1
|
Zhang X, Tian L, Majumdar A, Scheller EL. Function and Regulation of Bone Marrow Adipose Tissue in Health and Disease: State of the Field and Clinical Considerations. Compr Physiol 2024; 14:5521-5579. [PMID: 39109972 PMCID: PMC11725182 DOI: 10.1002/cphy.c230016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Bone marrow adipose tissue (BMAT) is a metabolically and clinically relevant fat depot that exists within bone. Two subtypes of BMAT, regulated and constitutive, reside in hematopoietic-rich red marrow and fatty yellow marrow, respectively, and exhibit distinct characteristics compared to peripheral fat such as white and brown adipose tissues. Bone marrow adipocytes (BMAds) are evolutionally preserved in most vertebrates, start development after birth and expand throughout life, and originate from unique progenitor populations that control bone formation and hematopoiesis. Mature BMAds also interact closely with other cellular components of the bone marrow niche, serving as a nearby energy reservoir to support the skeletal system, a signaling hub that contributes to both local and systemic homeostasis, and a final fuel reserve for survival during starvation. Though BMAT and bone are often inversely correlated, more BMAT does not always mean less bone, and the prevention of BMAT expansion as a strategy to prevent bone loss remains questionable. BMAT adipogenesis and lipid metabolism are regulated by the nervous systems and a variety of circulating hormones. This contributes to the plasticity of BMAT, including BMAT expansion in common physiological or pathological conditions, and BMAT catabolism under certain extreme circumstances, which are often associated with malnutrition and/or systemic inflammation. Altogether, this article provides a comprehensive overview of the local and systemic functions of BMAT and discusses the regulation and plasticity of this unique adipose tissue depot in health and disease. © 2024 American Physiological Society. Compr Physiol 14:5521-5579, 2024.
Collapse
Affiliation(s)
- Xiao Zhang
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Linda Tian
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Anurag Majumdar
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Erica L. Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Tagliaferri SD, Owen PJ, Miller CT, Angelova M, Fitzgibbon BM, Wilkin T, Masse-Alarie H, Van Oosterwijck J, Trudel G, Connell D, Taylor A, Belavy DL. Towards data-driven biopsychosocial classification of non-specific chronic low back pain: a pilot study. Sci Rep 2023; 13:13112. [PMID: 37573418 PMCID: PMC10423241 DOI: 10.1038/s41598-023-40245-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 08/07/2023] [Indexed: 08/14/2023] Open
Abstract
The classification of non-specific chronic low back pain (CLBP) according to multidimensional data could guide clinical management; yet recent systematic reviews show this has not been attempted. This was a prospective cross-sectional study of participants with CLBP (n = 21) and age-, sex- and height-matched pain-free controls (n = 21). Nervous system, lumbar spinal tissue and psychosocial factors were collected. Dimensionality reduction was followed by fuzzy c-means clustering to determine sub-groups. Machine learning models (Support Vector Machine, k-Nearest Neighbour, Naïve Bayes and Random Forest) were used to determine the accuracy of classification to sub-groups. The primary analysis showed that four factors (cognitive function, depressive symptoms, general self-efficacy and anxiety symptoms) and two clusters (normal versus impaired psychosocial profiles) optimally classified participants. The error rates in classification models ranged from 4.2 to 14.2% when only CLBP patients were considered and increased to 24.2 to 37.5% when pain-free controls were added. This data-driven pilot study classified participants with CLBP into sub-groups, primarily based on psychosocial factors. This contributes to the literature as it was the first study to evaluate data-driven machine learning CLBP classification based on nervous system, lumbar spinal tissue and psychosocial factors. Future studies with larger sample sizes should validate these findings.
Collapse
Affiliation(s)
- Scott D Tagliaferri
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
- Orygen, 35 Poplar Rd, Parkville, VIC, 3052, Australia.
- Centre of Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia.
| | - Patrick J Owen
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Clint T Miller
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Maia Angelova
- Data to Intelligence Research Centre, School of Information Technology, Deakin University, Geelong, Australia
| | - Bernadette M Fitzgibbon
- Department of Psychiatry, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
- Monarch Research Group, Monarch Mental Health Group, Sydney, Australia
| | - Tim Wilkin
- Data to Intelligence Research Centre, School of Information Technology, Deakin University, Geelong, Australia
| | - Hugo Masse-Alarie
- Département de Réadaptation, Centre Interdisciplinaire de Recherche en Réadaptation et Integration Sociale (Cirris), Université Laval, Quebec City, Canada
| | - Jessica Van Oosterwijck
- Spine, Head and Pain Research Unit Ghent, Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Research Foundation-Flanders (FWO), Brussels, Belgium
- Pain in Motion International Research Group, Brussels, Belgium
| | - Guy Trudel
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of Ottawa, Ottawa, Canada
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ottawa, Canada
| | - David Connell
- Imaging@Olympic Park, AAMI Park, 60 Olympic Boulevard, Melbourne, VIC, 3004, Australia
| | - Anna Taylor
- Imaging@Olympic Park, AAMI Park, 60 Olympic Boulevard, Melbourne, VIC, 3004, Australia
| | - Daniel L Belavy
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
- Division of Physiotherapy, Department of Applied Health Sciences, Hochschule für Gesundheit (University of Applied Sciences), Gesundheitscampus 6-8, 44801, Bochum, Germany
| |
Collapse
|
3
|
Liu T, Melkus G, Ramsay T, Sheikh A, Laneuville O, Trudel G. Bone marrow adiposity modulation after long duration spaceflight in astronauts. Nat Commun 2023; 14:4799. [PMID: 37558686 PMCID: PMC10412640 DOI: 10.1038/s41467-023-40572-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
Space travel requires metabolic adaptations from multiple systems. While vital to bone and blood production, human bone marrow adipose (BMA) tissue modulation in space is unknown. Here we show significant downregulation of the lumbar vertebrae BMA in 14 astronauts, 41 days after landing from six months' missions on the International Space Station. Spectral analyses indicated depletion of marrow adipose reserves. We then demonstrate enhanced erythropoiesis temporally related to low BMA. Next, we demonstrated systemic and then, local lumbar vertebrae bone anabolism temporally related to low BMA. These support the hypothesis that BMA is a preferential local energy source supplying the hypermetabolic bone marrow postflight, leading to its downregulation. A late postflight upregulation abolished the lower BMA of female astronauts and BMA modulation amplitude was higher in younger astronauts. The study design in the extreme environment of space can limit these conclusions. BMA modulation in astronauts can help explain observations on Earth.
Collapse
Affiliation(s)
- Tammy Liu
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8M2, Canada
| | - Gerd Melkus
- Department of Radiology, Radiation Oncology and Medical Physics, University of Ottawa, Ottawa, ON, K1H 8M2, Canada
| | - Tim Ramsay
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, K1H 8M2, Canada
| | - Adnan Sheikh
- Department of Radiology, Radiation Oncology and Medical Physics, University of Ottawa, Ottawa, ON, K1H 8M2, Canada
| | - Odette Laneuville
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON, Canada
| | - Guy Trudel
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8M2, Canada.
- Department of Medicine, Division of Physical Medicine and Rehabilitation, The Ottawa Hospital, Ottawa, ON, K1H 8M2, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M2, Canada.
| |
Collapse
|
4
|
Ofir N, Mizrakli Y, Greenshpan Y, Gepner Y, Sharabi O, Tsaban G, Zelicha H, Yaskolka Meir A, Ceglarek U, Stumvoll M, Blüher M, Chassidim Y, Rudich A, Reiner-Benaim A, Shai I, Shelef I, Gazit R. Vertebrae but not femur marrow fat transiently decreases in response to body weight loss in an 18-month randomized control trial. Bone 2023; 171:116727. [PMID: 36898571 DOI: 10.1016/j.bone.2023.116727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/06/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND Increased levels of bone marrow adipose tissue (BMAT) are negatively associated with skeletal health and hematopoiesis. BMAT is known to increase with age; however, the effect of long-term weight loss on BMAT is still unknown. OBJECTIVE In this study, we examined BMAT response to lifestyle-induced weight loss in 138 participants (mean age 48 y; mean body mass index 31 kg/m2), who participated in the CENTRAL-MRI trial. METHODS Participants were randomized for dietary intervention of low-fat or low-carb, with or without physical activity. Magnetic resonance imaging (MRI) was used to quantify BMAT and other fat depots at baseline, six and eighteen months of intervention. Blood biomarkers were also measured at the same time points. RESULTS At baseline, the L3 vertebrae BMAT is positively associated with age, HDL cholesterol, HbA1c and adiponectin; but not with other fat depots or other metabolic markers tested. Following six months of dietary intervention, the L3 BMAT declined by an average of 3.1 %, followed by a return to baseline after eighteen months (p < 0.001 and p = 0.189 compared to baseline, respectively). The decrease of BMAT during the first six months was associated with a decrease in waist circumference, cholesterol, proximal-femur BMAT, and superficial subcutaneous adipose tissue (SAT), as well as with younger age. Nevertheless, BMAT changes did not correlate with changes in other fat depots. CONCLUSIONS We conclude that physiological weight loss can transiently reduce BMAT in adults, and this effect is more prominent in younger adults. Our findings suggest that BMAT storage and dynamics are largely independent of other fat depots or cardio-metabolic risk markers, highlighting its unique functions.
Collapse
Affiliation(s)
- Noa Ofir
- The Shraga Segal Department for Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel; National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel; Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Yuval Mizrakli
- The Shraga Segal Department for Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel; National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Yariv Greenshpan
- The Shraga Segal Department for Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel; National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel; Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Yftach Gepner
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel; Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Sylvan Adams Sports Institute, Tel-Aviv University, Tel-Aviv, Israel
| | - Omri Sharabi
- The Shraga Segal Department for Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel; National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel; Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Gal Tsaban
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Hila Zelicha
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Anat Yaskolka Meir
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Uta Ceglarek
- Institute of Laboratory Medicine, University of Leipzig Medical Center, Germany
| | | | | | | | - Assaf Rudich
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel; Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Anat Reiner-Benaim
- Department of Epidemiology, Biostatistics and Community Health Sciences, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Iris Shai
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Ilan Shelef
- Soroka University Medical Center, Beer-Sheva, Israel
| | - Roi Gazit
- The Shraga Segal Department for Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel; National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel; Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel.
| |
Collapse
|
5
|
Beekman KM, Duque G, Corsi A, Tencerova M, Bisschop PH, Paccou J. Osteoporosis and Bone Marrow Adipose Tissue. Curr Osteoporos Rep 2023; 21:45-55. [PMID: 36534306 DOI: 10.1007/s11914-022-00768-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/17/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW This review focuses on the recent findings regarding bone marrow adipose tissue (BMAT) concerning bone health. We summarize the variations in BMAT in relation to age, sex, and skeletal sites, and provide an update on noninvasive imaging techniques to quantify human BMAT. Next, we discuss the role of BMAT in patients with osteoporosis and interventions that affect BMAT. RECENT FINDINGS There are wide individual variations with region-specific fluctuation and age- and gender-specific differences in BMAT content and composition. The Bone Marrow Adiposity Society (BMAS) recommendations aim to standardize imaging protocols to increase comparability across studies and sites. Water-fat imaging (WFI) seems an accurate and efficient alternative for spectroscopy (1H-MRS). Most studies indicate that greater BMAT is associated with lower bone mineral density (BMD) and a higher prevalence of vertebral fractures. The proton density fat fraction (PDFF) and changes in lipid composition have been associated with an increased risk of fractures independently of BMD. Therefore, PDFF and lipid composition could potentially be future imaging biomarkers for assessing fracture risk. Evidence of the inhibitory effect of osteoporosis treatments on BMAT is still limited to a few randomized controlled trials. Moreover, results from the FRAME biopsy sub-study highlight contradictory findings on the effect of the sclerostin antibody romosozumab on BMAT. Further understanding of the role(s) of BMAT will provide insight into the pathogenesis of osteoporosis and may lead to targeted preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Kerensa M Beekman
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Gustavo Duque
- Department of Medicine and Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Michaela Tencerova
- Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Peter H Bisschop
- Department of Endocrinology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Julien Paccou
- Department of Rheumatology, MABLaB ULR 4490, CHU Lille, University Lille, Lille, France.
| |
Collapse
|
6
|
Shu JB, Kim TY. Bone marrow adiposity in diabetes and clinical interventions. Curr Opin Endocrinol Diabetes Obes 2022; 29:303-309. [PMID: 35776685 DOI: 10.1097/med.0000000000000741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW This study aims to review bone marrow adipose tissue (BMAT) changes in people with diabetes, contributing factors, and interventions. RECENT FINDINGS In type 1 diabetes (T1D), BMAT levels are similar to healthy controls, although few studies have been performed. In type 2 diabetes (T2D), both BMAT content and composition appear altered, and recent bone histomorphometry data suggests increased BMAT is both through adipocyte hyperplasia and hypertrophy. Position emission tomography scanning suggests BMAT is a major source of basal glucose uptake. BMAT is responsive to metabolic interventions. SUMMARY BMAT is a unique fat depot that is influenced by metabolic factors and proposed to negatively affect the skeleton. BMAT alterations are more consistently seen in T2D compared to T1D. Interventions such as thiazolidinedione treatment may increase BMAT, whereas metformin treatment, weight loss, and exercise may decrease BMAT. Further understanding of the role of BMAT will provide insight into the pathogenesis of diabetic bone disease and could lead to targeted preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Jessica B Shu
- University of California, San Francisco and the San Francisco VA Health Care System, San Francisco, California, USA
| | | |
Collapse
|
7
|
Ali D, Tencerova M, Figeac F, Kassem M, Jafari A. The pathophysiology of osteoporosis in obesity and type 2 diabetes in aging women and men: The mechanisms and roles of increased bone marrow adiposity. Front Endocrinol (Lausanne) 2022; 13:981487. [PMID: 36187112 PMCID: PMC9520254 DOI: 10.3389/fendo.2022.981487] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis is defined as a systemic skeletal disease characterized by decreased bone mass and micro-architectural deterioration leading to increased fracture risk. Osteoporosis incidence increases with age in both post-menopausal women and aging men. Among other important contributing factors to bone fragility observed in osteoporosis, that also affect the elderly population, are metabolic disturbances observed in obesity and Type 2 Diabetes (T2D). These metabolic complications are associated with impaired bone homeostasis and a higher fracture risk. Expansion of the Bone Marrow Adipose Tissue (BMAT), at the expense of decreased bone formation, is thought to be one of the key pathogenic mechanisms underlying osteoporosis and bone fragility in obesity and T2D. Our review provides a summary of mechanisms behind increased Bone Marrow Adiposity (BMA) during aging and highlights the pre-clinical and clinical studies connecting obesity and T2D, to BMA and bone fragility in aging osteoporotic women and men.
Collapse
Affiliation(s)
- Dalia Ali
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Odense, Denmark
- *Correspondence: Dalia Ali, ; Abbas Jafari,
| | - Michaela Tencerova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Florence Figeac
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Moustapha Kassem
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Abbas Jafari
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Dalia Ali, ; Abbas Jafari,
| |
Collapse
|