1
|
Timofeev VI, Zhukhlistova NE, Abramchik YA, Muravieva TI, Esipov RS, Kuranova IP. Crystal structure of Escherichia coli purine nucleoside phosphorylase complexed with acyclovir. Acta Crystallogr F Struct Biol Commun 2018; 74:402-409. [PMID: 29969103 PMCID: PMC6038453 DOI: 10.1107/s2053230x18008087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/31/2018] [Indexed: 11/10/2022] Open
Abstract
Escherichia coli purine nucleoside phosphorylase (PNP), which catalyzes the reversible phosphorolysis of purine ribonucleosides, belongs to the family I hexameric PNPs. Owing to their key role in the purine salvage pathway, PNPs are attractive targets for drug design against some pathogens. Acyclovir (ACV) is an acyclic derivative of the PNP substrate guanosine and is used as an antiviral drug for the treatment of some human viral infections. The crystalline complex of E. coli PNP with acyclovir was prepared by co-crystallization in microgravity using counter-diffusion through a gel layer in a capillary. The structure of the E. coli PNP-ACV complex was solved at 2.32 Å resolution using the molecular-replacement method. The ACV molecule is observed in two conformations and sulfate ions were located in both the nucleoside-binding and phosphate-binding pockets of the enzyme. A comparison with the complexes of other hexameric and trimeric PNPs with ACV shows the similarity in acyclovir binding by these enzymes.
Collapse
Affiliation(s)
- Vladimir I. Timofeev
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre ‘Crystallography and Photonics’ of Russian Academy of Sciences, Leninsky Prospekt 59, Moscow 119333, Russian Federation
- Kurchatov Complex of NBICS-Technologies, National Research Center ‘Kurchatov Institute’, Akad. Kurchatova Square 1, Moscow 123182, Russian Federation
| | - Nadezhda E. Zhukhlistova
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre ‘Crystallography and Photonics’ of Russian Academy of Sciences, Leninsky Prospekt 59, Moscow 119333, Russian Federation
| | - Yuliya A. Abramchik
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
| | - Tatiana I. Muravieva
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
| | - Roman S. Esipov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
| | - Inna P. Kuranova
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre ‘Crystallography and Photonics’ of Russian Academy of Sciences, Leninsky Prospekt 59, Moscow 119333, Russian Federation
- Kurchatov Complex of NBICS-Technologies, National Research Center ‘Kurchatov Institute’, Akad. Kurchatova Square 1, Moscow 123182, Russian Federation
| |
Collapse
|
2
|
Zdzienicka A, Schols D, Andrei G, Snoeck R, Głowacka IE. Phosphonylated 8-Azahypoxantines as Acyclic Nucleotide Analogs. PHOSPHORUS SULFUR 2015. [DOI: 10.1080/10426507.2015.1054931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Anna Zdzienicka
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Łódź, 90-151 Łódź, Muszyńskiego 1, Poland
| | - Dominique Schols
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Graciela Andrei
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Robert Snoeck
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Iwona E. Głowacka
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Łódź, 90-151 Łódź, Muszyńskiego 1, Poland
| |
Collapse
|
3
|
Wierzchowski J, Antosiewicz JM, Shugar D. 8-Azapurines as isosteric purine fluorescent probes for nucleic acid and enzymatic research. MOLECULAR BIOSYSTEMS 2015; 10:2756-74. [PMID: 25124808 DOI: 10.1039/c4mb00233d] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The 8-azapurines, and their 7-deaza and 9-deaza congeners, represent a unique class of isosteric (isomorphic) analogues of the natural purines, frequently capable of substituting for the latter in many biochemical processes. Particularly interesting is their propensity to exhibit pH-dependent room-temperature fluorescence in aqueous medium, and in non-polar media. We herein review the physico-chemical properties of this class of compounds, with particular emphasis on the fluorescence emission properties of their neutral and/or ionic species, which has led to their widespread use as fluorescent probes in enzymology, including enzymes involved in purine metabolism, agonists/antagonists of adenosine receptors, mechanisms of catalytic RNAs, RNA editing, etc. They are also exceptionally useful fluorescent probes for analytical and clinical applications in crude cell homogenates.
Collapse
Affiliation(s)
- Jacek Wierzchowski
- Department of Biophysics, University of Varmia & Masuria, Oczapowskiego 4, 10-719 Olsztyn, Poland.
| | | | | |
Collapse
|
4
|
Karnawat V, Puranik M. Solution structures of purine base analogues 9-deazaguanine and 9-deazahypoxanthine. J Biomol Struct Dyn 2015; 34:640-52. [PMID: 25894214 DOI: 10.1080/07391102.2015.1042916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Deaza analogues of nucleobases are potential drugs against infectious diseases caused by parasites. A caveat is that apart from binding their target parasite enzymes, they also bind and inhibit enzymes of the host. In order to design derivatives of deaza analogues which specifically bind target enzymes, knowledge of their molecular structure, protonation state, and predominant tautomers at physiological conditions is essential. We have employed resonance Raman spectroscopy at an excitation wavelength of 260 nm, to decipher solution structure of 9-deazaguanine (9DAG) and 9-deazahypoxanthine (9DAH). These are analogues of guanine and hypoxanthine, respectively, and have been exploited to study static complexes of nucleobase binding enzymes. Such enzymes are known to perturb pKa of their ligands, and thus, we also determined solution structures of these analogues at two, acidic and alkaline, pH. Structure of each possible protonation state and tautomer was computed using density functional theoretical calculations. Species at various pHs were identified based on isotopic shifts in experimental wavenumbers and by comparing these shifts with corresponding computed isotopic shifts. Our results show that at physiological pH, N1 of pyrimidine ring in 9DAG and 9DAH bears a proton. At lower pH, N3 is place of protonation, and at higher pH, deprotonation occurs at N1 position. The proton at N7 of purine ring remains intact even at pH 12.5. We have further compared these results with naturally occurring nucleotides. Our results identify key vibrational modes which can report on hydrogen bonding interactions, protonation and deprotonation in purine rings upon binding to the active site of enzymes.
Collapse
Affiliation(s)
- Vishakha Karnawat
- a Chemistry Department , Indian Institute of Science Education and Research , Pune 411008 , Maharashtra , India
| | - Mrinalini Puranik
- a Chemistry Department , Indian Institute of Science Education and Research , Pune 411008 , Maharashtra , India
| |
Collapse
|
5
|
Wierzchowski J, Mędza G, Szabelski M, Stachelska-Wierzchowska A. Properties of 2,6-diamino-8-azapurine, a highly fluorescent purine analog and its N-alkyl derivatives: Tautomerism and excited-state proton transfer reactions. J Photochem Photobiol A Chem 2013. [DOI: 10.1016/j.jphotochem.2013.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Sykora J, Meyer-Almes FJ. Mechanism of binding of the inhibitor (E)-3-(furan-2-yl)-N-hydroxyacrylamide to a histone deacetylase-like amidohydrolase. Biochemistry 2010; 49:1418-24. [PMID: 20082520 DOI: 10.1021/bi901617w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Histone deacetylases have proven to be attractive novel targets for the treatment of cancer. The first inhibitor of histone deacetylases was approved for the treatment of cutaneous T-cell lymphoma in 2006. The identification of new lead structures with improved effectiveness and fewer side effects is necessary. This report investigates the mechanism of inhibition of a histone deacetylase-like amidohydrolase by stopped-flow and equilibrium titration techniques. The interaction between the inhibitor (E)-3-(furan-2-yl)-N-hydroxyacrylamide and the enzyme generates a fluorescence resonance energy transfer from the intrinsic tryptophan residues of the enzyme to the chromophore of the inhibitor. The apparent equilibrium binding constant was determined to be 1.9 muM. Several independent experimental results provide evidence of the existence of solely one HDAH conformer. The association kinetics showed two phases representing two unimolecular processes. Kinetic arguments and accurate investigation of the very fast time range suggest a fast pre-equilibrium, in which the inhibitor binds to the surface of the enzyme. In the next step, the first complex undergoes a conformational change that allows the inhibitor to translocate into the active site. Finally, the intermediate complex is stabilized by another conformational rearrangement. All kinetic data are in agreement with a reversible three-step mechanism and analyzed using a global fit, yielding the association constant of the pre-equilibrium (K(1) = 0.28 x 10(6) M(-1)) and the forward and reverse rate constants of the consecutive conformational changes (k(2) = 6.6 s(-1), k(-2) = 1.5 s(-1), k(3) = 0.8 s(-1), and k(-3) = 0.3 s(-1)).
Collapse
Affiliation(s)
- Jaromir Sykora
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, Schnittspahnstrasse 12, 64287 Darmstadt, Germany
| | | |
Collapse
|
7
|
Le Calvez PB, Scott CJ, Migaud ME. Multisubstrate adduct inhibitors: drug design and biological tools. J Enzyme Inhib Med Chem 2010; 24:1291-318. [PMID: 19912064 DOI: 10.3109/14756360902843809] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In drug discovery, different methods exist to create new inhibitors possessing satisfactory biological activity. The multisubstrate adduct inhibitor (MAI) approach is one of these methods, which consists of a covalent combination between analogs of the substrate and the cofactor or of the multiple substrates used by the target enzyme. Adopted as the first line of investigation for many enzymes, this method has brought insights into the enzymatic mechanism, structure, and inhibitory requirements. In this review, the MAI approach, applied to different classes of enzyme, is reported from the point of view of biological activity.
Collapse
|
8
|
|
9
|
Ghanem M, Saen-oon S, Zhadin N, Wing C, Cahill SM, Schwartz SD, Callender R, Schramm VL. Tryptophan-free human PNP reveals catalytic site interactions. Biochemistry 2008; 47:3202-15. [PMID: 18269249 DOI: 10.1021/bi702491d] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human purine nucleoside phosphorylase (PNP) is a homotrimer, containing three nonconserved tryptophan residues at positions 16, 94, and 178, all remote from the catalytic site. The Trp residues were replaced with Tyr to produce Trp-free PNP (Leuko-PNP). Leuko-PNP showed near-normal kinetic properties. It was used (1) to determine the tautomeric form of guanine that produces strong fluorescence when bound to PNP, (2) for thermodynamic binding analysis of binary and ternary complexes with substrates, (3) in temperature-jump perturbation of complexes for evidence of multiple conformational complexes, and (4) to establish the ionization state of a catalytic site tyrosine involved in phosphate nucleophile activation. The (13)C NMR spectrum of guanine bound to Leuko-PNP, its fluorescent properties, and molecular orbital electronic transition analysis establish that its fluorescence originates from the lowest singlet excited state of the N1H, 6-keto, N7H guanine tautomer. Binding of guanine and phosphate to PNP and Leuko-PNP are random, with decreased affinity for formation of ternary complexes. Pre-steady-state kinetics and temperature-jump studies indicate that the ternary complex (enzyme-substrate-phosphate) forms in single binding steps without kinetically significant protein conformational changes as monitored by guanine fluorescence. Spectral changes of Leuko-PNP upon phosphate binding establish that the hydroxyl of Tyr88 is not ionized to the phenolate anion when phosphate is bound. A loop region (residues 243-266) near the purine base becomes highly ordered upon substrate/inhibitor binding. A single Trp residue was introduced into the catalytic loop of Leuko-PNP (Y249W-Leuko-PNP) to determine effects on catalysis and to introduce a fluorescence catalytic site probe. Although Y249W-Leuko-PNP is highly fluorescent and catalytically active, substrate binding did not perturb the fluorescence. Thermodynamic boxes, constructed to characterize the binding of phosphate, guanine, and hypoxanthine to native, Leuko-, and Y249W-Leuko-PNPs, establish that Leuko-PNP provides a versatile protein scaffold for introduction of specific Trp catalytic site probes.
Collapse
Affiliation(s)
- Mahmoud Ghanem
- Departments of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|