of RANKL to OPG in inflamed joints and sera of CIA rats. In addition, FSQTC inhibited the levels of pro-inflammatory cytokines implicated in bone resorption, such as IL-1β and TNFα in sera. When RAW264.7 cells were treated with RANKL, FSQTC inhibited the formation of TRAP + multinucleated cells, actin ring and the bone-resorbing activity in dose-dependent manners. Furthermore, FSQTC reduced the RANKL-induced expression of osteoclastic genes and proteins and transcriptional factors (c-Fos and NFATc1), as well as phosphorylation of mitogen-activated protein kinases (MAPKs). CONCLUSION FSQTC may inhibit bone destruction of RA by its anti-osteoclastogenic activity both in vivo and in vitro.
Collapse
Affiliation(s)
- Yiqun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chao Yang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Kexin Jia
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jinxia Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jingxia Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ruirui Ming
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tengteng Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaohui Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yu Jing
- Tonghua Golden-Horse Pharmaceutical Industry Co.,Ltd, Beijing, 100028, China
| | - Yandong Miao
- Tonghua Golden-Horse Pharmaceutical Industry Co.,Ltd, Beijing, 100028, China
| | - Chunfang Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
8
|
Qiu T, Li H, Lu T, Shu L, Chen C, Wang C. GATA4 regulates osteogenic differentiation by targeting miR-144-3p. Exp Ther Med 2021; 23:83. [PMID: 34934452 DOI: 10.3892/etm.2021.11006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 06/03/2021] [Indexed: 11/06/2022] Open
Abstract
Numerous studies have demonstrated that microRNAs (miRNAs or miRs) play an important role in regulating osteogenic differentiation, but their specific regulatory mechanism requires further investigation. In the present study, it was revealed that during osteogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs), the expression level of miR-144-3p was decreased with increased osteogenic induction duration and was negatively associated with osteogenic marker gene expression. Overexpression of miR-144-3p inhibited osteogenic differentiation, while inhibition of miR-144-3p expression promoted osteogenic differentiation. In addition, dual-luciferase activity analysis and adenovirus infection experiments revealed that GATA binding protein 4 targeted miR-144-3p for regulation and that overexpression of GATA4 promoted the expression of miR-144-3p. These data indicated that miR-144-3p plays a role in inhibiting BMSC osteogenic differentiation and that GATA4 inhibits osteogenic differentiation by targeting miR-144-3p expression.
Collapse
Affiliation(s)
- Tao Qiu
- Department of Orthopedic Trauma, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,National-Local Joint Engineering Laboratory of Cell Engineering and Biomedicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Haotian Li
- Department of Orthopedic Trauma, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,National-Local Joint Engineering Laboratory of Cell Engineering and Biomedicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Tao Lu
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,National-Local Joint Engineering Laboratory of Cell Engineering and Biomedicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Liping Shu
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,National-Local Joint Engineering Laboratory of Cell Engineering and Biomedicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Chao Chen
- Department of Orthopedic Trauma, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,National-Local Joint Engineering Laboratory of Cell Engineering and Biomedicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Chunqing Wang
- Department of Orthopedic Trauma, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
9
|
Weiss CV, Harshman L, Inoue F, Fraser HB, Petrov DA, Ahituv N, Gokhman D. The cis-regulatory effects of modern human-specific variants. eLife 2021; 10:e63713. [PMID: 33885362 PMCID: PMC8062137 DOI: 10.7554/elife.63713] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 03/30/2021] [Indexed: 12/24/2022] Open
Abstract
The Neanderthal and Denisovan genomes enabled the discovery of sequences that differ between modern and archaic humans, the majority of which are noncoding. However, our understanding of the regulatory consequences of these differences remains limited, in part due to the decay of regulatory marks in ancient samples. Here, we used a massively parallel reporter assay in embryonic stem cells, neural progenitor cells, and bone osteoblasts to investigate the regulatory effects of the 14,042 single-nucleotide modern human-specific variants. Overall, 1791 (13%) of sequences containing these variants showed active regulatory activity, and 407 (23%) of these drove differential expression between human groups. Differentially active sequences were associated with divergent transcription factor binding motifs, and with genes enriched for vocal tract and brain anatomy and function. This work provides insight into the regulatory function of variants that emerged along the modern human lineage and the recent evolution of human gene expression.
Collapse
Affiliation(s)
- Carly V Weiss
- Department of Biology, Stanford University, StanfordStanfordUnited States
| | - Lana Harshman
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Fumitaka Inoue
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Hunter B Fraser
- Department of Biology, Stanford University, StanfordStanfordUnited States
| | - Dmitri A Petrov
- Department of Biology, Stanford University, StanfordStanfordUnited States
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Institute for Human Genetics, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - David Gokhman
- Department of Biology, Stanford University, StanfordStanfordUnited States
| |
Collapse
|
10
|
Khalid AB, Pence J, Suthon S, Lin J, Miranda-Carboni GA, Krum SA. GATA4 regulates mesenchymal stem cells via direct transcriptional regulation of the WNT signalosome. Bone 2021; 144:115819. [PMID: 33338666 PMCID: PMC7855755 DOI: 10.1016/j.bone.2020.115819] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 01/02/2023]
Abstract
GATA4 is a transcription factor that regulates osteoblast differentiation. However, GATA4 is expressed at a higher level in mesenchymal stem cells (MSCs) than in osteoblasts. Therefore, the role of GATA4 in limb bud mesenchyme differentiation was investigated in mice by knocking out Gata4 using Cre-recombinase controlled by the Prx1 promoter (herein called Gata4 Prx-cKO mice). μCT analysis of the Gata4 Prx-cKO mice showed a decrease in trabecular bone properties compared with wildtype (Gata4fl/fl) littermates. Gata4 Prx-cKO mice have fewer MSCs as measured by CFU-F assays, mesenchymal progenitor cells (MPC2) (flow cytometry of Sca1+/CD45-/CD34-/CD44hi) and nestin immunofluorescence. Gata4 Prx-cKO bone marrow-derived MSCs have a significant reduction in WNT ligands, including WNT10B, and WNT signalosome components compared to control cells. Chromatin immunoprecipitation demonstrates that GATA4 is recruited to enhancers near Wnt3a, Wnt10b, Fzd6 and Dkk1. GATA4 also directly represses YAP in wildtype cells, and the absence of Gata4 leads to increased YAP expression. Together, we show that the decrease in MSCs is due to loss of Gata4 and a WNT10B-dependent positive autoregulatory loop. This leads to a concurrent increase of YAP and less activated β-catenin. These results explain the decreased trabecular bone in Gata4 Prx-cKO mice. We suggest that WNT signalosome activity in MSCs requires Gata4 and Wnt10b expression for lineage specification.
Collapse
Affiliation(s)
- Aysha B Khalid
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Jacquelyn Pence
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Sarocha Suthon
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Jianjian Lin
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Gustavo A Miranda-Carboni
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States of America; Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Susan A Krum
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, United States of America.
| |
Collapse
|
11
|
Kim HN, Xiong J, MacLeod RS, Iyer S, Fujiwara Y, Cawley KM, Han L, He Y, Thostenson JD, Ferreira E, Jilka RL, Zhou D, Almeida M, O'Brien CA. Osteocyte RANKL is required for cortical bone loss with age and is induced by senescence. JCI Insight 2020; 5:138815. [PMID: 32870816 PMCID: PMC7566701 DOI: 10.1172/jci.insight.138815] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/26/2020] [Indexed: 12/31/2022] Open
Abstract
In aging mice, osteoclast number increases in cortical bone but declines in trabecular bone, suggesting that different mechanisms underlie age-associated bone loss in these 2 compartments. Osteocytes produce the osteoclastogenic cytokine RANKL, encoded by Tnfsf11. Tnfsf11 mRNA increases in cortical bone of aged mice, suggesting a mechanism underlying the bone loss. To address this possibility, we aged mice lacking RANKL in osteocytes. Whereas control mice lost cortical bone between 8 and 24 months of age, mice lacking RANKL in osteocytes gained cortical bone during this period. Mice of both genotypes lost trabecular bone with age. Osteoclasts increased with age in cortical bone of control mice but not in RANKL conditional knockout mice. Induction of cellular senescence increased RANKL production in murine and human cell culture models, suggesting an explanation for elevated RANKL levels with age. Overexpression of the senescence-associated transcription factor Gata4 stimulated Tnfsf11 expression in cultured murine osteoblastic cells. Finally, elimination of senescent cells from aged mice using senolytic compounds reduced Tnfsf11 mRNA in cortical bone. Our results demonstrate the requirement of osteocyte-derived RANKL for age-associated cortical bone loss and suggest that increased Tnfsf11 expression with age results from accumulation of senescent cells in cortical bone.
Collapse
Affiliation(s)
- Ha-Neui Kim
- Center for Musculoskeletal Disease Research.,Division of Endocrinology, Department of Internal Medicine, and
| | - Jinhu Xiong
- Center for Musculoskeletal Disease Research.,Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Ryan S MacLeod
- Center for Musculoskeletal Disease Research.,Division of Endocrinology, Department of Internal Medicine, and
| | - Srividhya Iyer
- Center for Musculoskeletal Disease Research.,Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Yuko Fujiwara
- Center for Musculoskeletal Disease Research.,Division of Endocrinology, Department of Internal Medicine, and
| | - Keisha M Cawley
- Center for Musculoskeletal Disease Research.,Division of Endocrinology, Department of Internal Medicine, and
| | - Li Han
- Division of Endocrinology, Department of Internal Medicine, and
| | - Yonghan He
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Jeff D Thostenson
- Center for Musculoskeletal Disease Research.,Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Elisabeth Ferreira
- Center for Musculoskeletal Disease Research.,Division of Endocrinology, Department of Internal Medicine, and
| | - Robert L Jilka
- Center for Musculoskeletal Disease Research.,Division of Endocrinology, Department of Internal Medicine, and
| | - Daohong Zhou
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Maria Almeida
- Center for Musculoskeletal Disease Research.,Division of Endocrinology, Department of Internal Medicine, and.,Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Charles A O'Brien
- Center for Musculoskeletal Disease Research.,Division of Endocrinology, Department of Internal Medicine, and.,Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA
| |
Collapse
|
12
|
Gong L, Zhang YY, Yang N, Qian HJ, Zhang LK, Tan MS. Raloxifene Prevents Early Periprosthetic Bone Loss for Postmenopausal Women after Uncemented Total Hip Arthroplasty: A Randomized Placebo-Controlled Clinical Trial. Orthop Surg 2020; 12:1074-1083. [PMID: 32686337 PMCID: PMC7454213 DOI: 10.1111/os.12696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE To examine the results of raloxifene for prevention of periprosthetic bone loss around the femoral stem in patients undergoing total hip arthroplasty (THA). METHODS Between January 2015 and May 2017, 240 female patients between 55 and 80 years underwent primary THA and were randomly allocated to receive 60 mg raloxifene hydrochloride per day (treatment group, TG, n = 120) or placebo (control group, CG, n = 120) orally at bedtime using computer-generated randomization sequence generation. Baseline data, the Western Ontario McMaster Universities Osteoarthritis Index (WOMAC), women's quality of life (QoL) score, bone mineral density (BMD) around the prosthesis, and adverse events were compared between the two groups. The measuring range of BMD around the prosthesis was divided into seven regions of interest (ROI). The sample size was calculated to detect a mean difference in BMD of 0.15 g/cm2 with a standard deviation (SD) of 0.3. The error was set at 0.05 and the power level at 90% with additional compensation for a possible dropout rate of 20%. RESULTS A total of 240 participants in the study up to 24 months after THA. There were no significant differences in the mean BMD of all the zones between groups before surgery (all P > 0.05). However, there were significant differences in the BMD of Gruen zones 4 and 7 between groups at 6 months postoperatively (both P < 0.05); there were significant differences in Gruen zones 1, 4, 6, and 7 at 12 months postoperatively (all P < 0.01); there were significant differences in Gruen zones 1, 2, 4, 6, and 7 at 24 months postoperatively (all P < 0.001). Patients taking raloxifene reported higher QoL scores, with better improvement in BMD in all areas except in zones 3 and 5 compared with the control group. There were no significant differences in WOMAC pain (P = 0.4045), WOMAC function (P = 0.4456) and women's QoL scores (P = 0.5983) between groups before surgery. However, WOMAC pain, WOMAC function and women's QoL score in the treatment group were significantly better at all time points (all P < 0.05). Patients in the treatment group showed no increased adverse events, including cardiac events, stroke, venous thromboembolism, and gynecological cancer (all P > 0.05), but did show decreased odds of breast cancer in comparison with those using a placebo (P = 0.0437). CONCLUSION Raloxifene can help inhibit bone loss around the prosthesis and improve the QoL of postmenopausal women after THA with no increased adverse events, and can even decrease the odds of breast cancer.
Collapse
Affiliation(s)
- Long Gong
- Department of Orthopaedic Surgery, China-Japan Friendship Hospital, Peking Union Medical College, Chinese Academy of Medical College, Beijing, China
| | - Yao-Yao Zhang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, Chengdu, China
| | - Na Yang
- Bao Ding Maternal and Children Hospital, Baoding, China
| | - Huan-Juan Qian
- Department of Orthopedics Surgery, 81 Group Military Hospital of Chinese PLA, Baoding, China
| | - Ling-Kun Zhang
- Department of Orthopedics Surgery, 81 Group Military Hospital of Chinese PLA, Baoding, China
| | - Ming-Sheng Tan
- Department of Orthopaedic Surgery, China-Japan Friendship Hospital, Peking Union Medical College, Chinese Academy of Medical College, Beijing, China
| |
Collapse
|
13
|
Simultaneous Multi-Organ Metastases from Chemo-Resistant Triple-Negative Breast Cancer Are Prevented by Interfering with WNT-Signaling. Cancers (Basel) 2019; 11:cancers11122039. [PMID: 31861131 PMCID: PMC6966654 DOI: 10.3390/cancers11122039] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 12/20/2022] Open
Abstract
Triple-negative breast cancers (TNBCs), which lack specific targeted therapy options, evolve into highly chemo-resistant tumors that metastasize to multiple organs simultaneously. We have previously shown that TNBCs maintain an activated WNT10B-driven network that drives metastasis. Pharmacologic inhibition by ICG-001 decreases β-catenin-mediated proliferation of multiple TNBC cell lines and TNBC patient-derived xenograft (PDX)-derived cell lines. In vitro, ICG-001 was effective in combination with the conventional cytotoxic chemotherapeutics, cisplatin and doxorubicin, to decrease the proliferation of MDA-MB-231 cells. In contrast, in TNBC PDX-derived cells doxorubicin plus ICG-001 was synergistic, while pairing with cisplatin was not as effective. Mechanistically, cytotoxicity induced by doxorubicin, but not cisplatin, with ICG-001 was associated with increased cleavage of PARP-1 in the PDX cells only. In vivo, MDA-MB-231 and TNBC PDX orthotopic primary tumors initiated de novo simultaneous multi-organ metastases, including bone metastases. WNT monotherapy blocked multi-organ metastases as measured by luciferase imaging and histology. The loss of expression of the WNT10B/β-catenin direct targets HMGA2, EZH2, AXIN2, MYC, PCNA, CCND1, transcriptionally active β-catenin, SNAIL and vimentin both in vitro and in vivo in the primary tumors mechanistically explains loss of multi-organ metastases. WNT monotherapy induced VEGFA expression in both tumor model systems, whereas increased CD31 was observed only in the MDA-MB-231 tumors. Moreover, WNT-inhibition sensitized the anticancer response of the TNBC PDX model to doxorubicin, preventing simultaneous metastases to the liver and ovaries, as well as to bone. Our data demonstrate that WNT-inhibition sensitizes TNBC to anthracyclines and treats multi-organ metastases of TNBC.
Collapse
|