1
|
Chen PC, Wang CT. Rat Pheochromocytoma PC12 Cells in Culture. Methods Mol Biol 2023; 2565:3-15. [PMID: 36205883 DOI: 10.1007/978-1-0716-2671-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
PC12 cells serve as a secretory cell model, especially suitable for studying the molecular mechanisms underlying fusion pore kinetics in regulated exocytosis of dense-core vesicles (DCVs). In this chapter, we describe a series of PC12 cell culture procedures optimized for real-time functional assays such as single-vesicle amperometry. In addition, these conditions have been widely used for single-cell biochemical assays such as the proximity ligation assay with immunostaining.
Collapse
Affiliation(s)
- Pin-Chun Chen
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Chih-Tien Wang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
2
|
The Transmembrane Domain of Synaptobrevin Influences Neurotransmitter Flux through Synaptic Fusion Pores. J Neurosci 2018; 38:7179-7191. [PMID: 30012692 DOI: 10.1523/jneurosci.0721-18.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/22/2018] [Accepted: 06/30/2018] [Indexed: 01/08/2023] Open
Abstract
The soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins synaptobrevin (Syb), syntaxin, and SNAP-25 function in Ca2+-triggered exocytosis in both endocrine cells and neurons. The transmembrane domains (TMDs) of Syb and syntaxin span the vesicle and plasma membrane, respectively, and influence flux through fusion pores in endocrine cells as well as fusion pores formed during SNARE-mediated fusion of reconstituted membranes. These results support a model for exocytosis in which SNARE TMDs form the initial fusion pore. The present study sought to test this model in synaptic terminals. Patch-clamp recordings of miniature EPSCs (mEPSCs) were used to probe fusion pore properties in cultured hippocampal neurons from mice of both sexes. Mutants harboring tryptophan at four different sites in the Syb TMD reduced the rate-of-rise of mEPSCs. A computer model that simulates glutamate diffusion and receptor activation kinetics could account for this reduction in mEPSC rise rate by slowing the flux of glutamate through synaptic fusion pores. TMD mutations introducing positive charge also reduced the mEPSC rise rate, but negatively charged residues and glycine, which should have done the opposite, had no effect. The sensitivity of mEPSCs to pharmacological blockade of receptor desensitization was enhanced by a mutation that slowed the mEPSC rate-of-rise, suggesting that the mutation prolonged the residence of glutamate in the synaptic cleft. The same four Syb TMD residues found here to influence synaptic release were found previously to influence endocrine release, leading us to propose that a similar TMD-lined fusion pore functions widely in Ca2+-triggered exocytosis in mammalian cells.SIGNIFICANCE STATEMENT SNARE proteins function broadly in biological membrane fusion. Evidence from non-neuronal systems suggests that SNARE proteins initiate fusion by forming a fusion pore lined by transmembrane domains, but this model has not yet been tested in synapses. The present study addressed this question by testing mutations in the synaptic vesicle SNARE synaptobrevin for an influence on the rise rate of miniature synaptic currents. These results indicate that synaptobrevin's transmembrane domain interacts with glutamate as it passes through the fusion pore. The sites in synaptobrevin that influence this flux are identical to those shown previously to influence flux through endocrine fusion pores. Thus, SNARE transmembrane domains may function in the fusion pores of Ca2+-triggered exocytosis of both neurotransmitters and hormones.
Collapse
|
3
|
Wen X, Saltzgaber GW, Thoreson WB. Kiss-and-Run Is a Significant Contributor to Synaptic Exocytosis and Endocytosis in Photoreceptors. Front Cell Neurosci 2017; 11:286. [PMID: 28979188 PMCID: PMC5611439 DOI: 10.3389/fncel.2017.00286] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/01/2017] [Indexed: 11/13/2022] Open
Abstract
Accompanying sustained release in darkness, rod and cone photoreceptors exhibit rapid endocytosis of synaptic vesicles. Membrane capacitance measurements indicated that rapid endocytosis retrieves at least 70% of the exocytotic membrane increase. One mechanism for rapid endocytosis is kiss-and-run fusion where vesicles briefly contact the plasma membrane through a small fusion pore. Release can also occur by full-collapse in which vesicles merge completely with the plasma membrane. We assessed relative contributions of full-collapse and kiss-and-run in salamander photoreceptors using optical techniques to measure endocytosis and exocytosis of large vs. small dye molecules. Incubation with small dyes (SR101, 1 nm; 3-kDa dextran-conjugated Texas Red, 2.3 nm) loaded rod and cone synaptic terminals much more readily than larger dyes (10-kDa Texas Red, 4.6 nm; 10-kDa pHrodo, 4.6 nm; 70-kDa Texas Red, 12 nm) consistent with significant uptake through 2.3–4.6 nm fusion pores. By using total internal reflection fluorescence microscopy (TIRFM) to image individual vesicles, when rods were incubated simultaneously with Texas Red and AlexaFluor-488 dyes conjugated to either 3-kDa or 10-kDa dextran, more vesicles loaded small molecules than large molecules. Using TIRFM to detect release by the disappearance of dye-loaded vesicles, we found that SR101 and 3-kDa Texas Red were released from individual vesicles more readily than 10-kDa and 70-kDa Texas Red. Although 10-kDa pHrodo was endocytosed poorly like other large dyes, the fraction of release events was similar to SR101 and 3-kDa Texas Red. We hypothesize that while 10-kDa pHrodo may not exit through a fusion pore, release of intravesicular protons can promote detection of fusion events by rapidly quenching fluorescence of this pH-sensitive dye. Assuming that large molecules can only be released by full-collapse whereas small molecules can be released by both modes, our results indicate that 50%–70% of release from rods involves kiss-and-run with 2.3–4.6 nm fusion pores. Rapid retrieval of vesicles by kiss-and-run may limit membrane disruption of release site function during ongoing release at photoreceptor ribbon synapses.
Collapse
Affiliation(s)
- Xiangyi Wen
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical CenterOmaha, NE, United States.,Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical CenterOmaha, NE, United States
| | - Grant W Saltzgaber
- Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical CenterOmaha, NE, United States
| | - Wallace B Thoreson
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical CenterOmaha, NE, United States.,Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical CenterOmaha, NE, United States
| |
Collapse
|
4
|
Chang CW, Chiang CW, Jackson MB. Fusion pores and their control of neurotransmitter and hormone release. J Gen Physiol 2017; 149:301-322. [PMID: 28167663 PMCID: PMC5339513 DOI: 10.1085/jgp.201611724] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/06/2017] [Accepted: 01/19/2017] [Indexed: 11/20/2022] Open
Abstract
Chang et al. review fusion pore structure and dynamics and discuss the implications for hormone and neurotransmitter release Ca2+-triggered exocytosis functions broadly in the secretion of chemical signals, enabling neurons to release neurotransmitters and endocrine cells to release hormones. The biological demands on this process can vary enormously. Although synapses often release neurotransmitter in a small fraction of a millisecond, hormone release can be orders of magnitude slower. Vesicles usually contain multiple signaling molecules that can be released selectively and conditionally. Cells are able to control the speed, concentration profile, and content selectivity of release by tuning and tailoring exocytosis to meet different biological demands. Much of this regulation depends on the fusion pore—the aqueous pathway by which molecules leave a vesicle and move out into the surrounding extracellular space. Studies of fusion pores have illuminated how cells regulate secretion. Furthermore, the formation and growth of fusion pores serve as a readout for the progress of exocytosis, thus revealing key kinetic stages that provide clues about the underlying mechanisms. Herein, we review the structure, composition, and dynamics of fusion pores and discuss the implications for molecular mechanisms as well as for the cellular regulation of neurotransmitter and hormone release.
Collapse
Affiliation(s)
- Che-Wei Chang
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705
| | - Chung-Wei Chiang
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705
| | - Meyer B Jackson
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
5
|
Hammel I, Meilijson I. Function Suggests Nano-Structure: Quantitative Structural Support for SNARE-Mediated Pore Formation. Neurotox Res 2015; 29:1-9. [PMID: 26407673 DOI: 10.1007/s12640-015-9559-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/22/2015] [Accepted: 08/24/2015] [Indexed: 10/23/2022]
Abstract
Granule secretory content is released in either basal or calcium-activated complete exocytosis mode. A vital element in these processes is the establishment of a fusion pore between the granule membrane and the plasma membrane, initiated by the formation of a circular rosette docking arrangement of SNARE protein complexes. The controversially disputed number of SNARE complexes needed for granule priming leading to the formation of the fusion pore, is granule-size dependent and varies between secretion modes. Resorting to a statistical mechanics approach that views SNARE complexes and Ca(2+) ions as interacting particles, we have developed a relationship that links secretion rate to SNARE rosette size, Ca(2+) concentration and Ca(2+) ion cooperativity. Data are presented and discussed which suggest this SNARE-dependent generalization of existing narrow-range biophysical models that correlate secretion rate with Ca(2+) concentration and maximal Ca(2+) ion cooperativity. Evidence from dozens of examples in the literature advocate for this relation, which holds through the entire biological range. The coalescence of so many areas of diverse research methodologies has greatly augmented our understanding of so many different sequences of granule life cycle. Accordingly, these new tools may become valuable in a variety of electrophysiological experiments.
Collapse
Affiliation(s)
- Ilan Hammel
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel.
| | - Isaac Meilijson
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Mathematical Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel.
| |
Collapse
|
6
|
Zhang Z, Jackson MB. Membrane bending energy and fusion pore kinetics in Ca(2+)-triggered exocytosis. Biophys J 2010; 98:2524-34. [PMID: 20513396 DOI: 10.1016/j.bpj.2010.02.043] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 02/15/2010] [Accepted: 02/26/2010] [Indexed: 11/30/2022] Open
Abstract
A fusion pore composed of lipid is an obligatory kinetic intermediate of membrane fusion, and its formation requires energy to bend membranes into highly curved shapes. The energetics of such deformations in viral fusion is well established, but the role of membrane bending in Ca(2+)-triggered exocytosis remains largely untested. Amperometry recording showed that during exocytosis in chromaffin and PC12 cells, fusion pores formed by smaller vesicles dilated more rapidly than fusion pores formed by larger vesicles. The logarithm of 1/(fusion pore lifetime) varied linearly with vesicle curvature. The vesicle size dependence of fusion pore lifetime quantitatively accounted for the nonexponential fusion pore lifetime distribution. Experimentally manipulating vesicle size failed to alter the size dependence of fusion pore lifetime. Manipulations of membrane spontaneous curvature altered this dependence, and applying the curvature perturbants to the opposite side of the membrane reversed their effects. These effects of curvature perturbants were opposite to those seen in viral fusion. These results indicate that during Ca(2+)-triggered exocytosis membrane bending opposes fusion pore dilation rather than fusion pore formation. Ca(2+)-triggered exocytosis begins with a proteinaceous fusion pore with less stressed membrane, and becomes lipidic as it dilates, bending membrane into a highly curved shape.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Physiology, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, USA
| | | |
Collapse
|
7
|
Zhang Z, Zhang Z, Jackson MB. Synaptotagmin IV modulation of vesicle size and fusion pores in PC12 cells. Biophys J 2010; 98:968-78. [PMID: 20303854 DOI: 10.1016/j.bpj.2009.11.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 10/30/2009] [Accepted: 11/18/2009] [Indexed: 01/27/2023] Open
Abstract
Many synaptotagmins are Ca(2+)-binding membrane proteins with functions in Ca(2+)-triggered exocytosis. Synaptotagmin IV (syt IV) has no Ca(2+) binding activity, but nevertheless modulates exocytosis. Here, cell-attached capacitance recording was used to study single vesicle fusion and fission in control and syt IV overexpressing PC12 cells. Unitary capacitance steps varied widely in size, indicating that both microvesicles (MVs) and dense-core vesicles (DCVs) undergo fusion. Syt IV overexpression reduced the size of DCVs and endocytotic vesicles but not MVs. Syt IV also reduced the basal rate of Ca(2+)-induced fusion. During kiss-and-run, syt IV increased the conductance and duration of DCV fusion pores but not MV fusion pores. During full-fusion of DCVs syt IV increased the fusion pore conductance but not the duration. Syt IV overexpression increased the duration but not the conductance of fission pores during endocytosis. The effects of syt IV on fusion pores in PC12 cells resembled the effects on fusion pores in peptidergic nerve terminals. However, differences between these and results obtained with amperometry may indicate that amperometry and capacitance detect the fusion of different populations of vesicles. The effects of syt IV on fusion pores are discussed in terms of structural models and kinetic mechanisms.
Collapse
Affiliation(s)
- Zhenjie Zhang
- Department of Physiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | |
Collapse
|
8
|
Helix insertion into bilayers and the evolution of membrane proteins. Cell Mol Life Sci 2009; 67:1077-88. [PMID: 20039094 DOI: 10.1007/s00018-009-0234-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 11/16/2009] [Accepted: 12/11/2009] [Indexed: 10/20/2022]
Abstract
Polytopic alpha-helical membrane proteins cannot spontaneously insert into lipid bilayers without assistance from polytopic alpha-helical membrane proteins that already reside in the membrane. This raises the question of how these proteins evolved. Our current knowledge of the insertion of alpha-helices into natural and model membranes is reviewed with the goal of gaining insight into the evolution of membrane proteins. Topics include: translocon-dependent membrane protein insertion, antibiotic peptides and proteins, in vitro insertion of membrane proteins, chaperone-mediated insertion of transmembrane helices, and C-terminal tail-anchored (TA) proteins. Analysis of the E. coli genome reveals several predicted C-terminal TA proteins that may be descendents of proteins involved in pre-cellular membrane protein insertion. Mechanisms of pre-translocon polytopic alpha-helical membrane protein insertion are discussed.
Collapse
|
9
|
Brunner Y, Schvartz D, Couté Y, Sanchez JC. Proteomics of regulated secretory organelles. MASS SPECTROMETRY REVIEWS 2009; 28:844-867. [PMID: 19301366 DOI: 10.1002/mas.20211] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Regulated secretory organelles are important subcellular structures of living cells that allow the release in the extracellular space of crucial compounds, such as hormones and neurotransmitters. Therefore, the regulation of biogenesis, trafficking, and exocytosis of regulated secretory organelles has been intensively studied during the last 30 years. However, due to the large number of different regulated secretory organelles, only a few of them have been specifically characterized. New insights into regulated secretory organelles open crucial perspectives for a better comprehension of the mechanisms that govern cell secretion. The combination of subcellular fractionation, protein separation, and mass spectrometry is also possible to study regulated secretory organelles at the proteome level. In this review, we present different strategies used to isolate regulated secretory organelles, separate their protein content, and identify the proteins by mass spectrometry. The biological significance of regulated secretory organelles-proteomic analysis is discussed as well.
Collapse
Affiliation(s)
- Yannick Brunner
- Biomedical Proteomics Research Group, University Medical Center, Geneva, Switzerland
| | | | | | | |
Collapse
|
10
|
Wang T, Smith EA, Chapman ER, Weisshaar JC. Lipid mixing and content release in single-vesicle, SNARE-driven fusion assay with 1-5 ms resolution. Biophys J 2009; 96:4122-31. [PMID: 19450483 DOI: 10.1016/j.bpj.2009.02.050] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 02/20/2009] [Accepted: 02/24/2009] [Indexed: 01/05/2023] Open
Abstract
A single-vesicle, fluorescence-based, SNARE-driven fusion assay enables simultaneous measurement of lipid mixing and content release with 5 ms/frame, or even 1 ms/frame, time resolution. The v-SNARE vesicles, labeled with lipid and content markers of different color, dock and fuse with a planar t-SNARE bilayer supported on glass. A narrow (<5 ms duration), intense spike of calcein fluorescence due to content release and dequenching coincides with inner-leaflet lipid mixing within 10 ms. The spike provides more sensitive detection of productive hemifusion events than do lipid labels alone. Consequently, many fast events previously thought to be prompt, full fusion events are now reclassified as productive hemifusion. Both full fusion and hemifusion occur with a time constant of 5-10 ms. At 60% phosphatidylethanolamine lipid composition, productive and dead-end hemifusion account for 65% of all fusion events. However, quantitative analysis shows that calcein is released into the space above the bilayer (vesicle bursting), rather than the thin aqueous space between the bilayer and glass. Evidently, at the instant of inner-leaflet mixing, flattening of the vesicle increases the internal pressure beyond the bursting point. This may be related to in vivo observations suggesting that membrane lysis often competes with membrane fusion.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | | | | | | |
Collapse
|
11
|
Abdulreda MH, Moy VT. Investigation of SNARE-Mediated Membrane Fusion Mechanism Using Atomic Force Microscopy. JAPANESE JOURNAL OF APPLIED PHYSICS (2008) 2009; 48:8JA03-8JA0310. [PMID: 20228892 PMCID: PMC2836841 DOI: 10.1143/jjap.48.08ja03] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Membrane fusion is driven by specialized proteins that reduce the free energy penalty for the fusion process. In neurons and secretory cells, soluble N-ethylmaleimide-sensitive factor-attachment protein (SNAP) receptors (SNAREs) mediate vesicle fusion with the plasma membrane during vesicular content release. Although, SNAREs have been widely accepted as the minimal machinery for membrane fusion, the specific mechanism for SNARE-mediated membrane fusion remains an active area of research. Here, we summarize recent findings based on force measurements acquired in a novel experimental system that uses atomic force microscope (AFM) force spectroscopy to investigate the mechanism(s) of membrane fusion and the role of SNAREs in facilitating membrane hemifusion during SNARE-mediated fusion. In this system, protein-free and SNARE-reconstituted lipid bilayers are formed on opposite (trans) substrates and the forces required to induce membrane hemifusion and fusion or to unbind single v-/t-SNARE complexes are measured. The obtained results provide evidence for a mechanism by which the pulling force generated by interacting trans-SNAREs provides critical proximity between the membranes and destabilizes the bilayers at fusion sites by broadening the hemifusion energy barrier and consequently making the membranes more prone to fusion.
Collapse
|
12
|
|
13
|
Abstract
Neurotransmitter release at synapses involves a highly specialized form of membrane fusion that is triggered by Ca(2+) ions and is optimized for speed. These observations were established decades ago, but only recently have the molecular mechanisms that underlie this process begun to come into view. Here, we summarize findings obtained from genetically modified neurons and neuroendocrine cells, as well as from reconstituted systems, which are beginning to reveal the molecular mechanism by which Ca(2+)-acting on the synaptic vesicle (SV) protein synaptotagmin I (syt)-triggers rapid exocytosis. This work sheds light not only on presynaptic aspects of synaptic transmission, but also on the fundamental problem of membrane fusion, which has remained a puzzle that has yet to be solved in any biological system.
Collapse
Affiliation(s)
- Edwin R Chapman
- Howard Hughes Medical Institute and Department of Physiology, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
14
|
Abstract
Diverse membrane fusion reactions in biology involve close contact between two lipid bilayers, followed by the local distortion of the individual bilayers and reformation into a single, merged membrane. We consider the structures and energies of the fusion intermediates identified in experimental and theoretical work on protein-free lipid bilayers. On the basis of this analysis, we then discuss the conserved fusion-through-hemifusion pathway of merger between biological membranes and propose that the entire progression, from the close juxtaposition of membrane bilayers to the expansion of a fusion pore, is controlled by protein-generated membrane stresses.
Collapse
Affiliation(s)
- Leonid V Chernomordik
- Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1855, USA.
| | | |
Collapse
|
15
|
Abstract
The aqueous compartment inside a vesicle makes its first connection with the extracellular fluid through an intermediate structure termed the exocytotic fusion pore. Progress in exocytosis can be measured in terms of the formation and growth of the fusion pore. The fusion pore has become a major focus of research in exocytosis; sensitive biophysical measurements have provided various glimpses of what it looks like and how it behaves. Some of the principal questions about the molecular mechanism of exocytosis can be cast explicitly in terms of properties and transitions of fusion pores. This Review will present current knowledge about fusion pores in Ca(2+)-triggered exocytosis, highlight recent advances and relate questions about fusion pores to broader issues concerning how cells regulate exocytosis and how nerve terminals release neurotransmitter.
Collapse
Affiliation(s)
- Meyer B Jackson
- Department of Physiology, University of Wisconsin School of Medicine and Public Health, 1300 University Avenue, Madison,WI 53706, USA.
| | | |
Collapse
|
16
|
Supramolecular SNARE assembly precedes hemifusion in SNARE-mediated membrane fusion. Nat Struct Mol Biol 2008; 15:700-6. [PMID: 18552827 PMCID: PMC2575085 DOI: 10.1038/nsmb.1433] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Accepted: 04/24/2008] [Indexed: 11/09/2022]
Abstract
Formation of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex facilitates intracellular membrane fusion. A single SNARE complex is thought to be insufficient; multiple copies of SNARE complexes must work cooperatively. However, the mechanism by which such a higher-order SNARE protein structure is assembled is unknown. EPR and fluorescence analyses show that at least three copies of target-membrane SNARE proteins self-assemble through the interaction between the transmembrane domains (TMDs), and this multimeric structure serves as scaffolding for trans-SNARE assembly. SNARE core formation in solution induces oligomerization of the TMDs of vesicle-associated SNAREs in the apposing membrane, transiently forming a supramolecular protein structure spanning two membranes. This higher-order protein intermediate evolves, by involving lipid molecules, to the hemifusion state. Hemifusion is subsequently followed by distal leaflet mixing and formation of the cis-SNARE complex.
Collapse
|
17
|
Zhang Z, Jackson MB. Temperature dependence of fusion kinetics and fusion pores in Ca2+-triggered exocytosis from PC12 cells. ACTA ACUST UNITED AC 2008; 131:117-24. [PMID: 18195388 PMCID: PMC2213568 DOI: 10.1085/jgp.200709891] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The temperature dependence of Ca2+-triggered exocytosis was studied using carbon fiber amperometry to record the release of norepinephrine from PC12 cells. Single-vesicle fusion events were examined at temperatures varying from 12 to 28°C, and with release elicited by depolarization. Measurements were made of the initial and maximum frequencies of exocytotic events, of fusion pore lifetime, flux through the open fusion pore, kiss-and-run versus full-fusion probability, and parameters associated with the shapes of amperometric spikes. The fusion pore open-state flux, and all parameters associated with spike shape, including area, rise time, and decay time, had weak temperature dependences and activation energies in the range expected for bulk diffusion in an aqueous solution. Kiss-and-run events also varied with temperature, with lower temperatures increasing the relative probability of kiss-and-run events by ∼50%. By contrast, kinetic parameters relating to the frequency of exocytotic events and fusion pore transitions depended much more strongly on temperature, suggesting that these processes entail structural rearrangements of proteins or lipids or both. The weak temperature dependence of spike shape suggests that after the fusion pore has started to expand, structural transitions of membrane components are no longer kinetically limiting. This indicates that the content of a vesicle is expelled completely after fusion pore expansion.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Physiology, University of Wisconsin School of Medicine and Publis Health, Madison 53706, USA
| | | |
Collapse
|
18
|
Abdulreda MH, Bhalla A, Chapman ER, Moy VT. Atomic force microscope spectroscopy reveals a hemifusion intermediate during soluble N-ethylmaleimide-sensitive factor-attachment protein receptors-mediated membrane fusion. Biophys J 2007; 94:648-55. [PMID: 17872963 PMCID: PMC2157233 DOI: 10.1529/biophysj.107.114298] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study investigated the effect of soluble N-ethylmaleimide-sensitive factor-attachment protein (SNAP) receptors (SNAREs) on the fusion of egg L-alpha-phosphatidylcholine bilayers using atomic force microscope (AFM) spectroscopy. AFM measurements of the fusion force under compression were acquired to reveal the energy landscape of the fusion process. A single main energy barrier governing the fusion process was identified in the absence and presence of SNAREs in the bilayers. Under compression, a significant downward shift in the fusion dynamic force spectrum was observed when cognate v- and t-SNAREs were present in the opposite bilayers. The presence of vesicle-associated membrane protein (VAMP) and binary syntaxin and SNAP 25 in the apposed bilayers resulted in a reduction in the height of the activation potential by approximately 1.3 k(B)T and a >2-fold increase in the width of the energy barrier. The widening of the energy barrier in the presence SNAREs is interpreted as an increase in the compressibility of the membranes, which translates to a greater ease in the bilayer deformation and subsequently the fusion of the membranes under compression. Facilitation of membrane fusion was observed only when SNAREs were present in both bilayers. Moreover, addition of the soluble cytoplasmic domain of VAMP, which interferes with the interaction between opposing v- and t-SNAREs, prevented such facilitation. These observations implicated the interaction between the cytoplasmic domains of opposing SNAREs in the observed fusion facilitation, possibly by destabilizing the bilayers through pulling on their transmembrane segments. Our AFM compression measurements revealed that SNARE-mediated membrane fusion proceeded through a sequence of two approximately 5 nm collapses of the membrane, an observation that is consistent with the existence of a hemifused state during the fusion process.
Collapse
Affiliation(s)
- Midhat H Abdulreda
- University of Miami Miller School of Medicine, Physiology and Biophysics Department, Miami, Florida 33136, USA
| | | | | | | |
Collapse
|