1
|
Gupta MN, Uversky VN. Pre-Molten, Wet, and Dry Molten Globules en Route to the Functional State of Proteins. Int J Mol Sci 2023; 24:ijms24032424. [PMID: 36768742 PMCID: PMC9916686 DOI: 10.3390/ijms24032424] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Transitions between the unfolded and native states of the ordered globular proteins are accompanied by the accumulation of several intermediates, such as pre-molten globules, wet molten globules, and dry molten globules. Structurally equivalent conformations can serve as native functional states of intrinsically disordered proteins. This overview captures the characteristics and importance of these molten globules in both structured and intrinsically disordered proteins. It also discusses examples of engineered molten globules. The formation of these intermediates under conditions of macromolecular crowding and their interactions with nanomaterials are also reviewed.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-813-494-5816
| |
Collapse
|
2
|
Structural Transitions of Alpha-Amylase Treated with Pulsed Electric Fields: Effect of Coexisting Carrageenan. Foods 2022; 11:foods11244112. [PMID: 36553854 PMCID: PMC9778200 DOI: 10.3390/foods11244112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Pulsed electric field (PEF) is an effective way to modulate the structure and activity of enzymes; however, the dynamic changes in enzyme structure during this process, especially the intermediate state, remain unclear. In this study, the molten globule (MG) state of α-amylase under PEF processing was investigated using intrinsic fluorescence, surface hydrophobicity, circular dichroism, etc. Meanwhile, the influence of coexisting carrageenan on the structural transition of α-amylase during PEF processing was evaluated. When the electric field strength was 20 kV/cm, α-amylase showed the unique characteristics of an MG state, which retained the secondary structure, changed the tertiary structure, and increased surface hydrophobicity (from 240 to 640). The addition of carrageenan effectively protected the enzyme activity of α-amylase during PEF treatment. When the mixed ratio of α-amylase to carrageenan was 10:1, they formed electrostatic complexes with a size of ~20 nm, and carrageenan inhibited the increase in surface hydrophobicity (<600) and aggregation (<40 nm) of α-amylase after five cycles of PEF treatment. This work clarifies the influence of co-existing polysaccharides on the intermediate state of proteins during PEF treatment and provides a strategy to modulate protein structure by adding polysaccharides during food processing.
Collapse
|
3
|
Anjali, Kishore N. Influence of amino acids on alkaline pH induced partially folded molten globule like intermediate of bovine serum albumin: Conformational and thermodynamic insights. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Ahmad A, Mishra R. Differential effect of polyol and sugar osmolytes on the refolding of homologous alpha amylases: A comparative study. Biophys Chem 2021; 281:106733. [PMID: 34864226 DOI: 10.1016/j.bpc.2021.106733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022]
Abstract
Polyol and sugar osmolytes are known to enhance the stability of proteins, however, their role in assisting protein folding is not well understood. We asked whether these osmolytes have the same effect during refolding of a pair of thermophilic and mesophilic proteins. Herein, we have chosen α-amylases from Bacillus licheniformis (BLA) and Bacillus amyloliquefaciens (BAA) as thermophilic like and mesophilic counterparts respectively, having similar structures but differing thermostability. The effect of a series of polyols with varying number of -OH groups from 2 to 6 (Ethylene glycol, glycerol, erythritol, xylitol and sorbitol) and sugars (trehalose and sucrose) has been studied on the refolding of BLA and BAA. Our study demonstrates that glycerol, sorbitol and trehalose are the efficient cosolvents for BAA refolding, while comparatively less effective for BLA. Urea induced destabilization of BLA and BAA is differently compensated by polyol and sugar osmolytes during refolding. This suggests that the early species formed during BLA and BAA refolding are differently susceptible towards urea, indicating differential nature of their refolding pathways. Addition of trehalose at different times during refolding showed that the presence of trehalose is essential at the early stages of refolding. It is one of the first systematic study wherein the comparative effect of polyol and sugar assisted refolding of thermophilic and mesophilic protein has been carried out. The study highlights the differential effect of protein-osmolyte interactions during refolding of thermophilic and mesophilic proteins which may have implications in protein formulations, refolding and inhibition of aggregation.
Collapse
Affiliation(s)
- Aziz Ahmad
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajesh Mishra
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
5
|
Yang G, Mozzicafreddo M, Ballarini P, Pucciarelli S, Miceli C. An In-Silico Comparative Study of Lipases from the Antarctic Psychrophilic Ciliate Euplotes focardii and the Mesophilic Congeneric Species Euplotes crassus: Insight into Molecular Cold-Adaptation. Mar Drugs 2021; 19:md19020067. [PMID: 33513970 PMCID: PMC7912073 DOI: 10.3390/md19020067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 11/30/2022] Open
Abstract
Cold-adapted enzymes produced by psychrophilic organisms have elevated catalytic activities at low temperatures compared to their mesophilic counterparts. This is largely due to amino acids changes in the protein sequence that often confer increased molecular flexibility in the cold. Comparison of structural changes between psychrophilic and mesophilic enzymes often reveal molecular cold adaptation. In the present study, we performed an in-silico comparative analysis of 104 hydrolytic enzymes belonging to the family of lipases from two evolutionary close marine ciliate species: The Antarctic psychrophilic Euplotes focardii and the mesophilic Euplotes crassus. By applying bioinformatics approaches, we compared amino acid composition and predicted secondary and tertiary structures of these lipases to extract relevant information relative to cold adaptation. Our results not only confirm the importance of several previous recognized amino acid substitutions for cold adaptation, as the preference for small amino acid, but also identify some new factors correlated with the secondary structure possibly responsible for enhanced enzyme activity at low temperatures. This study emphasizes the subtle sequence and structural modifications that may help to transform mesophilic into psychrophilic enzymes for industrial applications by protein engineering.
Collapse
|
6
|
Prasanthan P, Kishore N. Alkali induced unique partially folded state of bovine serum albumin: qualitative and quantitative insights. Int J Biol Macromol 2019; 138:252-261. [DOI: 10.1016/j.ijbiomac.2019.07.082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/08/2019] [Accepted: 07/11/2019] [Indexed: 01/31/2023]
|
7
|
Halim AAA, Zaroog MS, Kadir HA, Tayyab S. Alcohol-induced structural transitions in the acid-denatured Bacillus licheniformis α-amylase. JOURNAL OF SAUDI CHEMICAL SOCIETY 2017. [DOI: 10.1016/j.jscs.2014.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Molten globule-like partially folded state of Bacillus licheniformis α-amylase at low pH induced by 1,1,1,3,3,3-hexafluoroisopropanol. ScientificWorldJournal 2014; 2014:824768. [PMID: 24977228 PMCID: PMC3996958 DOI: 10.1155/2014/824768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 02/17/2014] [Indexed: 11/24/2022] Open
Abstract
Effect of 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) on acid-denatured Bacillus licheniformis α-amylase (BLA) at pH 2.0 was investigated by far-UV CD, intrinsic fluorescence, and ANS fluorescence measurements. Addition of increasing HFIP concentrations led to an increase in the mean residue ellipticity at 222 nm (MRE222 nm) up to 1.5 M HFIP concentration beyond which it sloped off. A small increase in the intrinsic fluorescence and a marked increase in the ANS fluorescence were also observed up to 0.4 M HFIP concentration, both of which decreased thereafter. Far- and near-UV CD spectra of the HFIP-induced state observed at 0.4 M HFIP showed significant retention of the secondary structures closer to native BLA but a disordered tertiary structure. Increase in the ANS fluorescence intensity was also observed with the HFIP-induced state, suggesting exposure of the hydrophobic clusters to the solvent. Furthermore, thermal denaturation of HFIP-induced state showed a non-cooperative transition. Taken together, all these results suggested that HFIP-induced state of BLA represented a molten globule-like state at pH 2.0.
Collapse
|
9
|
Chatterjee T, Pal A, Chakravarty D, Dey S, Saha RP, Chakrabarti P. Protein l-isoaspartyl-O-methyltransferase of Vibrio cholerae: interaction with cofactors and effect of osmolytes on unfolding. Biochimie 2012; 95:912-21. [PMID: 23274130 DOI: 10.1016/j.biochi.2012.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 12/13/2012] [Indexed: 10/27/2022]
Abstract
Protein l-isoaspartyl-O-methyltransferase (PIMT) is an ubiquitous enzyme widely distributed in cells and plays a role in the repair of deamidated and isomerized proteins. In this study, we show that this enzyme is present in cytosolic extract of Vibrio cholerae, an enteric pathogenic Gram-negative bacterium and is enzymatically active. Additionally, we focus on the detailed biophysical characterization of the recombinant PIMT from V. cholerae to gain insight into its structure, stability and the cofactor binding. The equilibrium denaturation of PIMT has been studied using tryptophan fluorescence and CD spectroscopy. The far- and near-UV CD, as well as fluorescence experiments reveal the presence of a non-native intermediate in the folding pathway. Binding of the hydrophobic fluorescent probe, bis-ANS, to the intermediate occurs with high affinity because of the exposure of the hydrophobic clusters during the unfolding process. The existence of the probable intermediate has also been confirmed from limited tryptic digestion and DLS experiments. The protein shows higher binding affinity for AdoHcy, in comparison to AdoMet, and the binding increases the midpoint of thermal unfolding by 6 and 5 °C, respectively. Modeling and molecular dynamics simulations also support the higher stability of the protein in presence of AdoHcy.
Collapse
Affiliation(s)
- Tanaya Chatterjee
- Department of Biochemistry, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India.
| | | | | | | | | | | |
Collapse
|
10
|
Özdemir S, Matpan F, Güven K, Baysal Z. PRODUCTION AND CHARACTERIZATION OF PARTIALLY PURIFIED EXTRACELLULAR THERMOSTABLE α-AMYLASE BYBacillus subtilisIN SUBMERGED FERMENTATION (SmF). Prep Biochem Biotechnol 2011; 41:365-81. [DOI: 10.1080/10826068.2011.552142] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Siddiqui KS, Poljak A, De Francisci D, Guerriero G, Pilak O, Burg D, Raftery MJ, Parkin DM, Trewhella J, Cavicchioli R. A chemically modified alpha-amylase with a molten-globule state has entropically driven enhanced thermal stability. Protein Eng Des Sel 2010; 23:769-80. [PMID: 20696745 DOI: 10.1093/protein/gzq051] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The thermostability properties of TAA were investigated by chemically modifying carboxyl groups on the surface of the enzyme with AMEs. The TAA(MOD) exhibited a 200% improvement in starch-hydrolyzing productivity at 60 degrees C. By studying the kinetic, thermodynamic and biophysical properties, we found that TAA(MOD) had formed a thermostable, MG state, in which the unfolding of the tertiary structure preceded that of the secondary structure by at least 20 degrees C. The X-ray crystal structure of TAA(MOD) revealed no new permanent interactions (electrostatic or other) resulting from the modification. By deriving thermodynamic activation parameters of TAA(MOD), we rationalised that thermostabilisation have been caused by a decrease in the entropy of the transition state, rather than being enthalpically driven. Far-UV CD shows that the origin of decreased entropy may have arisen from a higher helical content of TAA(MOD). This study provides new insight into the intriguing properties of an MG state resulting from the chemical modification of TAA.
Collapse
Affiliation(s)
- Khawar Sohail Siddiqui
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ranjbar B, Gill P. Circular Dichroism Techniques: Biomolecular and Nanostructural Analyses- A Review. Chem Biol Drug Des 2009; 74:101-20. [DOI: 10.1111/j.1747-0285.2009.00847.x] [Citation(s) in RCA: 403] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Liu Y, Guo R. pH-dependent structures and properties of casein micelles. Biophys Chem 2008; 136:67-73. [PMID: 18583019 DOI: 10.1016/j.bpc.2008.03.012] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 03/30/2008] [Accepted: 03/30/2008] [Indexed: 10/22/2022]
Abstract
The association behavior of casein over a broad pH range has first been investigated by fluorescent technique together with DLS and turbidity measurements. Casein molecules can self-assemble into casein micelles in the pH ranges 2.0 to 3.0, and 5.5 to 12.0. The hydrophobic interaction, hydrogen bond and electrostatic action are the main interactions in the formation of casein micelles. The results show that the structure of casein micelles is more compact at low pH and looser at high pH. The casein micelle has the most compact structure at pH 5.5, when it has almost no electrostatic repulsion between casein molecules.
Collapse
Affiliation(s)
- Yan Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China.
| | | |
Collapse
|
14
|
Kinetic analysis, structural studies and prediction of pKa values of Bacillus KR-8104 α-amylase: The determinants of pH-activity profile. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2007.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|