1
|
Denimal D, Ponnaiah M, Phan F, Jeannin AC, Redheuil A, Salem JE, Boussouar S, Paulstephenraj P, Laroche S, Amouyal C, Hartemann A, Foufelle F, Bourron O. Metabolic dysfunction-associated steatotic liver disease (MASLD) biomarkers and progression of lower limb arterial calcification in patients with type 2 diabetes: a prospective cohort study. Cardiovasc Diabetol 2025; 24:176. [PMID: 40269920 PMCID: PMC12020187 DOI: 10.1186/s12933-025-02705-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/24/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Studies have demonstrated that both lower limb arterial calcification and metabolic dysfunction-associated steatotic liver disease (MASLD) are linked to the development of peripheral artery disease. However, the potential relationship between MASLD biomarkers and progression of lower limb arterial calcification in individuals with type 2 diabetes (T2D) remains unclear. This study aimed to investigate whether the biomarkers of MASLD included in the FibroMax® panels are associated with the progression of lower limb arterial calcification in patients with T2D. METHODS The lower limb arterial calcification score (LLACS) was evaluated through computed tomography at baseline and after an average follow-up of 31.2 ± 3.7 months in a cohort of 150 patients with T2D. We also measured the serum biomarkers included in the FibroMax® panels (SteatoTest®, FibroTest®, NashTest®, ActiTest®). The predictive ability of these biomarkers of MASLD on LLACS progression was assessed through univariate and multivariate linear regression models, principal component regression analysis, as well as machine learning algorithms. RESULTS During the follow-up period, LLACS increased in 127 (85%) of the 150 patients with T2D. In univariate analysis, the annualized change in LLACS was positively and mainly correlated with baseline LLACS (r = 0.860, p < 0.0001), the FibroTest® score (r = 0.304, p = 0.0002), and age (r = 0.275, p = 0.0006), and negatively correlated with glomerular filtration rate (r = - 0.242, p = 0.003). In multivariate analysis, the FibroTest® score remained independently associated with the annualized change in LLACS, after adjusting for baseline LLACS and risk factors for lower extremity artery disease (β coefficient [95% confidence interval]: 988 [284-1692], p = 0.006). This association persisted even after adjustment for variables selected by principal component analysis (β = 1029 [289-1768], p = 0.007). Two advanced machine learning models identified the FibroTest® score as the second most important predictor of annualized change in LLACS, following baseline LLACS. CONCLUSIONS This study represents the first demonstration of an independent relationship between a non-invasive liver fibrosis test and the progression of lower limb arterial calcification in patients with T2D. Beyond its utility in assessing liver fibrosis, the FibroTest® could be a valuable and easy-to-use biomarker for predicting the risk of worsening lower limb arterial calcification. TRIAL REGISTRATION ClinicalTrials.gov identifier NCT02431234.
Collapse
Affiliation(s)
- Damien Denimal
- INSERM U1231, Center for Translational and Molecular Medicine, Dijon, France.
- Department of Clinical Biochemistry, CHU Dijon-Bourgogne, Dijon Bourgogne University Hospital, 2 rue Ducoudray, 21000, Dijon, France.
| | | | - Franck Phan
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
- Sorbonne Université, Paris, France
- Department of Diabetology, Assistance Publique‑Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière Hospital, 47‑83 Boulevard de l'Hôpital, Paris, France
- INSERM UMR_S 1166, Sorbonne University, Team Metabolic Diseases, Diabetes and Co-Morbidities, Paris, France
| | - Anne-Caroline Jeannin
- Sorbonne Université, Paris, France
- Department of Diabetology, Assistance Publique‑Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière Hospital, 47‑83 Boulevard de l'Hôpital, Paris, France
| | - Alban Redheuil
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
- Laboratoire d'Imagerie Biomédicale INSERM_1146, CNRS_7371, Paris, France
- ICT Cardiovascular and Thoracic Imaging Unit, AP-HP, Pitié Salpêtrière University Hospital, Paris, France
| | - Joe-Elie Salem
- Department of Pharmacology, INSERM, AP-HP, CIC-1901, Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
| | - Samia Boussouar
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
- Laboratoire d'Imagerie Biomédicale INSERM_1146, CNRS_7371, Paris, France
- ICT Cardiovascular and Thoracic Imaging Unit, AP-HP, Pitié Salpêtrière University Hospital, Paris, France
| | | | - Suzanne Laroche
- Sorbonne Université, Paris, France
- Department of Diabetology, Assistance Publique‑Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière Hospital, 47‑83 Boulevard de l'Hôpital, Paris, France
| | - Chloé Amouyal
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
- Sorbonne Université, Paris, France
- Department of Diabetology, Assistance Publique‑Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière Hospital, 47‑83 Boulevard de l'Hôpital, Paris, France
- INSERM UMR_S 1166, Sorbonne University, Team Metabolic Diseases, Diabetes and Co-Morbidities, Paris, France
| | - Agnès Hartemann
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
- Sorbonne Université, Paris, France
- Department of Diabetology, Assistance Publique‑Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière Hospital, 47‑83 Boulevard de l'Hôpital, Paris, France
- INSERM UMR_S 1166, Sorbonne University, Team Metabolic Diseases, Diabetes and Co-Morbidities, Paris, France
| | - Fabienne Foufelle
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
- INSERM UMR_S 1166, Sorbonne University, Team Metabolic Diseases, Diabetes and Co-Morbidities, Paris, France
| | - Olivier Bourron
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
- Sorbonne Université, Paris, France
- Department of Diabetology, Assistance Publique‑Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière Hospital, 47‑83 Boulevard de l'Hôpital, Paris, France
- INSERM UMR_S 1166, Sorbonne University, Team Metabolic Diseases, Diabetes and Co-Morbidities, Paris, France
| |
Collapse
|
2
|
Chen X, Tian B, Wang Y, Zheng J, Kang X. Potential and challenges of utilizing exosomes in osteoarthritis therapy (Review). Int J Mol Med 2025; 55:43. [PMID: 39791222 PMCID: PMC11759586 DOI: 10.3892/ijmm.2025.5484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/11/2024] [Indexed: 01/12/2025] Open
Abstract
Exosomes are integral to the pathophysiology of osteoarthritis (OA) due to their roles in mediating intercellular communication and regulating inflammatory processes. Exosomes are integral to the transport of bioactive molecules, such as proteins, lipids and nucleic acids, which can influence chondrocyte behavior and joint homeostasis. Given their properties of regeneration and ability to target damaged tissues, exosomes represent a promising therapeutic avenue for OA treatment. Exosomes have potential in promoting cartilage repair, reducing inflammation and improving overall joint function. However, several challenges remain, including the need for standardized isolation and characterization methods, variability in exosomal content, and regulatory hurdles. The present review aims to provide a comprehensive overview of the current understanding of exosome mechanisms in OA and their therapeutic potential, while also addressing the ongoing challenges faced in translating these findings into clinical practice. By consolidating existing research, the present review aims to pave the way for future studies aimed at optimizing exosome‑based therapies for effective OA management.
Collapse
Affiliation(s)
| | | | | | - Jiang Zheng
- Department of Joint Surgery, Sports Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710054, P.R. China
| | - Xin Kang
- Department of Joint Surgery, Sports Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710054, P.R. China
| |
Collapse
|
3
|
Davaine JM, Denimal D, Treca P, Francon H, Phan F, Hartemann A, Bourron O. Medial arterial calcification of the lower limbs in diabetes: Time for awareness? A short narrative review. DIABETES & METABOLISM 2025; 51:101586. [PMID: 39521119 DOI: 10.1016/j.diabet.2024.101586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/02/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
In patients with diabetes, peripheral arterial disease, particularly below the knee, is associated with medial arterial calcification. This is a frequent and potentially serious complication, affecting all types of diabetes. In recent years, our understanding of the pathophysiology and clinical significance of medial arterial calcification has improved considerably. Here, we offer a short narrative review of the epidemiology, clinical consequences, and pathophysiology of this complication. Now that medial arterial calcification of the lower limbs is better understood, we also focus on the prospect of treatments targeting arterial calcification.
Collapse
Affiliation(s)
- Jean-Michel Davaine
- Sorbonne Université, Paris, France; Assistance Publique‑Hôpitaux de Paris (APHP), Department of Vascular Surgery, Pitié-Salpêtrière Hospital, 47‑83 Boulevard de l'Hôpital, France; Institute of Cardiometabolism and Nutrition (ICAN), Paris, France; INSERM UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Damien Denimal
- INSERM U1231, Center for Translational and Molecular Medicine, Dijon, France; Dijon Bourgogne University Hospital, Department of Clinical Biochemistry, Dijon, France
| | - Pauline Treca
- Sorbonne Université, Paris, France; Institute of Cardiometabolism and Nutrition (ICAN), Paris, France; Assistance Publique‑Hôpitaux de Paris (APHP), Department of Diabetology, Pitié-Salpêtrière Hospital, 47‑83 Boulevard de l'Hôpital, France
| | - Hugo Francon
- Sorbonne Université, Paris, France; Institute of Cardiometabolism and Nutrition (ICAN), Paris, France; Assistance Publique‑Hôpitaux de Paris (APHP), Department of Diabetology, Pitié-Salpêtrière Hospital, 47‑83 Boulevard de l'Hôpital, France
| | - Franck Phan
- Sorbonne Université, Paris, France; Institute of Cardiometabolism and Nutrition (ICAN), Paris, France; INSERM UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Assistance Publique‑Hôpitaux de Paris (APHP), Department of Diabetology, Pitié-Salpêtrière Hospital, 47‑83 Boulevard de l'Hôpital, France
| | - Agnès Hartemann
- Sorbonne Université, Paris, France; Institute of Cardiometabolism and Nutrition (ICAN), Paris, France; INSERM UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Assistance Publique‑Hôpitaux de Paris (APHP), Department of Diabetology, Pitié-Salpêtrière Hospital, 47‑83 Boulevard de l'Hôpital, France
| | - Olivier Bourron
- Sorbonne Université, Paris, France; Institute of Cardiometabolism and Nutrition (ICAN), Paris, France; INSERM UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Assistance Publique‑Hôpitaux de Paris (APHP), Department of Diabetology, Pitié-Salpêtrière Hospital, 47‑83 Boulevard de l'Hôpital, France.
| |
Collapse
|
4
|
Yao M, Zhang C, Xu Y, Yue Z, Pei M, Liu W, Zhang L, Chen X, Lei S, Zhu L, Wang J, Gao P. Butyl benzyl phthalate induces neurotoxicity in Eisenia fetida: Mechanisms revealed by biochemical and metabolomic analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176972. [PMID: 39419222 DOI: 10.1016/j.scitotenv.2024.176972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Phthalates, particularly butyl benzyl phthalate (BBP), are ubiquitous environmental contaminants with potential neurotoxic effects. However, their impact on soil organisms, especially earthworms (Eisenia fetida), remains poorly understood. The current study investigated the neurotoxic effects of BBP on Eisenia fetida in artificial and red soils using an integrated approach combining biochemical assays, metabolomics, and molecular docking. Earthworms were exposed to 0, 1, and 10 mg kg-1 BBP for 14 and 28 days. Biochemical assays revealed significant increases in oxidative stress markers and disruptions in neurotransmission-related enzyme activities. Metabolomic analysis of the cerebral ganglia identified alterations in energy metabolism, lipid metabolism, and neuroactive ligand-receptor interaction signaling pathways. Molecular docking studies corroborated these findings, showing strong interactions between BBP and essential neuronal proteins, particularly the sodium pump. The integration of these data suggests that BBP-induced neurotoxicity in Eisenia fetida is primarily mediated by calcium signaling pathway dysfunction and calcium homeostasis imbalance. Notably, neurotoxic effects were more pronounced in red soil than in artificial soil, highlighting the importance of considering soil type in ecotoxicological assessments. The current study provides novel insights into the mechanisms of BBP-induced neurotoxicity in soil invertebrates and underscores the potential ecological risks associated with phthalate contamination in agricultural environments.
Collapse
Affiliation(s)
- Mengyao Yao
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Cheng Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Ying Xu
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Zhengfu Yue
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Mengyuan Pei
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Wanjing Liu
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Lanlan Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Xi Chen
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Shuhan Lei
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China; Wuxi Branch of Jiangsu Academy of Agricultural Sciences, Wuxi 214000, China.
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| | - Peng Gao
- Department of Environmental and Occupational Health, Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States
| |
Collapse
|
5
|
Timm T, Hild C, Liebisch G, Rickert M, Lochnit G, Steinmeyer J. Functional Insights into the Sphingolipids C1P, S1P, and SPC in Human Fibroblast-like Synoviocytes by Proteomic Analysis. Int J Mol Sci 2024; 25:8363. [PMID: 39125932 PMCID: PMC11313292 DOI: 10.3390/ijms25158363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
The (patho)physiological function of the sphingolipids ceramide-1-phosphate (C1P), sphingosine-1-phosphate (S1P), and sphingosylphosphorylcholine (SPC) in articular joints during osteoarthritis (OA) is largely unknown. Therefore, we investigated the influence of these lipids on protein expression by fibroblast-like synoviocytes (FLSs) from OA knees. Cultured human FLSs (n = 7) were treated with 1 of 3 lipid species-C1P, S1P, or SPC-IL-1β, or with vehicle. The expression of individual proteins was determined by tandem mass tag peptide labeling followed by high-resolution electrospray ionization (ESI) mass spectrometry after liquid chromatographic separation (LC-MS/MS/MS). The mRNA levels of selected proteins were analyzed using RT-PCR. The 3sphingolipids were quantified in the SF of 18 OA patients using LC-MS/MS. A total of 4930 proteins were determined using multiplex MS, of which 136, 9, 1, and 0 were regulated both reproducibly and significantly by IL-1β, C1P, S1P, and SPC, respectively. In the presence of IL-1ß, all 3 sphingolipids exerted ancillary effects. Only low SF levels of C1P and SPC were found. In conclusion, the 3 lipid species regulated proteins that have not been described in OA. Our results indicate that charged multivesicular body protein 1b, metal cation symporter ZIP14, glutamine-fructose-6-P transaminase, metallothionein-1F and -2A, ferritin, and prosaposin are particularly interesting proteins due to their potential to affect inflammatory, anabolic, catabolic, and apoptotic mechanisms.
Collapse
Affiliation(s)
- Thomas Timm
- Protein Analytics Group, Institute of Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Christiane Hild
- Laboratory for Experimental Orthopaedics, Department of Orthopaedics, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Markus Rickert
- Laboratory for Experimental Orthopaedics, Department of Orthopaedics, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Guenter Lochnit
- Protein Analytics Group, Institute of Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Juergen Steinmeyer
- Laboratory for Experimental Orthopaedics, Department of Orthopaedics, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
6
|
Hu S, Lin Y, Tang Y, Zhang J, He Y, Li G, Li L, Cai X. Targeting dysregulated intracellular immunometabolism within synovial microenvironment in rheumatoid arthritis with natural products. Front Pharmacol 2024; 15:1403823. [PMID: 39104392 PMCID: PMC11298361 DOI: 10.3389/fphar.2024.1403823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Immunometabolism has been an emerging hotspot in the fields of tumors, obesity, and atherosclerosis in recent decades, yet few studies have investigated its connection with rheumatoid arthritis (RA). In principle, intracellular metabolic pathways upstream regulated by nutrients and growth factors control the effector functions of immune cells. Dynamic communication and hypermetabolic lesions of immune cells within the inflammatory synovial microenvironment contributes to the development and progression of RA. Hence, targeting metabolic pathways within immune subpopulations and pathological cells may represent novel therapeutic strategies for RA. Natural products constitute a great potential treasury for the research and development of novel drugs targeting RA. Here, we aimed to delineate an atlas of glycolysis, lipid metabolism, amino acid biosynthesis, and nucleotide metabolism in the synovial microenvironment of RA that affect the pathological processes of synovial cells. Meanwhile, therapeutic potentials and pharmacological mechanisms of natural products that are demonstrated to inhibit related key enzymes in the metabolic pathways or reverse the metabolic microenvironment and communication signals were discussed and highlighted.
Collapse
Affiliation(s)
- Shengtao Hu
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ye Lin
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yuanyuan Tang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Junlan Zhang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yini He
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Gejing Li
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Liqing Li
- The Central Research Laboratory, Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
| | - Xiong Cai
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- The Central Research Laboratory, Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
| |
Collapse
|
7
|
Seal A, Hughes M, Wei F, Pugazhendhi AS, Ngo C, Ruiz J, Schwartzman JD, Coathup MJ. Sphingolipid-Induced Bone Regulation and Its Emerging Role in Dysfunction Due to Disease and Infection. Int J Mol Sci 2024; 25:3024. [PMID: 38474268 PMCID: PMC10932382 DOI: 10.3390/ijms25053024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
The human skeleton is a metabolically active system that is constantly regenerating via the tightly regulated and highly coordinated processes of bone resorption and formation. Emerging evidence reveals fascinating new insights into the role of sphingolipids, including sphingomyelin, sphingosine, ceramide, and sphingosine-1-phosphate, in bone homeostasis. Sphingolipids are a major class of highly bioactive lipids able to activate distinct protein targets including, lipases, phosphatases, and kinases, thereby conferring distinct cellular functions beyond energy metabolism. Lipids are known to contribute to the progression of chronic inflammation, and notably, an increase in bone marrow adiposity parallel to elevated bone loss is observed in most pathological bone conditions, including aging, rheumatoid arthritis, osteoarthritis, and osteomyelitis. Of the numerous classes of lipids that form, sphingolipids are considered among the most deleterious. This review highlights the important primary role of sphingolipids in bone homeostasis and how dysregulation of these bioactive metabolites appears central to many chronic bone-related diseases. Further, their contribution to the invasion, virulence, and colonization of both viral and bacterial host cell infections is also discussed. Many unmet clinical needs remain, and data to date suggest the future use of sphingolipid-targeted therapy to regulate bone dysfunction due to a variety of diseases or infection are highly promising. However, deciphering the biochemical and molecular mechanisms of this diverse and extremely complex sphingolipidome, both in terms of bone health and disease, is considered the next frontier in the field.
Collapse
Affiliation(s)
- Anouska Seal
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
| | - Megan Hughes
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK;
| | - Fei Wei
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Abinaya S. Pugazhendhi
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Christopher Ngo
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Jonathan Ruiz
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | | | - Melanie J. Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| |
Collapse
|
8
|
Dwivedi SD, Yadav K, Bhoi A, Sahu KK, Sangwan N, Singh D, Singh MR. Targeting Pathways and Integrated Approaches to Treat Rheumatoid Arthritis. Crit Rev Ther Drug Carrier Syst 2024; 41:87-102. [PMID: 38305342 DOI: 10.1615/critrevtherdrugcarriersyst.2023044719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic symmetrical systemic disorder that not only affects joints but also other organs such as heart, lungs, kidney, and liver. Approximately there is 0.5%-1% of the total population affected by RA. RA pathogenesis still remains unclear due to which its appropriate treatment is a challenge. Further, multitudes of factors have been reported to affect its progression i.e. genetic factor, environmental factor, immune factor, and oxidative factor. Therapeutic approaches available for the treatment of RA include NSAIDs, DMARDs, enzymatic, hormonal, and gene therapies. But most of them provide the symptomatic relief without treating the core of the disease. This makes it obligatory to explore and reach the molecular targets for cure and long-term relief from RA. Herein, we attempt to provide extensive overlay of the new targets for RA treatment such as signaling pathways, proteins, and receptors affecting the progression of the disease and its severity. Precise modification in these targets such as suppressing the notch signaling pathway, SIRT 3 protein, Sphingosine-1-phosphate receptor and stimulating the neuronal signals particularly efferent vagus nerve and SIRT 1 protein may offer long term relief and potentially diminish the chronicity. To target or alter the novel molecules and signaling pathway a specific delivery system is required such as liposome, nanoparticles and micelles and many more. Present review paper discusses in detail about novel targets and delivery systems for treating RA.
Collapse
Affiliation(s)
- Shradha Devi Dwivedi
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492 010, India
| | - Krishna Yadav
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur (C.G), 492010, India
| | - Anita Bhoi
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492 010, India
| | - Keshav Kant Sahu
- School of studies in biotechnology, Pt. Ravishankar Shukla University, Raipur (C.G), 492010, India
| | - Neelam Sangwan
- Department of Biochemistry, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India; National Centre for Natural Resources, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India
| | - Manju Rawat Singh
- University Institute of pharmacy, Pt.Ravishankar Shukla University, Raipur.(C.G.) 2. National centre for natural resources, Pt. Ravishankar Shukla University, Raipur
| |
Collapse
|
9
|
Han X, Fu Y, Wang K, Li S, Jiang C, Wang S, Wang Z, Liu G, Hu S. Epigallocatechin gallate alleviates osteoporosis by regulating the gut microbiota and serum metabolites in rats. Food Funct 2023; 14:10564-10580. [PMID: 37953732 DOI: 10.1039/d3fo03233g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Osteoporosis, one of the serious public health problems worldwide, can lead to degeneration of the bone structure and increased risk of fractures. Epigallocatechin gallate (EGCG) is a natural product with potential efficacy in inhibiting bone loss. However, the specific mechanism remains unclear. This study first investigated the role of EGCG in preventing dexamethasone (DEX)-induced osteoporosis by regulating intestinal microbiota and serum metabolites. We detected the bone density, bone microstructure, and changes in intestinal microorganisms and serum metabolites. According to our results, EGCG inhibited the decline of bone density, protected the bone microstructure, increased microbial diversity, promoted the abundance of beneficial bacteria such as Prevotellaceae and Ruminococcus, and inhibited the abundance of pathogenic bacteria such as Peptostreptococcaceae. There were also significant changes in serum metabolites among different treatments. Differential metabolites were mainly involved in sphingolipid metabolism and glycerophospholipid metabolism pathways, especially ceramide (d18:0/16:0(2OH)), phosphatidylserine (P-20:0/20:4(5Z,8Z,11Z,14Z)), phosphatidylserine (18:2(9Z,12Z)/12:0), and phosphatidylethanolamine (O-16:0/0:00), which were increased after EGCG treatment. Notably, most of the above metabolites were positively correlated with bone mineral density, BV/TV and Tb·Th, and negatively correlated with Tb·Sp. In summary, EGCG can prevent bone damage, promote the production of beneficial bacteria and metabolites, and enhance immune function. This study provides a basis and reference for the prevention and treatment of osteoporosis, as well as the application of EGCG in maintaining body health.
Collapse
Affiliation(s)
- Xuebing Han
- The Orthopaedic Center, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People's Hospital of Wenling), Wenling 317500, Zhejiang Province, China.
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, PR China
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine, Production, Changsha 410128, PR China
| | - Yifeng Fu
- The Orthopaedic Center, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People's Hospital of Wenling), Wenling 317500, Zhejiang Province, China.
| | - Keyu Wang
- The Orthopaedic Center, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People's Hospital of Wenling), Wenling 317500, Zhejiang Province, China.
| | - Siying Li
- The Orthopaedic Center, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People's Hospital of Wenling), Wenling 317500, Zhejiang Province, China.
| | - Chang Jiang
- The Orthopaedic Center, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People's Hospital of Wenling), Wenling 317500, Zhejiang Province, China.
| | - Shuangshuang Wang
- Department of Cardiology, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People's Hospital of Wenling), Wenling 317500, Zhejiang Province, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Affiliated First Hospital of Ningbo University, Ningbo 315010, China
| | - Zheng Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, PR China
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine, Production, Changsha 410128, PR China
| | - Gang Liu
- The Orthopaedic Center, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People's Hospital of Wenling), Wenling 317500, Zhejiang Province, China.
| | - Siwang Hu
- The Orthopaedic Center, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People's Hospital of Wenling), Wenling 317500, Zhejiang Province, China.
| |
Collapse
|
10
|
Zhang F, Xu J, Hu Y, Fang J, Yang M, Huang K, Xu W, He X. Diallyl trisulfide ameliorates bone loss and alters specific gut microbiota and serum metabolites in natural aging mice. Food Funct 2023; 14:7642-7653. [PMID: 37540026 DOI: 10.1039/d3fo01840g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Aging is a major cause of bone loss and osteoporosis. Diallyl trisulfide (DATS), one of the main organic sulfides in garlic oil, has been shown to alleviate arthritis in mice. However, further research is still needed to determine how DATS affects bone formation and bone loss in aging mice. Here, we established a mouse model of natural aging for dietary DATS intervention. DATS treatment improved the bone microstructure, including the disorganized arrangement of bone trabeculae and promoted collagen synthesis, as confirmed by micro-CT and histological analyses. The abundance of beneficial bacteria for bone formation, such as Clostridiaceae and Erysipelotrichaceae, and the microbial diversity and community richness were all altered by DATS, according to 16S rRNA sequencing data. 14 potential biomarkers and 9 important metabolic pathways were examined using serum metabolomics analysis. Additionally, there has been a significant reduction in sphingosine, which is directly associated with bone metabolism. The level of sphingosine and relative abundance of Clostridium were found to be negatively correlated by correlation analysis, indicating that bacteria may regulate bone reconstruction via influencing metabolites. Furthermore, Runx2 and β-catenin gene expression levels increased in bones, which may be related to the ameliorative mechanism of DATS. Our results suggested that DATS may prevent age-related bone loss by upregulating osteogenic gene expression through altering gut microbes and serum metabolism.
Collapse
Affiliation(s)
- Feng Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering; China Agricultural University, Beijing 100083, China.
| | - Jia Xu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering; China Agricultural University, Beijing 100083, China.
| | - Yanzhou Hu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering; China Agricultural University, Beijing 100083, China.
| | - Jingjing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering; China Agricultural University, Beijing 100083, China.
| | - Minglan Yang
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering; China Agricultural University, Beijing 100083, China.
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, China
| | - Wentao Xu
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, China
- Department of Nutrition and Health, China Agricultural University, Beijing 100191, China
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering; China Agricultural University, Beijing 100083, China.
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, China
| |
Collapse
|
11
|
Mebarek S, Skafi N, Brizuela L. Targeting Sphingosine 1-Phosphate Metabolism as a Therapeutic Avenue for Prostate Cancer. Cancers (Basel) 2023; 15:2732. [PMID: 37345069 DOI: 10.3390/cancers15102732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Prostate cancer (PC) is the second most common cancer in men worldwide. More than 65% of men diagnosed with PC are above 65. Patients with localized PC show high long-term survival, however with the disease progression into a metastatic form, it becomes incurable, even after strong radio- and/or chemotherapy. Sphingosine 1-phosphate (S1P) is a bioactive lipid that participates in all the steps of oncogenesis including tumor cell proliferation, survival, migration, invasion, and metastatic spread. The S1P-producing enzymes sphingosine kinases 1 and 2 (SK1 and SK2), and the S1P degrading enzyme S1P lyase (SPL), have been shown to be highly implicated in the onset, development, and therapy resistance of PC during the last 20 years. In this review, the most important studies demonstrating the role of S1P and S1P metabolic partners in PC are discussed. The different in vitro, ex vivo, and in vivo models of PC that were used to demonstrate the implication of S1P metabolism are especially highlighted. Furthermore, the most efficient molecules targeting S1P metabolism that are under preclinical and clinical development for curing PC are summarized. Finally, the possibility of targeting S1P metabolism alone or combined with other therapies in the foreseeable future as an alternative option for PC patients is discussed. Research Strategy: PubMed from INSB was used for article research. First, key words "prostate & sphingosine" were used and 144 articles were found. We also realized other combinations of key words as "prostate cancer bone metastasis" and "prostate cancer treatment". We used the most recent reviews to illustrate prostate cancer topic and sphingolipid metabolism overview topic.
Collapse
Affiliation(s)
- Saida Mebarek
- CNRS UMR 5246, INSA Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), 69622 Lyon, France
| | - Najwa Skafi
- CNRS, LAGEPP UMR 5007, University of Lyon, Université Claude Bernard Lyon 1, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France
| | - Leyre Brizuela
- CNRS UMR 5246, INSA Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), 69622 Lyon, France
| |
Collapse
|
12
|
Zhao T, Wang S, Liu W, Shen J, Dai Y, Shi M, Huang X, Wei Y, Li T, Zhang X, Xie Z, Wang N, Qin D, Li Z. Clinical efficacy of Yiqi Yangxue formula on knee osteoarthritis and unraveling therapeutic mechanism through plasma metabolites in rats. Front Genet 2023; 14:1096616. [PMID: 37091797 PMCID: PMC10113924 DOI: 10.3389/fgene.2023.1096616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
Objective: To observe the clinical efficacy and safety of Yiqi Yangxue formula (YQYXF) on knee osteoarthritis (KOA), and to explore the underlying therapeutic mechanism of YQYXF through endogenous differential metabolites and their related metabolic pathways. Methods: A total of 61 KOA patients were recruited and divided into the treatment group (YQYXF, 30 cases) and the control group (celecoxib, Cxb, 31 cases). Effects of these two drugs on joint pain, swelling, erythrocyte sedimentation rate (ESR) and c-reactive protein (CRP) were observed, and their safety and adverse reactions were investigated. In animal experiments, 63 SD rats were randomly divided into normal control (NC) group, sham operation (sham) group, model (KOA) group, Cxb group, as well as low-dose (YL), medium-dose (YM), and high-dose groups of YQYXF (YH). The KOA rat model was established using a modified Hulth method. Ultra-high-performance liquid chromatography/Q Exactive HF-X Hybrid Quadrupole-Orbitrap Mass (UHPLC-QE-MS)-based metabolomics technology was used to analyze the changes of metabolites in plasma samples of rats. Comprehensive (VIP) >1 and t-test p < 0.05 conditions were used to screen the disease biomarkers of KOA, and the underlying mechanisms of YQYXF were explored through metabolic pathway enrichment analysis. The related markers of YQYXF were further verified by ELISA (enzyme-linked immunosorbent assay). Results: YQYXF can improve joint pain, swelling, range of motion, joint function, Michel Lequesen index of severity for osteoarthritis (ISOA) score, Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score, ESR, and CRP. No apparent adverse reactions were reported. In addition, YQYXF can improve cartilage damage in KOA rats, reverse the abnormal changes of 16 different metabolites, and exert an anti-KOA effect mainly through five metabolic pathways. The levels of reactive oxygen species (ROS) and glutathione (GSH) were significantly decreased after the treatment of YQYXF. Conclusion: YQYXF can significantly improve the clinical symptoms of KOA patients without obvious adverse reactions. It mainly improved KOA through modulating lipid metabolism-related biomarkers, reducing lipid peroxidation and oxidative stress.
Collapse
Affiliation(s)
- Ting Zhao
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Shiqi Wang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Wenbin Liu
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Jiayan Shen
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Youwu Dai
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Mingqin Shi
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaoyi Huang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanyuan Wei
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Tao Li
- Qujing Hospital Affiliated to Yunnan University of Traditional Chinese Medicine, Qujing, China
| | - Xiaoyu Zhang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhaohu Xie
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Na Wang
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhaofu Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
13
|
Qian Q, Gao Y, Xun G, Wang X, Ge J, Zhang H, Mou F, Su S, Wang Q. Synchronous Investigation of the Mechanism and Substance Basis of Tripterygium Glycosides Tablets on Anti-rheumatoid Arthritis and Hepatotoxicity. Appl Biochem Biotechnol 2022; 194:5333-5352. [DOI: 10.1007/s12010-022-04011-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 12/20/2022]
|
14
|
Torres W, Chávez-Castillo M, Peréz-Vicuña JL, Carrasquero R, Díaz MP, Gomez Y, Ramírez P, Cano C, Rojas-Quintero J, Chacín M, Velasco M, de Sanctis JB, Bermudez V. Potential role of bioactive lipids in rheumatoid arthritis. Curr Pharm Des 2021; 27:4434-4451. [PMID: 34036919 DOI: 10.2174/1381612827666210525164734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/08/2021] [Indexed: 11/22/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease, which involves a pathological inflammatory response against articular cartilage in multiple joints throughout the body. It is a complex disorder associated with comorbidities such as depression, lymphoma, osteoporosis and cardiovascular disease (CVD), which significantly deteriorate patients' quality of life and prognosis. This has ignited a large initiative to elucidate the physiopathology of RA, aiming to identify new therapeutic targets and approaches in its multidisciplinary management. Recently, various lipid bioactive products have been proposed to have an essential role in this process; including eicosanoids, specialized pro-resolving mediators, phospholipids/sphingolipids, and endocannabinoids. Dietary interventions using omega-3 polyunsaturated fatty acids or treatment with synthetic endocannabinoids agonists have been shown to significantly ameliorate RA symptoms. Indeed, the modulation of lipid metabolism may be crucial in the pathophysiology and treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Wheeler Torres
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Mervin Chávez-Castillo
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - José L Peréz-Vicuña
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Rubén Carrasquero
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - María P Díaz
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Yosselin Gomez
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Paola Ramírez
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Joselyn Rojas-Quintero
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston. 0
| | - Maricarmen Chacín
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla. Colombia
| | - Manuel Velasco
- Universidad Central de Venezuela, Escuela de Medicina José María Vargas, Caracas. Venezuela
| | - Juan Bautista de Sanctis
- Institute of Molecular and Translational Medicine. Faculty of Medicine and Dentistry. Palacky University. Czech Republic
| | - Valmore Bermudez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla. Colombia
| |
Collapse
|
15
|
Velazquez FN, Hernandez-Corbacho M, Trayssac M, Stith JL, Bonica J, Jean B, Pulkoski-Gross MJ, Carroll BL, Salama MF, Hannun YA, Snider AJ. Bioactive sphingolipids: Advancements and contributions from the laboratory of Dr. Lina M. Obeid. Cell Signal 2020; 79:109875. [PMID: 33290840 PMCID: PMC8244749 DOI: 10.1016/j.cellsig.2020.109875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023]
Abstract
Sphingolipids and their synthetic enzymes have emerged as critical mediators in numerous diseases including inflammation, aging, and cancer. One enzyme in particular, sphingosine kinase (SK) and its product sphingosine-1-phosphate (S1P), has been extensively implicated in these processes. SK catalyzes the phosphorylation of sphingosine to S1P and exists as two isoforms, SK1 and SK2. In this review, we will discuss the contributions from the laboratory of Dr. Lina M. Obeid that have defined the roles for several bioactive sphingolipids in signaling and disease with an emphasis on her work defining SK1 in cellular fates and pathobiologies including proliferation, senescence, apoptosis, and inflammation.
Collapse
Affiliation(s)
- Fabiola N Velazquez
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maria Hernandez-Corbacho
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Magali Trayssac
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jeffrey L Stith
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Joseph Bonica
- Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA; Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11790, USA
| | - Bernandie Jean
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Michael J Pulkoski-Gross
- Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA; Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11790, USA
| | - Brittany L Carroll
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11790, USA
| | - Mohamed F Salama
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA; Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ashley J Snider
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
16
|
Zhang L, Dong Y, Wang Y, Hu W, Dong S, Chen Y. Sphingosine-1-phosphate (S1P) receptors: Promising drug targets for treating bone-related diseases. J Cell Mol Med 2020; 24:4389-4401. [PMID: 32155312 PMCID: PMC7176849 DOI: 10.1111/jcmm.15155] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/22/2020] [Accepted: 02/01/2020] [Indexed: 12/20/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a natural bioactive lipid molecule and a common first or second messenger in the cardiovascular and immune systems. By binding with its receptors, S1P can serve as mediator of signalling during cell migration, differentiation, proliferation and apoptosis. Although the predominant role of S1P in bone regeneration has been noted in many studies, this role is not as well-known as its roles in the cardiovascular and immune systems. In this review, we summarize previous research on the role of S1P receptors (S1PRs) in osteoblasts and osteoclasts. In addition, S1P is regarded as a bridge between bone resorption and formation, which brings hope to patients with bone-related diseases. Finally, we discuss S1P and its receptors as therapeutic targets for treating osteoporosis, inflammatory osteolysis and bone metastasis based on the biological effects of S1P in osteoclastic/osteoblastic cells, immune cells and tumour cells.
Collapse
Affiliation(s)
- Lincheng Zhang
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China.,Battalion One of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yutong Dong
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China.,Battalion One of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yiran Wang
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wenhui Hu
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yueqi Chen
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|