1
|
Kitazawa S, Haraguchi R, Kitazawa R. Roles of osteoclasts in pathological conditions. Pathol Int 2025; 75:55-68. [PMID: 39704061 PMCID: PMC11849001 DOI: 10.1111/pin.13500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024]
Abstract
Bone is a unique organ crucial for locomotion, mineral metabolism, and hematopoiesis. It maintains homeostasis through a balance between bone formation by osteoblasts and bone resorption by osteoclasts, which is regulated by the basic multicellular unit (BMU). Abnormal bone metabolism arises from an imbalance in the BMU. Osteoclasts, derived from the monocyte-macrophage lineage, are regulated by the RANKL-RANK-OPG system, which is a key factor in osteoclast differentiation. RANKL activates osteoclasts through its receptor RANK, while OPG acts as a decoy receptor that inhibits RANKL. In trabecular bone, high turnover involves rapid bone formation and resorption, influenced by conditions such as malignancy and inflammatory cytokines that increase RANKL expression. Cortical bone remodeling, regulated by aged osteocytes expressing RANKL, is less understood, despite ongoing research into how Rett syndrome, characterized by MeCP2 abnormalities, affects RANKL expression. Balancing trabecular and cortical bone involves mechanisms that preserve cortical bone, despite overall bone mass reduction due to aging or oxidative stress. Research into genes like sFRP4, which modulates bone mass, highlights the complex regulation by BMUs. The roles of the RANKL-RANK-OPG system extend beyond bone, affecting processes such as aortic valve formation and temperature regulation, which highlight the interconnected nature of biological research.
Collapse
Affiliation(s)
- Sohei Kitazawa
- Department of Molecular PathologyEhime University Graduate School of Medicine, ShitsukawaToon CityJapan
| | - Ryuma Haraguchi
- Department of Molecular PathologyEhime University Graduate School of Medicine, ShitsukawaToon CityJapan
| | - Riko Kitazawa
- Department of Molecular PathologyEhime University Graduate School of Medicine, ShitsukawaToon CityJapan
- Division of Diagnostic PathologyEhime University Hospital, ShitsukawaToon CityJapan
| |
Collapse
|
2
|
Deng J, Zhang YN, Bai RS, Yu TT, Zhao Y, Liu H, Zhang YF, Xu TM, Han B. Mechanosensor YAP mediates bone remodeling via NF-κB p65 induced osteoclastogenesis during orthodontic tooth movement. Prog Orthod 2025; 26:2. [PMID: 39747791 PMCID: PMC11695529 DOI: 10.1186/s40510-024-00548-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Yes-associated protein (YAP) is a crucial mechanosensor involved in mechanotransduction, but its role in regulating mechanical force-induced bone remodeling during orthodontic tooth movement (OTM) is unclear. This study aims to elucidate the relationship between mechanotransduction and mechanical force-induced alveolar bone remodeling during OTM. RESULTS Our study confirms an asynchronous (temporal and spatial sequence) remodeling pattern of the alveolar bone under mechanical force during OTM. Both compression and tension activate osteoclasts recruiting to the alveolar bone, whereas no significant presence of osteoblasts in the alveolar bone at the early stages of bone remodeling. Specifically, applying different force magnitudes (10, 25, 50, 100 g) to rats' 1st molars affected OTM distance. Force-induced alveolar bone remodeling was characterized by osteoclastogenesis and YAP activation at compressive/tensile sites on day 1 of OTM. Notably, 25 g force triggered peak YAP expression and osteoclastic activity early on. Time-course analysis revealed two YAP activity peaks on day1 and 14, contrasting with one peak of type I collagen expression on day14. In addition, RNA-sequencing highlighted increased nuclear factor kappa B (NF-κB) signaling, mineral absorption, and osteoclast differentiation at day-1 and 3. Moreover, gene expression analysis showed similar trends for NF-κB p65, YAP1, and TEA domain 1 (TEAD1) during this time. Furthermore, experiments on osteoclast cultures indicated YAP activation via large tumor suppressor (LATS) and TEAD under mechanical stimuli (compression/tension), promoting osteoclastogenesis by regulating NF-κB p65 and receptor activator of NF-κB (RANK). Inhibiting YAP with verteporfin delayed OTM by impairing force-induced osteoclastic activities in vivo and ex-vivo. CONCLUSIONS We propose that YAP mediates alveolar bone remodeling through NF-κB p65-induced osteoclastogenesis in an asynchronous remodeling pattern during OTM. Both compression and tension activate osteoclasts recruiting to the alveolar bone at early stages of bone remodeling, offering evidence for orthodontists as a reference.
Collapse
Affiliation(s)
- Jie Deng
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
- Department of Orthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Najing, China
| | - Yu-Ning Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Ru-Shui Bai
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Ting-Ting Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Yi Zhao
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Hao Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Yun-Fan Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Tian-Min Xu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.
- Cranial-Facial Growth and Development Center, Peking University School and Hospital of Stomatology, Beijing, China.
| |
Collapse
|
3
|
Wang Y, Wu Z, Li C, Ma C, Chen J, Wang M, Gao D, Wu Y, Wang H. Effect of bisphosphonate on bone microstructure, mechanical strength in osteoporotic rats by ovariectomy. BMC Musculoskelet Disord 2024; 25:725. [PMID: 39256676 PMCID: PMC11386083 DOI: 10.1186/s12891-024-07846-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Bisphosphonate (BP) can treat osteoporosis and prevent osteoporotic fractures in clinical. However, the effect of BP on microstructure and mechanical properties of cortical and trabecular bone has been taken little attention, separately. METHODS In this study, BP was used to intervene in ovariectomized female SD rats. The femoral micro-CT images were used to measure the structural parameters and reconstruct the 3D models in volume of interest. The structural parameters of cortical and trabecular bone were measured, and the mechanical properties were predicted using micro-finite element analysis. RESULTS There was almost no significant difference in the morphological structure parameters and mechanical properties of cortical bone between normal, ovariectomized (sham-OVX) and BP intervention groups. However, BP could significantly improve bone volume fraction (BV/TV) and trabecular separation (Tb.SP) in inter-femoral condyles (IT) (sham-OVX vs. BP, p < 0.001), and had no significant effect on BV/TV in medial and lateral femoral condyles (MT, LT). Similarly, BPs could significantly affect the effective modulus in IT (sham-OVX vs. BP, p < 0.001), and had no significant difference in MT and LT. In addition, the structural parameters and effective modulus showed a good linear correlation. CONCLUSION In a short time, the effects of BP intervention and osteoporosis on cortical bone were not obvious. The effects of BP on trabecular bone in non-main weight-bearing area (IT) were valuable, while for osteoporosis, the main weight-bearing area (MT, LT) may improve the structural quality and mechanical strength of trabecular bone through exercise compensation.
Collapse
Affiliation(s)
- Yuzhu Wang
- Department of Orthopaedic Surgery, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, 528401, China
| | - Zhanglin Wu
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510920, China
| | - Chun Li
- Department of Orthopaedic Surgery, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, 528401, China
| | - Chenhao Ma
- Department of Orthopaedic Surgery, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, 528401, China
| | - Jingyang Chen
- Department of Orthopaedic Surgery, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, 528401, China
| | - Mincong Wang
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510920, China.
| | - Dawei Gao
- Department of Orthopaedic Surgery, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, 528401, China
| | - Yufeng Wu
- Department of Orthopaedic Surgery, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, 528401, China
| | - Haibin Wang
- Department of Orthopaedic Surgery, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| |
Collapse
|
4
|
Gasilov S, Webb MA, Panahifar A, Zhu N, Marinos O, Bond T, Cooper DML, Chapman D. Hard X-ray imaging and tomography at the Biomedical Imaging and Therapy beamlines of Canadian Light Source. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:1346-1357. [PMID: 39007824 PMCID: PMC11371025 DOI: 10.1107/s1600577524005241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024]
Abstract
The Biomedical Imaging and Therapy facility of the Canadian Light Source comprises two beamlines, which together cover a wide X-ray energy range from 13 keV up to 140 keV. The beamlines were designed with a focus on synchrotron applications in preclinical imaging and veterinary science as well as microbeam radiation therapy. While these remain a major part of the activities of both beamlines, a number of recent upgrades have enhanced the versatility and performance of the beamlines, particularly for high-resolution microtomography experiments. As a result, the user community has been quickly expanding to include researchers in advanced materials, batteries, fuel cells, agriculture, and environmental studies. This article summarizes the beam properties, describes the endstations together with the detector pool, and presents several application cases of the various X-ray imaging techniques available to users.
Collapse
Affiliation(s)
- Sergey Gasilov
- Canadian Light Source44 Innovation BoulevardSaskatoonS7N 2V3Canada
| | - M. Adam Webb
- Canadian Light Source44 Innovation BoulevardSaskatoonS7N 2V3Canada
| | - Arash Panahifar
- Canadian Light Source44 Innovation BoulevardSaskatoonS7N 2V3Canada
| | - Ning Zhu
- Canadian Light Source44 Innovation BoulevardSaskatoonS7N 2V3Canada
| | - Omar Marinos
- Canadian Light Source44 Innovation BoulevardSaskatoonS7N 2V3Canada
| | - Toby Bond
- Canadian Light Source44 Innovation BoulevardSaskatoonS7N 2V3Canada
| | - David M. L. Cooper
- College of MedicineUniversity of Saskatchewan107 Wiggins RoadSaskatoonS7N 5E5Canada
| | - Dean Chapman
- College of MedicineUniversity of Saskatchewan107 Wiggins RoadSaskatoonS7N 5E5Canada
| |
Collapse
|
5
|
Kupai K, Kang HL, Pósa A, Csonka Á, Várkonyi T, Valkusz Z. Bone Loss in Diabetes Mellitus: Diaporosis. Int J Mol Sci 2024; 25:7269. [PMID: 39000376 PMCID: PMC11242219 DOI: 10.3390/ijms25137269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
The objective of this review is to examine the connection between osteoporosis and diabetes, compare the underlying causes of osteoporosis in various forms of diabetes, and suggest optimal methods for diagnosing and assessing fracture risk in diabetic patients. This narrative review discusses the key factors contributing to the heightened risk of fractures in individuals with diabetes, as well as the shared elements impacting the treatment of both diabetes mellitus and osteoporosis. Understanding the close link between diabetes and a heightened risk of fractures is crucial in effectively managing both conditions. There are several review articles of meta-analysis regarding diaporosis. Nevertheless, no review articles showed collected and well-organized medications of antidiabetics and made for inconvenient reading for those who were interested in details of drug mechanisms. In this article, we presented collected and comprehensive charts of every antidiabetic medication which was linked to fracture risk and indicated plausible descriptions according to research articles.
Collapse
Affiliation(s)
- Krisztina Kupai
- Department of Internal Medicine, Albert Szent-Györgyi Medical School, University of Szeged, 6703 Szeged, Hungary
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, 6703 Szeged, Hungary
| | - Hsu Lin Kang
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, 6703 Szeged, Hungary
| | - Anikó Pósa
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, 6703 Szeged, Hungary
| | - Ákos Csonka
- Department of Traumatology, University of Szeged, 6725 Szeged, Hungary;
| | - Tamás Várkonyi
- Department of Internal Medicine, Albert Szent-Györgyi Medical School, University of Szeged, 6703 Szeged, Hungary
| | - Zsuzsanna Valkusz
- Department of Internal Medicine, Albert Szent-Györgyi Medical School, University of Szeged, 6703 Szeged, Hungary
| |
Collapse
|
6
|
Zou Z, Cheong VS, Fromme P. Bone remodelling prediction using mechanical stimulus with bone connectivity theory in porous implants. J Mech Behav Biomed Mater 2024; 153:106463. [PMID: 38401186 DOI: 10.1016/j.jmbbm.2024.106463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/22/2024] [Accepted: 02/13/2024] [Indexed: 02/26/2024]
Abstract
Strain energy density (SED) is considered to be the primary remodelling stimulus influencing the process of bone growth into porous implants. A bone remodelling algorithm incorporating the concept of bone connectivity, that newly formed bone should only grow from existing bone, was developed to provide a more biologically realistic simulation of bone growth. Results showed that the new algorithm prevented the occurrence of unconnected mature bone within porous implants, an unrealistic phenomenon observed using conventional adaptive elasticity theories. The bone connectivity algorithm had minimal effect (0.67% difference) on the final bone density distribution for standard bending and torsional moment cases. For a porous implant model, both algorithms, with and without bone connectivity implementation, reached the same final stiffness, with a difference of less than 0.01%. The bone connectivity algorithm predicted a slower and more gradual bone remodelling process, requiring at least 50% additional time for full remodelling compared to the conventional adaptive elasticity algorithm, which should be accounted for in the planning of rehabilitation strategies. The developed modelling can be employed to improve porous implant designs to achieve better clinical outcomes.
Collapse
Affiliation(s)
- Zhenhao Zou
- Department of Mechanical Engineering, University College London, United Kingdom.
| | - Vee San Cheong
- Future Health Technologies Programme, Singapore-ETH Centre, CREATE Campus, Singapore; Insigneo Institute for in silico Medicine, University of Sheffield, United Kingdom; Department of Mechanical Engineering, University of Sheffield, United Kingdom.
| | - Paul Fromme
- Department of Mechanical Engineering, University College London, United Kingdom.
| |
Collapse
|