1
|
Andriolo L, Sangiorgio A, Berruto M, Madry H, Peretti GM, Varenna M, Yiftah B, Zaffagnini S, Filardo G. Conservative treatments of bone marrow lesions. J Exp Orthop 2025; 12:e70151. [PMID: 40191034 PMCID: PMC11970530 DOI: 10.1002/jeo2.70151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 04/09/2025] Open
Abstract
Purpose Bone marrow lesions (BMLs) of the knee are a common magnetic resonance imaging finding and are present in a wide range of pathologies, including traumatic contusions and fractures, following cartilage surgery alterations, osteoarthritis, transient BMLs syndromes, subchondral insufficiency fractures of the knee and spontaneous osteonecrosis of the knee. Regardless of their aetiology, clinical management may prove challenging. This review focuses on the conservative treatment approaches to manage patients affected by knee BML, thanks to the contribution of field experts. Methods Experts from around the globe were involved in performing a review on the most used conservative treatment strategies to address BMLs, trying to summarize the available evidence from the most popular first-line treatments while documenting their applications and results for the different BML aetiologies. Results Positive results were documented for unloading knee braces, external shockwave therapy, hyperbaric oxygen therapy, pulsed electromagnetic fields therapy and bisphosphonates. Nonetheless, the analysis of the scientific literature documented a scarce number of publications specifically addressing the knee joint, with even less evidence when it comes to the results for the different aetiologies of BMLs. Conclusion The management of BMLs is challenging, and many factors influence clinical and radiological outcomes. This paper summarized the evidence on conservative treatments for knee BMLs. Although showing promising results, conservative options still need to be fully investigated. Open questions to be addressed concern treatment duration, BML stage and overlapping with concomitant therapies. Further studies are needed to identify the best first-line conservative approach or treatment combination based on each BML aetiology. Level of Evidence Level V: expert opinion.
Collapse
Affiliation(s)
- Luca Andriolo
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico RizzoliBolognaItaly
| | | | - Massimo Berruto
- U.O.C. 1st Orthopedic Clinic, ASST Gaetano Pini‐CTOMilanItaly
| | - Henning Madry
- Center of Experimental OrthopaedicsSaarland UniversityHomburgGermany
| | - Giuseppe M. Peretti
- E.U.O.R.R. Unit, Department of Biomedical Sciences for Health, IRCCS Orthopedic Institute GaleazziUniversity “La Statale”MilanItaly
| | - Massimo Varenna
- Bone Diseases Unit, Department of Rheumatology and Medical SciencesASST Gaetano Pini‐CTOMilanItaly
| | | | - Stefano Zaffagnini
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Giuseppe Filardo
- Service of Orthopaedics and Traumatology, Department of SurgeryEOCLuganoSwitzerland
- Faculty of Biomedical SciencesUniversità della Svizzera ItalianaLuganoSwitzerland
| |
Collapse
|
2
|
Delsmann J, Eissele J, Simon A, Alimy AR, von Kroge S, Mushumba H, Püschel K, Busse B, Ries C, Amling M, Beil FT, Rolvien T. Alterations in compositional and cellular properties of the subchondral bone are linked to cartilage degeneration in hip osteoarthritis. Osteoarthritis Cartilage 2024; 32:535-547. [PMID: 38403152 DOI: 10.1016/j.joca.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/21/2023] [Accepted: 01/22/2024] [Indexed: 02/27/2024]
Abstract
OBJECTIVE The subchondral bone is an emerging regulator of osteoarthritis (OA). However, knowledge of how specific subchondral alterations relate to cartilage degeneration remains incomplete. METHOD Femoral heads were obtained from 44 patients with primary OA during total hip arthroplasty and from 30 non-OA controls during autopsy. A multiscale assessment of the central subchondral bone region comprising histomorphometry, quantitative backscattered electron imaging, nanoindentation, and osteocyte lacunocanalicular network characterization was employed. RESULTS In hip OA, thickening of the subchondral bone coincided with a higher number of osteoblasts (controls: 3.7 ± 4.5 mm-1, OA: 16.4 ± 10.2 mm-1, age-adjusted mean difference 10.5 mm-1 [95% CI 4.7 to 16.4], p < 0.001) but a similar number of osteoclasts compared to controls (p = 0.150). Furthermore, higher matrix mineralization heterogeneity (CaWidth, controls: 2.8 ± 0.2 wt%, OA: 3.1 ± 0.3 wt%, age-adjusted mean difference 0.2 wt% [95% CI 0.1 to 0.4], p = 0.011) and lower tissue hardness (controls: 0.69 ± 0.06 GPa, OA: 0.67 ± 0.06 GPa, age-adjusted mean difference -0.05 GPa [95% CI -0.09 to -0.01], p = 0.032) were detected. While no evidence of altered osteocytic perilacunar/canalicular remodeling in terms of fewer osteocyte canaliculi was found in OA, specimens with advanced cartilage degeneration showed a higher number of osteocyte canaliculi and larger lacunocanalicular network area compared to those with low-grade cartilage degeneration. Multiple linear regression models indicated that several subchondral bone properties, especially osteoblast and osteocyte parameters, were closely related to cartilage degeneration (R2 adjusted = 0.561, p < 0.001). CONCLUSION Subchondral bone properties in OA are affected at the compositional, mechanical, and cellular levels. Based on their strong interaction with cartilage degeneration, targeting osteoblasts/osteocytes may be a promising therapeutic OA approach. DATA AND MATERIALS AVAILABILITY All data are available in the main text or the supplementary materials.
Collapse
Affiliation(s)
- Julian Delsmann
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Eissele
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Simon
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Assil-Ramin Alimy
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon von Kroge
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Herbert Mushumba
- Department of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Püschel
- Department of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Ries
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Timo Beil
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Rolvien
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
3
|
Muratovic D, Atkins GJ, Findlay DM. Is RANKL a potential molecular target in osteoarthritis? Osteoarthritis Cartilage 2024; 32:493-500. [PMID: 38160744 DOI: 10.1016/j.joca.2023.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/09/2023] [Accepted: 10/27/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE Osteoarthritis (OA) is a disease of joints, in which the bone under the articular cartilage undergoes increased remodelling activity. The question is whether a better understanding of the causes and mechanisms of bone remodelling can predict disease-modifying treatments. DESIGN This review summarises the current understanding of the aetiology of OA, with an emphasis on events in the subchondral bone (SCB), and the cells and cytokines involved, to seek an answer to this question. RESULTS SCB remodelling across OA changes the microstructure of the SCB, which alters the load-bearing properties of the joint and seems to have an important role in the initiation and progression of OA. Bone remodelling is tightly controlled by numerous cytokines, of which Receptor Activator of NFκB ligand (RANKL) and osteoprotegerin are central factors in almost all known bone conditions. In terms of finding therapeutic options for OA, an important question is whether controlling the rate of SCB remodelling would be beneficial. The role of RANKL in the pathogenesis and progression of OA and the effect of its neutralisation remain to be clarified. CONCLUSIONS This review further makes the case for SCB remodelling as important in OA and for additional study of RANKL in OA, both its pathophysiological role and its potential as an OA disease target.
Collapse
Affiliation(s)
- Dzenita Muratovic
- Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia 5000, Australia; Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia 5000, Australia.
| | - Gerald J Atkins
- Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia 5000, Australia; Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia 5000, Australia.
| | - David M Findlay
- Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
4
|
Danyukova T, Alimy AR, Velho RV, Yorgan TA, Di Lorenzo G, von Kroge S, Tidow H, Wiegert JS, Hermans-Borgmeyer I, Schinke T, Rolvien T, Pohl S. Mice heterozygous for an osteogenesis imperfecta-linked MBTPS2 variant display a compromised subchondral osteocyte lacunocanalicular network associated with abnormal articular cartilage. Bone 2023; 177:116927. [PMID: 37797712 DOI: 10.1016/j.bone.2023.116927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Missense variants in the MBTPS2 gene, located on the X chromosome, have been associated with an X-linked recessive form of osteogenesis imperfecta (X-OI), an inherited bone dysplasia characterized by multiple and recurrent bone fractures, short stature, and various skeletal deformities in affected individuals. The role of site-2 protease, encoded by MBTPS2, and the molecular pathomechanism underlying the disease are to date elusive. This study is the first to report on the generation of two Mbtps2 mouse models, a knock-in mouse carrying one of the disease-causative MBTPS2 variants (N455S) and a Mbtps2 knock-out (ko) mouse. Because both loss-of-function variants lead to embryonic lethality in hemizygous male mutant mice, we performed a comprehensive skeletal analysis of heterozygous Mbtps2+/N455S and Mbtps2+/ko female mice. Both models displayed osteochondral abnormalities such as thinned subchondral bone, altered subchondral osteocyte interconnectivity as well as thickened articular cartilage with chondrocyte clustering, altogether resembling an early osteoarthritis (OA) phenotype. However, distant from the joints, no alterations in the bone mass and turnover could be detected in either of the mutant mice. Based on our findings we conclude that MBTPS2 haploinsufficiency results in early OA-like alterations in the articular cartilage and underlying subchondral bone, which likely precede the development of typical OI phenotype in bone. Our study provides first evidence for a potential role of site-2 protease for maintaining homeostasis of both bone and cartilage.
Collapse
Affiliation(s)
- Tatyana Danyukova
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Assil-Ramin Alimy
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Renata Voltolini Velho
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Timur A Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Giorgia Di Lorenzo
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Simon von Kroge
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Henning Tidow
- The Hamburg Advanced Research Center for Bioorganic Chemistry (HARBOR), Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany.
| | - J Simon Wiegert
- Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Irm Hermans-Borgmeyer
- Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Tim Rolvien
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Sandra Pohl
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
5
|
Meng Z, Xin L, Fan B. SDF-1α promotes subchondral bone sclerosis and aggravates osteoarthritis by regulating the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells. BMC Musculoskelet Disord 2023; 24:275. [PMID: 37038152 PMCID: PMC10088262 DOI: 10.1186/s12891-023-06366-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/24/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Subchondral bone sclerosis is a major feature of osteoarthritis (OA), and bone marrow mesenchymal stem cells (BMSCs) are presumed to play an important role in subchondral bone sclerosis. Accumulating evidence has shown that stromal cell-derived factor-1α (SDF-1α) plays a key role in bone metabolism-related diseases, but its role in OA pathogenesis remains largely unknown. The purpose of this study was to explore the role of SDF-1α expressed on BMSCs in subchondral bone sclerosis in an OA model. METHODS In the present study, C57BL/6J mice were divided into the following three groups: the sham control, destabilization of the medial meniscus (DMM), and AMD3100-treated DMM (DMM + AMD3100) groups. The mice were sacrificed after 2 or 8 weeks, and samples were collected for histological and immunohistochemical analyses. OA severity was assessed by performing hematoxylin and eosin (HE) and safranin O-fast green staining. SDF-1α expression in the OA model was measured using an enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (q-PCR), and immunohistochemistry. Micro-CT was used to observe changes in subchondral bone in the OA model. CD44, CD90, RUNX2, and OCN expression in subchondral bone were measured using q-PCR and immunohistochemistry. In vitro, BMSCs were transfected with a recombinant lentivirus expressing SDF-1α, an empty vector (EV), or siRNA-SDF-1α. Western blot analysis, q-PCR, and immunofluorescence staining were used to confirm the successful transfection of BMSCs. The effect of SDF-1α on BMSC proliferation was evaluated by performing a CCK-8 assay and cell cycle analysis. The effect of SDF-1α on the osteogenic differentiation of BMSCs was assessed by performing alkaline phosphatase (ALP) and alizarin red S (ARS) staining. Cyclin D1, RUNX2 and OCN expression were measured using Western blot analysis, q-PCR, and immunofluorescence staining. RESULTS SDF-1α expression in the DMM-induced OA model increased. In the DMM + AMD3100 group, subchondral bone sclerosis was alleviated, OA was effectively relieved, and CD44, CD90, RUNX2, and OCN expression in subchondral bone was decreased. In vitro, high levels of SDF-1α promoted BMSC proliferation and increased osteogenic differentiation. Cyclin D1, RUNX2, and OCN expression increased. CONCLUSION The results of this study reveal a new molecular mechanism underlying the pathogenesis of OA. The targeted regulation of SDF-1α may be clinically effective in suppressing OA progression.
Collapse
Affiliation(s)
- Zhiqiang Meng
- Jiaozuo Coal Industry (Group) Co. Ltd, Central Hospital, No. 1 Jiankang Road, Jiefang District, Jiaozuo, 454000, Henan, China
- General Hospital of Ningxia Medical University, Ningxia Medical University, Ningxia, China
| | - Lujun Xin
- Jiaozuo Coal Industry (Group) Co. Ltd, Central Hospital, No. 1 Jiankang Road, Jiefang District, Jiaozuo, 454000, Henan, China
| | - Bosheng Fan
- Jiaozuo Coal Industry (Group) Co. Ltd, Central Hospital, No. 1 Jiankang Road, Jiefang District, Jiaozuo, 454000, Henan, China.
| |
Collapse
|
6
|
Bone marrow lesions in the knee are associated with meniscal lesions and cartilage pathologies according to the six-letter system. Knee Surg Sports Traumatol Arthrosc 2023; 31:286-291. [PMID: 35994077 DOI: 10.1007/s00167-022-07089-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/25/2022] [Indexed: 01/25/2023]
Abstract
PURPOSE This study aims to find a correlation between bone marrow lesions (BMLs) in knee MRI and pathologies of joint structures. In addition, according to the six-letter system classification, the authors analyzed a potential association between the area affected by BMLs and the specific type of joint lesion. METHODS The authors screened all the knee MRIs performed in the investigation center between 2017 and 2018 to identify the presence of BMLs. The lesions were then categorized following the "six-letter system". The authors searched the presence of associated meniscal, chondral or ligamentous lesions. Finally, the authors researched a correlation between the lesion type described by the six-letter system classification and the associated lesions. RESULTS MRI exams of 4000 patients were studied, identifying 666 BMLs. The associated lesions were collected for all patients, resulting in an overall prevalence of related lesions in almost 90% of patients. The authors found a statistical significance for type TLD (Tibia-Lateral-Articular) and ACL rupture. The study suggests a strong positive correlation between type E (Edge) and meniscal fracture or extrusion. CONCLUSION BMLs in the knee are associated in 90% of cases with a radiological sign of related injury to the joint structures. The six-letter system of BMLs type TLD can be considered a sign of ACL rupture and type E as a high suspicious sign for meniscal extrusion. Those very typical BML patterns can help the clinician in the diagnosis of ACL tears and meniscal extrusion. Furthermore, the presence of a BML must be, for the clinician, a high suspicious sign of joint-related injuries. LEVEL OF EVIDENCE Level 1.
Collapse
|
7
|
Bowen A, Shamritsky D, Santana J, Porter I, Feldman E, Pownder SL, Koff MF, Hayashi K, Hernandez CJ. Animal Models of Bone Marrow Lesions in Osteoarthritis. JBMR Plus 2022; 6:e10609. [PMID: 35309864 PMCID: PMC8914161 DOI: 10.1002/jbm4.10609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/22/2021] [Accepted: 01/13/2022] [Indexed: 11/08/2022] Open
Abstract
Bone marrow lesions are abnormalities in magnetic resonance images that have been associated with joint pain and osteoarthritis in clinical studies. Increases in the volume of bone marrow lesions have been associated with progression of joint degeneration, leading to the suggestion that bone marrow lesions may be an early indicator of—or even a contributor to—cartilage loss preceding irreversible damage to the joint. Despite evidence that bone marrow lesions play a role in osteoarthritis pathology, very little is known about the natural history of bone marrow lesions and their contribution to joint degeneration. As a result, there are limited data regarding the cell activity within a bone marrow lesion and any associated bone‐cartilage cross‐talk. Animal models provide the best approach for understanding bone marrow lesions at their early, reversible stages. Here, we review the few animal studies of bone marrow lesions. An ideal animal model of a bone marrow lesion occurs in joints large enough to accurately measure bone marrow lesion volume. Additionally, the ideal animal model would facilitate the study of bone‐cartilage cross‐talk by generating the bone marrow lesion immediately adjacent to subchondral bone and would do so without causing direct damage to neighboring soft tissues to isolate the effects of the bone marrow lesion on cartilage loss. Early reports demonstrate the feasibility of such an animal model. Given the irreversible nature of osteoarthritic changes in the joint, factors such as bone marrow lesions that are present early in disease pathogenesis remain an enticing target for new therapeutic approaches. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Andrew Bowen
- Sibley School of Mechanical and Aerospace Engineering Cornell University Ithaca New York USA
| | - David Shamritsky
- Sibley School of Mechanical and Aerospace Engineering Cornell University Ithaca New York USA
| | - Josue Santana
- Sibley School of Mechanical and Aerospace Engineering Cornell University Ithaca New York USA
- Meinig School of Biomedical Engineering Cornell University Ithaca New York USA
| | - Ian Porter
- College of Veterinary Medicine Cornell University Ithaca New York
| | - Erica Feldman
- College of Veterinary Medicine Cornell University Ithaca New York
| | | | | | - Kei Hayashi
- College of Veterinary Medicine Cornell University Ithaca New York
| | - Christopher J Hernandez
- Sibley School of Mechanical and Aerospace Engineering Cornell University Ithaca New York USA
- Hospital for Special Surgery New York New York USA
| |
Collapse
|