1
|
Xie P, Guo SK, Chen H. A Generalized Kinetic Model for Coupling between Stepping and ATP Hydrolysis of Kinesin Molecular Motors. Int J Mol Sci 2019; 20:ijms20194911. [PMID: 31623357 PMCID: PMC6801755 DOI: 10.3390/ijms20194911] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 12/23/2022] Open
Abstract
A general kinetic model is presented for the chemomechanical coupling of dimeric kinesin molecular motors with and without extension of their neck linkers (NLs). A peculiar feature of the model is that the rate constants of ATPase activity of a kinesin head are independent of the strain on its NL, implying that the heads of the wild-type kinesin dimer and the mutant with extension of its NLs have the same force-independent rate constants of the ATPase activity. Based on the model, an analytical theory is presented on the force dependence of the dynamics of kinesin dimers with and without extension of their NLs at saturating ATP. With only a few adjustable parameters, diverse available single molecule data on the dynamics of various kinesin dimers, such as wild-type kinesin-1, kinesin-1 with mutated residues in the NLs, kinesin-1 with extension of the NLs and wild-type kinesin-2, under varying force and ATP concentration, can be reproduced very well. Additionally, we compare the power production among different kinesin dimers, showing that the mutation in the NLs reduces the power production and the extension of the NLs further reduces the power production.
Collapse
Affiliation(s)
- Ping Xie
- School of Materials Science and Energy Engineering, FoShan University, Guangdong 528000, China.
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Si-Kao Guo
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Hong Chen
- School of Materials Science and Energy Engineering, FoShan University, Guangdong 528000, China.
| |
Collapse
|
2
|
Xie P, Guo SK, Chen H. ATP-Concentration- and Force-Dependent Chemomechanical Coupling of Kinesin Molecular Motors. J Chem Inf Model 2018; 59:360-372. [PMID: 30500195 DOI: 10.1021/acs.jcim.8b00577] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A model is presented for the chemomechanical coupling of kinesin motors, which proposes that the rate constants of the chemical reaction are independent of the external force. On the basis of the model, we study theoretically the movement dynamics of the motors under varying external force and ATP concentration, such as the forward to backward stepping ratio, velocity, dwell time between two mechanical steps, stall force, and so on. The theoretical results reproduce quantitatively the diverse and even contradictory available single-molecule experimental data for different species of the motors. Furthermore, we study the dependence of the chemomechanical coupling ratio on ATP concentration and external force, with both ATP concentration and external force having large effects on the chemomechanical coupling.
Collapse
Affiliation(s)
- Ping Xie
- School of Materials Science and Energy Engineering , FoShan University , Guangdong , 528000 , China.,Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics , Institute of Physics, Chinese Academy of Sciences , Beijing 100190 , China
| | - Si-Kao Guo
- School of Materials Science and Energy Engineering , FoShan University , Guangdong , 528000 , China.,Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics , Institute of Physics, Chinese Academy of Sciences , Beijing 100190 , China
| | - Hong Chen
- School of Materials Science and Energy Engineering , FoShan University , Guangdong , 528000 , China
| |
Collapse
|
3
|
Sasaki K, Kaya M, Higuchi H. A Unified Walking Model for Dimeric Motor Proteins. Biophys J 2018; 115:1981-1992. [PMID: 30396511 DOI: 10.1016/j.bpj.2018.09.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 08/29/2018] [Accepted: 09/24/2018] [Indexed: 01/17/2023] Open
Abstract
Dimeric motor proteins, kinesin-1, cytoplasmic dynein-1, and myosin-V, move stepwise along microtubules and actin filaments with a regular step size. The motors take backward as well as forward steps. The step ratio r and dwell time τ, which are the ratio of the number of backward steps to the number of forward steps and the time between consecutive steps, respectively, were observed to change with the load. To understand the movement of motor proteins, we constructed a unified and simple mathematical model to explain the load dependencies of r and of τ measured for the above three types of motors quantitatively. Our model consists of three states, and the forward and backward steps are represented by the cycles of transitions visiting different pairs of states among the three, implying that a backward step is not the reversal of a forward step. Each of r and τ is given by a simple expression containing two exponential functions. The experimental data for r and τ for dynein available in the literature are not sufficient for a quantitative analysis, which is in contrast to those for kinesin and myosin-V. We reanalyze the data to obtain r and τ of native dynein to make up the insufficient data to fit them to the model. Our model successfully describes the behavior of r and τ for all of the motors in a wide range of loads from large assisting loads to superstall loads.
Collapse
Affiliation(s)
- Kazuo Sasaki
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Japan.
| | - Motoshi Kaya
- Department of Physics, University of Tokyo, Hongo Bunkyo-ku, Tokyo, Japan
| | - Hideo Higuchi
- Department of Physics, University of Tokyo, Hongo Bunkyo-ku, Tokyo, Japan; Universal Biology Institute, Graduate School of Science, University of Tokyo, Hongo Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
4
|
Li H, Duan ZW, Xie P, Liu YR, Wang WC, Dou SX, Wang PY. Effects of paclitaxel on EGFR endocytic trafficking revealed using quantum dot tracking in single cells. PLoS One 2012; 7:e45465. [PMID: 23029028 PMCID: PMC3447934 DOI: 10.1371/journal.pone.0045465] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 08/22/2012] [Indexed: 12/31/2022] Open
Abstract
Paclitaxel (PTX), a chemotherapeutic drug, affects microtubule dynamics and influences endocytic trafficking. However, the mechanism and the dynamics of altered endocytic trafficking by paclitaxel treatment in single living cells still remain elusive. By labeling quantum dots (QDs) to the epidermal growth factor (EGF), we continuously tracked the endocytosis and post-endocytic trafficking of EGF receptors (EGFRs) in A549 cells for a long time interval. A single-cell analysis method was introduced to quantitatively study the dynamics of endocytic trafficking. Compared with the control cells, the velocity of directed motion was reduced by 30% due to the suppression of high speed movements of EGF-QDs along the microtubules in PTX-treated cells. The endocytic trafficking in PTX-treated cells was mainly via super-diffusive mode of motion, whereas in control cells, it was mostly via sub-diffusive mode of motion. Moreover, PTX shortened endosomal trafficking and prevented EGF-QDs from moving to the perinuclear area via the rapid delivery of EGF-QDs into the peripheral lysosomes. The present study may shed light on the mechanism of the effect of PTX on the treatment of lung cancer.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Zhao-Wen Duan
- Key Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Ping Xie
- Key Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Yu-Ru Liu
- Key Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Wei-Chi Wang
- Key Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Shuo-Xing Dou
- Key Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Peng-Ye Wang
- Key Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Xie P. Mechanism of processive movement of monomeric and dimeric kinesin molecules. Int J Biol Sci 2010; 6:665-74. [PMID: 21060728 PMCID: PMC2974169 DOI: 10.7150/ijbs.6.665] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 10/19/2010] [Indexed: 11/05/2022] Open
Abstract
Kinesin molecules are motor proteins capable of moving along microtubule by hydrolyzing ATP. They generally have several forms of construct. This review focuses on two of the most studied forms: monomers such as KIF1A (kinesin-3 family) and dimers such as conventional kinesin (kinesin-1 family), both of which can move processively towards the microtubule plus end. There now exist numerous models that try to explain how the kinesin molecules convert the chemical energy of ATP hydrolysis into the mechanical energy to "power" their processive movement along microtubule. Here, we attempt to present a comprehensive review of these models. We further propose a new hybrid model for the dimeric kinesin by combining the existing models and provide a framework for future studies in this subject.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
6
|
Xie P. Processive hand-over-hand motion of homodimeric nanomotors induced by interaction between two monomeric components and thermal noise. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:011920. [PMID: 19257082 DOI: 10.1103/physreve.79.011920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 11/28/2008] [Indexed: 05/27/2023]
Abstract
A simple homodimeric nanowalker is presented that is capable of moving processively along an extended periodic track. The unidirectional motion is based on a mechanism that makes use of the interaction between the two monomers and the thermal noise. The effect of the neck linker, which plays a critical role in the previously proposed design, plays an unimportant role in the present system. Except the requirement of a fixed binding orientation of the monomer relative to the track at the minimum of the potential well, the system has no other requirement for the form of the interaction potential between the motor and the track, which is critical to the unidirectional movement of the monomeric motor. Using detailed analyses and numerical simulations, it is shown that the homodimeric nanowalker walks hand over hand along the track with a high efficiency and a high stall force.
Collapse
Affiliation(s)
- Ping Xie
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
7
|
Stepping behavior of two-headed kinesin motors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1195-202. [DOI: 10.1016/j.bbabio.2008.04.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 04/09/2008] [Accepted: 04/23/2008] [Indexed: 11/23/2022]
|
8
|
Xie P, Dou SX, Wang PY. Processivity of single-headed kinesin motors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:1418-27. [PMID: 17976515 DOI: 10.1016/j.bbabio.2007.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 08/13/2007] [Accepted: 09/20/2007] [Indexed: 11/18/2022]
Abstract
The processive movement of single-headed kinesins is studied by using a ratchet model of non-Markov process, which is built on the experimental evidence that the strong binding of kinesin to microtubule in rigor state induces a large apparent change in the local microtubule conformation. In the model, the microtubule plays a crucial active role in the kinesin movement, in contrast to the previous belief that the microtubule only acts as a passive track for the kinesin motility. The unidirectional movement of single-headed kinesin is resulted from the asymmetric periodic potential between kinesin and microtubule while its processivity is determined by its binding affinity for microtubule in the weak ADP state. Using the model, various experimental results for monomeric kinesin KIF1A, such as the mean step size, the step-size distribution, the long run length and the mean velocity versus load, can be well explained quantitatively. This local conformational change of the microtubule may also play important roles in the processive movement of conventional two-headed kinesins. An experiment to verify the model is suggested.
Collapse
Affiliation(s)
- Ping Xie
- Department of Physics, Renmin University of China, Beijing 100872, China.
| | | | | |
Collapse
|
9
|
Xie P, Dou SX, Wang PY. Limping of Homodimeric Kinesin Motors. J Mol Biol 2007; 366:976-85. [PMID: 17188298 DOI: 10.1016/j.jmb.2006.10.081] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 09/30/2006] [Accepted: 10/04/2006] [Indexed: 11/16/2022]
Abstract
Conventional kinesin, a homodimeric motor protein that transports cargo in various cells, walks limpingly along microtubule. Here, based on our previously proposed partially coordinated hand-over-hand model, we present a new mechanism for the limping behaviors of both wild-type and mutant kinesin homodimers. The limping is caused by different vertical forces acting on the heads in two successive steps during the processive movement of the dimer. From the model, various theoretical results, such as the dependences of the mean dwell time and dwell time ratio on the coiled-coil length and on the external load as well as the effect of vertical force on velocity, are in good agreement with previous experimental results. We predict that a high degree of limping will correlate strongly with a high sensitivity of ATP turnover rate to upwards force.
Collapse
Affiliation(s)
- Ping Xie
- Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
| | | | | |
Collapse
|