1
|
Tan S, Wang Q, Feng C, Pu X, Li D, Jiang F, Wu J, Huang S, Fan J, Zhong R, Mo C, Luo J, Zhong P, Liu J, Ma D. Biomimetic mineralized DCPA/ anti-CD47 containing thermo-sensitive injectable hydrogel for bone-metastatic prostate cancer treatment. Mater Today Bio 2025; 31:101573. [PMID: 40051525 PMCID: PMC11883399 DOI: 10.1016/j.mtbio.2025.101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/12/2025] [Accepted: 02/09/2025] [Indexed: 03/09/2025] Open
Abstract
Strategies that leverage the phagocytic capabilities of M1 macrophages against tumor cells are currently being investigated for cancer treatment. However, the clinical application of these strategies is significantly hampered by the severe side effects associated with conventional M1 macrophage activators. In this study, biomimetic mineralized dicalcium phosphate anhydrous (MDCPA) was synthesized using Zein as an organic template, aiming to promote M1 macrophage polarization effectively while minimizing side effects. In vitro experiments demonstrated that MDCPA can be engulfed by macrophages and induce M1 macrophage polarization. By combining the stimulation of MDCPA with a commonly used immune checkpoint inhibitor, anti-CD47 (aCD47), the macrophages exhibited the highest phagocytic activity toward prostate cancer cells. Further in vivo experiments illustrated significant tumor suppression and reduced bone resorption in a prostate cancer bone metastasis model utilizing MDCPA/aCD47-containing thermos-sensitive injectable hydrogels (MDCPA/aCD47 TSI gel). Mechanistic studies indicated that the MDCPA/aCD47 TSI gel promotes tumor cell apoptosis not only through the phagocytosis of tumor cells mediated by M1 macrophages, but also by activating anti-tumor CD8-positive T cells. Consequently, this composite gel platform presents an effective theragnostic strategy for treating prostate cancer bone metastasis without the associated side effects, facilitated by biomimetic minerals that mediate anti-tumor immunity.
Collapse
Affiliation(s)
- Shenglong Tan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Qianqian Wang
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Chunxiang Feng
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Xiaoyong Pu
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Dong Li
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Fenglian Jiang
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Jian Wu
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Shang Huang
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Junhong Fan
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Ruijuan Zhong
- Department of Operating Room, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Chunmiao Mo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Jiayu Luo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Peiliang Zhong
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Jiumin Liu
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| |
Collapse
|
2
|
Ami D, Santambrogio C, Vertemara J, Bovio F, Santisteban-Veiga A, Sabín J, Zampella G, Grandori R, Cipolla L, Natalello A. The Landscape of Osteocalcin Proteoforms Reveals Distinct Structural and Functional Roles of Its Carboxylation Sites. J Am Chem Soc 2024; 146:27755-27769. [PMID: 39348444 DOI: 10.1021/jacs.4c09732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Human osteocalcin (OC) undergoes reversible, vitamin K-dependent γ-carboxylation at three glutamic acid residues, modulating its release from bones and its hormonal roles. A complete understanding of OC roles and structure-activity relationships is still lacking, as only uncarboxylated and few differently carboxylated variants have been considered so far. To fill this lack of knowledge, a comprehensive experimental and computational investigation of the structural properties and calcium-binding activity of all the OC variants is reported here. Such a comparative study indicates that the carboxylation sites are not equivalent and differently affect the OC structure and interaction with calcium, properties that are relevant for the modulation of OC functions. This study also discloses cooperative effects and provides structural and mechanistic interpretation. The disclosed peculiar features of each carboxylated proteoform strongly suggest that considering all eight possible OC variants in future studies may help rationalize some of the conflicting hypotheses observed in the literature.
Collapse
Affiliation(s)
- Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
| | - Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
| | - Jacopo Vertemara
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
| | - Federica Bovio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
| | - Andrea Santisteban-Veiga
- AFFINImeter Scientific & Development team, Software 4 Science Developments, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
- Applied Physics Department, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Juan Sabín
- AFFINImeter Scientific & Development team, Software 4 Science Developments, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
- Applied Physics Department, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Giuseppe Zampella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
- Institute for Advanced Simulations, Forschungszentrum Juelich, 52428 Juelich, Germany
| | - Laura Cipolla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
| |
Collapse
|
3
|
Bai Y, Wu P, Zhang Q, Lin F, Hu L, Zhang Z, Huang W, Xiao Y, Zuo Q. Decorin in the spatial control of collagen mineralization. MATERIALS HORIZONS 2024; 11:3396-3407. [PMID: 38690683 DOI: 10.1039/d3mh02216a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Understanding the molecular mechanism by which the periodontal ligament (PDL) is maintained uncalcified between two mineralized tissues (cementum and bone) may facilitate the functional repair and regeneration of the periodontium complex, disrupted in the context of periodontal diseases. However, research that explores the control of type I collagen (COL I) mineralization fails to clarify the detailed mechanism of regulating spatial collagen mineralization, especially in the periodontium complex. In the present study, decorin (DCN), which is characterized as abundant in the PDL region and rare in mineralized tissues, was hypothesized to be a key regulator in the spatial control of collagen mineralization. The circular dichroism results confirmed that DCN regulated the secondary structure of COL I, and the surface plasmon resonance results indicated that COL I possessed a higher affinity for DCN than for other mineralization promoters, such as DMP-1, OPN, BSP and DSPP. These features of DCN may contribute to blocking intrafibrillar mineralization in COL I fibrils during the polymer-induced liquid-precursor mineralization process when the fibrils are cross-linked with DCN. This effect was more remarkable when the fibrils were phosphorylated by sodium trimetaphosphate, as shown by the observation of a tube-like morphology via TEM and mineral sheath via SEM. This study enhances the understanding of the role of DCN in mineralization regulation among periodontal tissues. This provides insights for the development of biomaterials for the regeneration of interfaces between soft and hard tissues.
Collapse
Affiliation(s)
- Yuming Bai
- Stomatological Hospital of Xiamen Medical College, Xiamen Medical College, Xiamen, PR China.
- Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, PR China
- Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen, PR China
| | - Peng Wu
- Stomatological Hospital of Xiamen Medical College, Xiamen Medical College, Xiamen, PR China.
- Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, PR China
- Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen, PR China
| | - Qiufang Zhang
- Stomatological Hospital of Xiamen Medical College, Xiamen Medical College, Xiamen, PR China.
- Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, PR China
- Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen, PR China
| | - Feng Lin
- Stomatological Hospital of Xiamen Medical College, Xiamen Medical College, Xiamen, PR China.
- Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, PR China
- Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen, PR China
| | - Ling Hu
- Department of Pharmacy and Pharmaceutical Sciences, Xiamen Medical College, Xiamen, PR China
| | - Zhisheng Zhang
- Stomatological Hospital of Xiamen Medical College, Xiamen Medical College, Xiamen, PR China.
- Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, PR China
- Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen, PR China
| | - Wenxia Huang
- Stomatological Hospital of Xiamen Medical College, Xiamen Medical College, Xiamen, PR China.
- Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, PR China
- Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen, PR China
| | - Yin Xiao
- School of Medicine and Dentistry, Griffith University, Gold Coast, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Brisbane, Australia
| | - Qiliang Zuo
- Stomatological Hospital of Xiamen Medical College, Xiamen Medical College, Xiamen, PR China.
- Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, PR China
- Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen, PR China
| |
Collapse
|
4
|
Gupta T, Ghosh SB, Bandyopadhyay-Ghosh S, Sain M. Is it possible to 3D bioprint load-bearing bone implants? A critical review. Biofabrication 2023; 15:042003. [PMID: 37669643 DOI: 10.1088/1758-5090/acf6e1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/05/2023] [Indexed: 09/07/2023]
Abstract
Rehabilitative capabilities of any tissue engineered scaffold rely primarily on the triad of (i) biomechanical properties such as mechanical properties and architecture, (ii) chemical behavior such as regulation of cytokine expression, and (iii) cellular response modulation (including their recruitment and differentiation). The closer the implant can mimic the native tissue, the better it can rehabilitate the damage therein. Among the available fabrication techniques, only 3D bioprinting (3DBP) can satisfactorily replicate the inherent heterogeneity of the host tissue. However, 3DBP scaffolds typically suffer from poor mechanical properties, thereby, driving the increased research interest in development of load-bearing 3DBP orthopedic scaffolds in recent years. Typically, these scaffolds involve multi-material 3D printing, comprising of at-least one bioink and a load-bearing ink; such that mechanical and biological requirements of the biomaterials are decoupled. Ensuring high cellular survivability and good mechanical properties are of key concerns in all these studies. 3DBP of such scaffolds is in early developmental stages, and research data from only a handful of preliminary animal studies are available, owing to limitations in print-capabilities and restrictive materials library. This article presents a topically focused review of the state-of-the-art, while highlighting aspects like available 3DBP techniques; biomaterials' printability; mechanical and degradation behavior; and their overall bone-tissue rehabilitative efficacy. This collection amalgamates and critically analyses the research aimed at 3DBP of load-bearing scaffolds for fulfilling demands of personalized-medicine. We highlight the recent-advances in 3DBP techniques employing thermoplastics and phosphate-cements for load-bearing applications. Finally, we provide an outlook for possible future perspectives of 3DBP for load-bearing orthopedic applications. Overall, the article creates ample foundation for future research, as it gathers the latest and ongoing research that scientists could utilize.
Collapse
Affiliation(s)
- Tanmay Gupta
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC), Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Subrata Bandhu Ghosh
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC), Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Sanchita Bandyopadhyay-Ghosh
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC), Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Mohini Sain
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
A seminal perspective on the role of chondroitin sulfate in biomineralization. Carbohydr Polym 2023; 310:120738. [PMID: 36925258 DOI: 10.1016/j.carbpol.2023.120738] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
Chondroitin sulfate (CS) is an important extracellular matrix component of mineralized tissues. It participates in biomineralization, osteoblast differentiation and promotes bone tissue repair in vitro. However, the mechanism in which CS functions is unclear. Accordingly, an in-depth investigation of how CS participates in mineralization was conducted in the present study. Chondroitin sulfate was found to directly induce intrafibrillar mineralization of the collagen matrix. The mineralization outcome was dependent on whether CS remained free in the extracellular matrix or bound to core proteins; mineralization only occurred when CS existed in a free state. The efficacy of mineralization appeared to increase with ascending CS concentration. This discovery spurred the authors to identify the cause of heterotopic ossification in the Achilles tendon. Chondroitin sulfate appeared to be a therapeutic target for the management of diseases associated with heterotopic calcification. A broader perspective was presented on the applications of CS in tissue engineering.
Collapse
|
6
|
Wang Y, Zhang S, Yang H, Cao Y, Yu D, Zhao Y, Cao Y. MicroRNA-196a-5p overexpression in Wharton's jelly umbilical cord stem cells promotes their osteogenic differentiation and new bone formation in bone defects in the rat calvarium. Cell Tissue Res 2022; 390:245-260. [PMID: 35925405 DOI: 10.1007/s00441-022-03673-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/19/2022] [Indexed: 11/02/2022]
Abstract
The peri-tooth root alveolar loss often does not have sufficient space for repair material transplantation and plasticity. Mesenchymal stem cell (MSC) sheets have an advantage in providing more extracellular matrix (ECM) and may prove to be a new therapeutic consideration for this bone defect repair. The identification of key regulators that stimulate MSCs' osteogenic potential and sheet-derived ECM deposition is the key to promoting its application. In this study, we found that inhibition or overexpression of miR-196a-5p led to a decline or enhancement, respectively, in the alkaline phosphatase (ALP) activity, mineralization, and the levels of osteogenic markers, Osteocalcin (OCN), Dentin Matrix Protein 1 (DMP1), Bone Sialoprotein (BSP), and Dentin Sialophosphoprotein (DSPP) of Wharton's jelly of umbilical cord stem cells (WJCMSCs) in vitro. Moreover, the 5,6-Carboxyfluorescein Diacetate Succinimidyl Ester (CFSE) analysis revealed inhibition of the WJCMSCs' proliferative ability upon miR-196a-5p overexpression. Characterization of the sheet formation by picrosirius red and Masson staining indicated that miR-196a-5p overexpression significantly promoted the collagen content in whole WJCMSC sheet-derived ECM. Furthermore, micro-CT and histopathology results indicated that the miR-196a-5p-overexpressed WJCMSC sheets significantly promoted new bone regeneration and rat calvarial bone defect closure 12 weeks following transplantation. The mRNA microarray analysis of miR-196a-5p-overexpressed WJCMSCs revealed 959 differentially expressed genes (DEGs) (34 upregulated and 925 downregulated). Moreover, 241 genes targeted by miR-196a-5p were predicted by using miRNA function websites of which only 19 predicted genes were consistent with the microarray revealed DEGs. Hence, one unrevealed downregulated DEG Serpin Family B Member 2 (SERPINB2) was investigated. And the deletion of SERPINB2 enhanced the ALP activity and mineralization of WJCMSCs in vitro. In conclusion, our study found that miR-196a-5p, as a key regulator, could repress the proliferation tendency, while stimulating osteogenic ability and WJCMSC sheet-derived ECM deposition, thus promoting new bone formation and rat calvarial bone defect closure. Furthermore, SERPINB2 is a key downstream gene involved in the miR-196a-5p-promoted WJCMSC osteogenesis.
Collapse
Affiliation(s)
- Yantong Wang
- Department of General Dentistry, Capital Medical University School of Stomatology, Beijing, 100050, China.,Laboratory of Molecular Signaling and Stem Cells TherapyKey Laboratory of Tooth Regeneration and Function ReconstructionDongcheng District, Capital Medical University School of Stomatology, 4 Tiantanxili, BeijingBeijing, 100050, China
| | - Simin Zhang
- Department of General Dentistry, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells TherapyKey Laboratory of Tooth Regeneration and Function ReconstructionDongcheng District, Capital Medical University School of Stomatology, 4 Tiantanxili, BeijingBeijing, 100050, China
| | - Yangyang Cao
- Laboratory of Molecular Signaling and Stem Cells TherapyKey Laboratory of Tooth Regeneration and Function ReconstructionDongcheng District, Capital Medical University School of Stomatology, 4 Tiantanxili, BeijingBeijing, 100050, China
| | - Dianqin Yu
- Department of General Dentistry, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - Yingchu Zhao
- Department of General Dentistry, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - Yu Cao
- Department of General Dentistry, Capital Medical University School of Stomatology, Beijing, 100050, China. .,Laboratory of Molecular Signaling and Stem Cells TherapyKey Laboratory of Tooth Regeneration and Function ReconstructionDongcheng District, Capital Medical University School of Stomatology, 4 Tiantanxili, BeijingBeijing, 100050, China.
| |
Collapse
|
7
|
Leurs N, Martinand-Mari C, Marcellini S, Debiais-Thibaud M. Parallel evolution of ameloblastic scpp genes in bony and cartilaginous vertebrates. Mol Biol Evol 2022; 39:6582990. [PMID: 35535508 PMCID: PMC9122587 DOI: 10.1093/molbev/msac099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
In bony vertebrates, skeletal mineralization relies on the secretory calcium-binding phosphoproteins (Scpp) family whose members are acidic extracellular proteins posttranslationally regulated by the Fam20°C kinase. As scpp genes are absent from the elephant shark genome, they are currently thought to be specific to bony fishes (osteichthyans). Here, we report a scpp gene present in elasmobranchs (sharks and rays) that evolved from local tandem duplication of sparc-L 5′ exons and show that both genes experienced recent gene conversion in sharks. The elasmobranch scpp is remarkably similar to the osteichthyan scpp members as they share syntenic and gene structure features, code for a conserved signal peptide, tyrosine-rich and aspartate/glutamate-rich regions, and harbor putative Fam20°C phosphorylation sites. In addition, the catshark scpp is coexpressed with sparc-L and fam20°C in tooth and scale ameloblasts, similarly to some osteichthyan scpp genes. Despite these strong similarities, molecular clock and phylogenetic data demonstrate that the elasmobranch scpp gene originated independently from the osteichthyan scpp gene family. Our study reveals convergent events at the sparc-L locus in the two sister clades of jawed vertebrates, leading to parallel diversification of the skeletal biomineralization toolkit. The molecular evolution of sparc-L and its coexpression with fam20°C in catshark ameloblasts provides a unifying genetic basis that suggests that all convergent scpp duplicates inherited similar features from their sparc-L precursor. This conclusion supports a single origin for the hypermineralized outer odontode layer as produced by an ancestral developmental process performed by Sparc-L, implying the homology of the enamel and enameloid tissues in all vertebrates.
Collapse
Affiliation(s)
- Nicolas Leurs
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Univ Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Camille Martinand-Mari
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Univ Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Sylvain Marcellini
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Mélanie Debiais-Thibaud
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Univ Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
8
|
Neshatian M, Holcroft J, Kishen A, De Souza G, Ganss B. Promoting mineralization at biological interfaces Ex vivo with novel amelotin-based bio-nano complexes. Mater Today Bio 2022; 14:100255. [PMID: 35464740 PMCID: PMC9020105 DOI: 10.1016/j.mtbio.2022.100255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 12/31/2022] Open
Abstract
Conclusion AMTN/AMTN-Col functionalized HANP are potent mineral-promoting bio-nano complexes. AMTN/AMTN-Col coated HANP promote collagen mineralization. AMTN/AMTN-Col coated HANP enhance resin-dentin bond strength. AMTN/AMTN-Col coated HANP are potential candidates for clinical application.
Collapse
|
9
|
Shen CL, Mo H, Dunn DM, Watkins BA. Tocotrienol Supplementation Led to Higher Serum Levels of Lysophospholipids but Lower Acylcarnitines in Postmenopausal Women: A Randomized Double-Blinded Placebo-Controlled Clinical Trial. Front Nutr 2022; 8:766711. [PMID: 35004805 PMCID: PMC8740329 DOI: 10.3389/fnut.2021.766711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis is a major health problem in postmenopausal women. Herein we evaluated the effects of 12-week tocotrienols (TT) supplementation on serum metabolites in postmenopausal, osteopenic women. Eighty-nine participants (59.7 ± 6.8 yr, BMI 28.7 ± 5.7 kg/m2) were assigned to 3 treatments: placebo (860 mg olive oil/day), 300mg TT (300 mg TT/day), and 600mg TT (600 mg TT/day) for 12 weeks. TT consisted of 90% δ-TT and 10% γ-TT. In this metabolomic study, we evaluated the placebo and 600mgTT at baseline and 12 weeks. As expected, TT and its metabolite levels were higher in the supplemented group after 12 weeks. At baseline, there were no differences in demographic parameters or comprehensive metabolic panels (CMP). Metabolomics analysis of serum samples revealed that 48 biochemicals were higher and 65 were lower in the 600mg TT group at 12 weeks, compared to baseline. The results confirmed higher serum levels of tocotrienols and lysophospholipids, but lower acylcarnitines and catabolites of tryptophan and steroids in subjects given 600mg TT. In summary, 12-week TT supplementation altered many serum metabolite levels in postmenopausal women. The present study supports our previous findings that TT supplementation helps reduce bone loss in postmenopausal osteopenic women by suppressing inflammation and oxidative stress. Furthermore, the body incorporates TT which restructures biomembranes and modifies phospholipid metabolism, a response potentially linked to reduced inflammation and oxidative stress.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Huanbiao Mo
- Nutrition, Georgia State University, Atlanta, GA, United States
| | - Dale M Dunn
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Bruce A Watkins
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| |
Collapse
|
10
|
Romero A, Leurs N, Muñoz D, Debiais-Thibaud M, Marcellini S. Divergent Expression of SPARC, SPARC-L, and SCPP Genes During Jawed Vertebrate Cartilage Mineralization. Front Genet 2021; 12:788346. [PMID: 34899866 PMCID: PMC8656109 DOI: 10.3389/fgene.2021.788346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/10/2021] [Indexed: 11/21/2022] Open
Abstract
While cartilage is an ancient tissue found both in protostomes and deuterostomes, its mineralization evolved more recently, within the vertebrate lineage. SPARC, SPARC-L, and the SCPP members (Secretory Calcium-binding PhosphoProtein genes which evolved from SPARC-L) are major players of dentine and bone mineralization, but their involvement in the emergence of the vertebrate mineralized cartilage remains unclear. We performed in situ hybridization on mineralizing cartilaginous skeletal elements of the frog Xenopus tropicalis (Xt) and the shark Scyliorhinus canicula (Sc) to examine the expression of SPARC (present in both species), SPARC-L (present in Sc only) and the SCPP members (present in Xt only). We show that while mineralizing cartilage expresses SPARC (but not SPARC-L) in Sc, it expresses the SCPP genes (but not SPARC) in Xt, and propose two possible evolutionary scenarios to explain these opposite expression patterns. In spite of these genetic divergences, our data draw the attention on an overlooked and evolutionarily conserved peripheral cartilage subdomain expressing SPARC or the SCPP genes and exhibiting a high propensity to mineralize.
Collapse
Affiliation(s)
- Adrian Romero
- Laboratory of Development and Evolution (LADE), University of Concepción, Concepción, Chile
| | - Nicolas Leurs
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Univ Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - David Muñoz
- Laboratory of Development and Evolution (LADE), University of Concepción, Concepción, Chile
| | - Mélanie Debiais-Thibaud
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Univ Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Sylvain Marcellini
- Laboratory of Development and Evolution (LADE), University of Concepción, Concepción, Chile
| |
Collapse
|
11
|
Wang C, Dong L, Wang Y, Jiang Z, Zhang J, Yang G. Bioinformatics Analysis Identified miR-584-5p and Key miRNA-mRNA Networks Involved in the Osteogenic Differentiation of Human Periodontal Ligament Stem Cells. Front Genet 2021; 12:750827. [PMID: 34646313 PMCID: PMC8503254 DOI: 10.3389/fgene.2021.750827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 08/30/2021] [Indexed: 12/29/2022] Open
Abstract
Human periodontal ligament cells (PDLCs) play an important role in periodontal tissue stabilization and function. In the process of osteogenic differentiation of PDLSCs, the regulation of molecular signal pathways are complicated. In this study, the sequencing results of three datasets on GEO were used to comprehensively analyze the miRNA-mRNA network during the osteogenic differentiation of PDLSCs. Using the GSE99958 and GSE159507, a total of 114 common differentially expressed genes (DEGs) were identified, including 62 up-regulated genes and 52 down-regulated genes. GO enrichment analysis was performed. The up-regulated 10 hub genes and down-regulated 10 hub genes were screened out by protein-protein interaction network (PPI) analysis and STRING in Cytoscape. Similarly, differentially expressed miRNAs (DEMs) were selected by limma package from GSE159508. Then, using the miRwalk website, we further selected 11 miRNAs from 16 DEMs that may have a negative regulatory relationship with hub genes. In vitro RT-PCR verification revealed that nine DEMs and 18 hub genes showed the same trend as the RNA-seq results during the osteogenic differentiation of PDLSCs. Finally, using miR-584-5p inhibitor and mimics, it was found that miR-584-5p negatively regulates the osteogenic differentiation of PDLSCs in vitro. In summary, the present results found several potential osteogenic-related genes and identified candidate miRNA-mRNA networks for the further study of osteogenic differentiation of PDLSCs.
Collapse
Affiliation(s)
| | | | | | | | | | - Guoli Yang
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|