1
|
Grunz JP, Kunz AS, Baumann FT, Hasenclever D, Sieren MM, Heldmann S, Bley TA, Einsele H, Knop S, Jundt F. Assessing Osteolytic Lesion Size on Sequential CT Scans Is a Reliable Study Endpoint for Bone Remineralization in Newly Diagnosed Multiple Myeloma. Cancers (Basel) 2023; 15:4008. [PMID: 37568823 PMCID: PMC10417114 DOI: 10.3390/cancers15154008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Multiple myeloma (MM) frequently induces persisting osteolytic manifestations despite hematologic treatment response. This study aimed to establish a biometrically valid study endpoint for bone remineralization through quantitative and qualitative analyses in sequential CT scans. Twenty patients (seven women, 58 ± 8 years) with newly diagnosed MM received standardized induction therapy comprising the anti-SLAMF7 antibody elotuzumab, carfilzomib, lenalidomide, and dexamethasone (E-KRd). All patients underwent whole-body low-dose CT scans before and after six cycles of E-KRd. Two radiologists independently recorded osteolytic lesion sizes, as well as the presence of cortical destruction, pathologic fractures, rim and trabecular sclerosis. Bland-Altman analyses and Krippendorff's α were employed to assess inter-reader reliability, which was high for lesion size measurement (standard error 1.2 mm) and all qualitative criteria assessed (α ≥ 0.74). After six cycles of E-KRd induction, osteolytic lesion size decreased by 22% (p < 0.001). While lesion size response did not correlate with the initial lesion size at baseline imaging (Pearson's r = 0.144), logistic regression analysis revealed that the majority of responding osteolyses exhibited trabecular sclerosis (p < 0.001). The sum of osteolytic lesion sizes on sequential CT scans defines a reliable study endpoint to characterize bone remineralization. Patient level response is strongly associated with the presence of trabecular sclerosis.
Collapse
Affiliation(s)
- Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany; (A.S.K.); (T.A.B.)
| | - Andreas Steven Kunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany; (A.S.K.); (T.A.B.)
| | - Freerk T. Baumann
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Dusseldorf, University Hospital of Cologne, Kerpener Straße 62, 50937 Cologne, Germany;
| | - Dirk Hasenclever
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Härtelstraße 16–18, 04107 Leipzig, Germany;
| | - Malte Maria Sieren
- Department of Radiology and Nuclear Medicine, University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562 Lübeck, Germany;
- Institute of Interventional Radiology, University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Stefan Heldmann
- Fraunhofer Institute for Digital Medicine MEVIS, Maria-Goeppert-Straße 3, 23562 Lübeck, Germany;
| | - Thorsten Alexander Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany; (A.S.K.); (T.A.B.)
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany; (H.E.); (S.K.); (F.J.)
| | - Stefan Knop
- Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany; (H.E.); (S.K.); (F.J.)
- Department of Internal Medicine, Klinikum Nürnberg Nord, Prof.-Ernst-Nathan-Str. 1, 90419 Nürnberg, Germany
| | - Franziska Jundt
- Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany; (H.E.); (S.K.); (F.J.)
| |
Collapse
|
2
|
The Exosomes Containing LINC00461 Originated from Multiple Myeloma Inhibit the Osteoblast Differentiation of Bone Mesenchymal Stem Cells via Sponging miR-324-3p. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:3282860. [PMID: 35126917 PMCID: PMC8808147 DOI: 10.1155/2022/3282860] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/24/2021] [Accepted: 12/31/2021] [Indexed: 02/07/2023]
Abstract
Multiple myeloma is one of the hematological malignancies and inhibited osteoblast differentiation of bone marrow mesenchymal stem cells (BM-MSCs) which has been proved as a major complication of the patients with multiple myeloma. However, the pathomechanism of symptom remains unclear. Besides, several studies have indicated that LINC00461 plays an important role in the progression of multiple tumors. Hence, this study attempted to reveal the role of LINC00461 in the osteoblast differentiation of MSCs. In this study, the expression level of LINC00461 in the exosomes of multiple myeloma cells was measured, and BM-MSCs were cultured with the exosomes to observe the change of cellular phenotype. Moreover, downstream target of LINC00461 was searched and verified with dual-luciferase reporter assay, and the activation of the Wnt/β-catenin pathway was also observed by Western blot. The results showed that the isolated BMSCs exhibited special biomarkers of MSCs. LINC00461 was significantly upregulated in the exosomes originated multiple myeloma cells, and increased LINC00461 significantly impeded the osteoblast differentiation of MSCs. Moreover, LINC00461 could significantly suppress the activation of the Wnt/β-catenin pathway in MSCs. In conclusion, this study suggested that LINC00461 in exosomes of multiple myeloma could reduce the activity of the Wnt/β-catenin pathway to inhibit the osteoblast differentiation of BM-MSCs via targeting miR-324-3p.
Collapse
|
3
|
Pop V, Parvu A, Craciun A, Farcas AD, Tomoaia G, Bojan A. Modern markers for evaluating bone disease in multiple myeloma (Review). Exp Ther Med 2021; 22:1329. [PMID: 34630683 DOI: 10.3892/etm.2021.10764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022] Open
Abstract
Multiple myeloma (MM) is a bone marrow neoplasia with increasing incidence compared to previous years. Although new therapeutic molecules have been introduced, it remains an incurable disease with severe repercussions to patients. For many patients, bone disease represents a severe problem often causing pain, pathological bone fractures, and spinal cord compression, which affects the quality of life. This article analyzes the main markers of bone destruction in MM as well as risk factors for severe bone damage. Bone complications have a negative impact on the quality of life of patients with MM, along with other associated complications (renal failure, hypogammaglobulinemia, osteolytic bone disease, hypercalcemia, anemia). The markers of bone destruction described in this article include: interleukin (IL)-6, tumor necrosis factor (TNF)-α, receptor activator of nuclear factor kappa-Β ligand (RANKL), osteoprotegerin (OPG), amino- and carboxy-terminal cross-linking telopeptide of type I collagen (NTX, CTX), human bone sialoprotein (BSP) and dickkopf-1 secreted glycoprotein (DKK1). The future practical applicability of this literature review would be the large-scale determination of markers of bone destruction that correlate with the negative evolution to complications of bone disease or the implications that these markers have in regards to treatment.
Collapse
Affiliation(s)
- Vlad Pop
- Hematology Department, 'Iuliu Haţieganu' University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania.,Hematology Department, 'Prof. Dr. Ioan Chiricuta' Oncological Institute, 400015 Cluj-Napoca, Romania
| | - Andrada Parvu
- Hematology Department, 'Iuliu Haţieganu' University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania.,Hematology Department, 'Prof. Dr. Ioan Chiricuta' Oncological Institute, 400015 Cluj-Napoca, Romania
| | - Alexandra Craciun
- Medical Biochemistry Department, 'Iuliu Haţieganu' University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Anca Daniela Farcas
- Internal Medicine Department, 'Iuliu Haţieganu' University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania.,Cardiology Department, Emergency County Clinic Hospital, 400006 Cluj-Napoca, Romania
| | - Gheorghe Tomoaia
- Orthopedics and Traumatology Department, 'Iuliu Haţieganu' University of Medicine and Pharmacy, 400132 Cluj-Napoca, Romania
| | - Anca Bojan
- Hematology Department, 'Iuliu Haţieganu' University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania.,Hematology Department, 'Prof. Dr. Ioan Chiricuta' Oncological Institute, 400015 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Mehdi SH, Nafees S, Mehdi SJ, Morris CA, Mashouri L, Yoon D. Animal Models of Multiple Myeloma Bone Disease. Front Genet 2021; 12:640954. [PMID: 34163520 PMCID: PMC8215650 DOI: 10.3389/fgene.2021.640954] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) is a clonal B-cell disorder characterized by the proliferation of malignant plasma cells (PCs) in the bone marrow, the presence of monoclonal serum immunoglobulin, and osteolytic lesions. It is the second most common hematological malignancy and considered an incurable disease despite significant treatment improvements. MM bone disease (MMBD) is defined as the presence of one or more osteolytic bone lesions or diffused osteoporosis with compression fracture attributable to the underlying clonal PC disorder. MMBD causes severe morbidity and increases mortality. Cumulative evidence shows that the interaction of MM cells and bone microenvironment plays a significant role in MM progression, suggesting that these interactions may be good targets for therapy. MM animal models have been developed and studied in various aspects of MM tumorigenesis. In particular, MMBD has been studied in various models, and each model has unique features. As the general features of MM animal models have been reviewed elsewhere, the current review will focus on the features of MMBD animal models.
Collapse
Affiliation(s)
- Syed Hassan Mehdi
- Myeloma Center, The University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Sana Nafees
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Syed Jafar Mehdi
- Myeloma Center, The University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Carol A Morris
- Myeloma Center, The University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Ladan Mashouri
- Myeloma Center, The University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Donghoon Yoon
- Myeloma Center, The University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|