1
|
Khorsand FR, Aziziyan F, Khajeh K. Factors influencing amyloid fibril formation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:55-83. [PMID: 38811089 DOI: 10.1016/bs.pmbts.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Protein aggregation is a complex process with several stages that lead to the formation of complex structures and shapes with a broad variability in stability and toxicity. The aggregation process is affected by various factors and environmental conditions that disrupt the protein's original state, including internal factors like mutations, expression levels, and polypeptide chain truncation, as well as external factors, such as dense molecular surroundings, post-translation modifications, and interactions with other proteins, nucleic acids, small molecules, metal ions, chaperones, and lipid membranes. During the aggregation process, the biological activity of an aggregating protein may be reduced or eliminated, whereas the resulting aggregates may have the potential to be immunogenic, or they may have other undesirable properties. Finding the cause(s) of protein aggregation and controlling it to an acceptable level is among the most crucial topics of research in academia and biopharmaceutical companies. This chapter aims to review intrinsic pathways of protein aggregation and potential extrinsic variables that influence this process.
Collapse
Affiliation(s)
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Sharma S, Modi P, Sharma G, Deep S. Kinetics theories to understand the mechanism of aggregation of a protein and to design strategies for its inhibition. Biophys Chem 2021; 278:106665. [PMID: 34419715 DOI: 10.1016/j.bpc.2021.106665] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022]
Abstract
Protein aggregation phenomenon is closely related to the formation of amyloids which results in many neurodegenerative diseases like Alzheimer's, Parkinson's, Huntington's, and Amyotrophic Lateral Sclerosis. In order to prevent and treat these diseases, a clear understanding of the mechanism of misfolding and self-assembly of peptides and proteins is very crucial. The aggregation of a protein may involve various microscopic events. Multiple simulations utilizing the solutions of the master equation have given a better understanding of the kinetic profiles involved in the presence and absence of a particular microscopic event. This review focuses on understanding the contribution of these molecular events to protein aggregation based on the analysis of kinetic profiles of aggregation. We also discuss the effect of inhibitors, which target various species of aggregation pathways, on the kinetic profile of protein aggregation. At the end of this review, some strategies for the inhibition of aggregation that can be utilized by combining the chemical kinetics approach with thermodynamics are proposed.
Collapse
Affiliation(s)
- Shilpa Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Priya Modi
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Gargi Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
3
|
Le HTN, Cho S. Deciphering the Disaggregation Mechanism of Amyloid Beta Aggregate by 4-(2-Hydroxyethyl)-1-Piperazinepropanesulfonic Acid Using Electrochemical Impedance Spectroscopy. SENSORS 2021; 21:s21030788. [PMID: 33503934 PMCID: PMC7865397 DOI: 10.3390/s21030788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 12/18/2022]
Abstract
Aggregation of amyloid-β (aβ) peptides into toxic oligomers, fibrils, and plaques is central in the molecular pathogenesis of Alzheimer’s disease (AD) and is the primary focus of AD diagnostics. Disaggregation or elimination of toxic aβ aggregates in patients is important for delaying the progression of neurodegenerative disorders in AD. Recently, 4-(2-hydroxyethyl)-1-piperazinepropanesulfonic acid (EPPS) was introduced as a chemical agent that binds with toxic aβ aggregates and transforms them into monomers to reduce the negative effects of aβ aggregates in the brain. However, the mechanism of aβ disaggregation by EPPS has not yet been completely clarified. In this study, an electrochemical impedimetric immunosensor for aβ diagnostics was developed by immobilizing a specific anti-amyloid-β (aβ) antibody onto a self-assembled monolayer functionalized with a new interdigitated chain-shaped electrode (anti-aβ/SAM/ICE). To investigate the ability of EPPS in recognizing AD by extricating aβ aggregation, commercially available aβ aggregates (aβagg) were used. Electrochemical impedance spectroscopy was used to probe the changes in charge transfer resistance (Rct) of the immunosensor after the specific binding of biosensor with aβagg. The subsequent incubation of the aβagg complex with a specific concentration of EPPS at different time intervals divulged AD progression. The decline in the Rct of the immunosensor started at 10 min of EPPS incubation and continued to decrease gradually from 20 min, indicating that the accumulation of aβagg on the surface of the anti-aβ/SAM/ICE sensor has been extricated. Here, the kinetic disaggregation rate k value of aβagg was found to be 0.038. This innovative study using electrochemical measurement to investigate the mechanism of aβagg disaggregation by EPPS could provide a new perspective in monitoring the disaggregation periods of aβagg from oligomeric to monomeric form, and then support for the prediction and handling AD symptoms at different stages after treatment by a drug, EPPS.
Collapse
Affiliation(s)
- Hien T. Ngoc Le
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do 13120, Korea;
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do 13120, Korea;
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
- Correspondence: ; Tel.: +82-(31)-750-5321
| |
Collapse
|
4
|
Arsiccio A, McCarty J, Pisano R, Shea JE. Heightened Cold-Denaturation of Proteins at the Ice–Water Interface. J Am Chem Soc 2020; 142:5722-5730. [DOI: 10.1021/jacs.9b13454] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Andrea Arsiccio
- Department of Applied Science and Technology, Politecnico di Torino, 24 corso Duca degli Abruzzi, Torino 10129, Italy
| | - James McCarty
- Department of Chemistry, Western Washington University, Bellingham, Washington 98225, United States
| | - Roberto Pisano
- Department of Applied Science and Technology, Politecnico di Torino, 24 corso Duca degli Abruzzi, Torino 10129, Italy
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
- Department of Physics, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
5
|
Sil TB, Sahoo B, Bera SC, Garai K. Quantitative Characterization of Metastability and Heterogeneity of Amyloid Aggregates. Biophys J 2019; 114:800-811. [PMID: 29490242 DOI: 10.1016/j.bpj.2017.12.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/23/2017] [Accepted: 12/11/2017] [Indexed: 01/13/2023] Open
Abstract
Amyloids are heterogeneous assemblies of extremely stable fibrillar aggregates of proteins. Although biological activities of the amyloids are dependent on its conformation, quantitative evaluation of heterogeneity of amyloids has been difficult. Here we use disaggregation of the amyloids of tetramethylrhodamine-labeled Aβ (TMR-Aβ) to characterize its stability and heterogeneity. Disaggregation of TMR-Aβ amyloids, monitored by fluorescence recovery of TMR, was negligible in native buffer even at low nanomolar concentrations but the kinetics increased exponentially with addition of denaturants such as urea or GdnCl. However, dissolution of TMR-Aβ amyloids is different from what is expected in the case of thermodynamic solubility. For example, the fraction of soluble amyloids is found to be independent of total concentration of the peptide at all concentrations of the denaturants. Additionally, soluble fraction is dependent on growth conditions such as temperature, pH, and aging of the amyloids. Furthermore, amyloids undissolved in a certain concentration of the denaturant do not show any further dissolution after dilution in the same solvent; instead, these require higher concentrations of the denaturant. Taken together, our results indicate that amyloids are a heterogeneous ensemble of metastable states. Furthermore, dissolution of each structurally homogeneous member requires a unique threshold concentration of denaturant. Fraction of soluble amyloids as a function of concentration of denaturants is found to be sigmoidal. The sigmoidal curve becomes progressively steeper with progressive seeding of the amyloids, although the midpoint remains unchanged. Therefore, heterogeneity of the amyloids is a major determinant of the steepness of the sigmoidal curve. The sigmoidal curve can be fit assuming a normal distribution for the population of the amyloids of various kinetic stabilities. We propose that the mean and the standard deviation of the normal distribution provide quantitative estimates of mean kinetic stability and heterogeneity, respectively, of the amyloids in a certain preparation.
Collapse
Affiliation(s)
- Timir Baran Sil
- Tata Institute of Fundamental Research, Serilingampally, Hyderabad, India
| | - Bankanidhi Sahoo
- Tata Institute of Fundamental Research, Serilingampally, Hyderabad, India
| | | | - Kanchan Garai
- Tata Institute of Fundamental Research, Serilingampally, Hyderabad, India.
| |
Collapse
|
6
|
Yan M, Wang X. Study on the kinetic self-assembly of type I collagen from tilapia (Oreochromis niloticus) skin using the fluorescence probe thioflavin T. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 203:342-347. [PMID: 29883960 DOI: 10.1016/j.saa.2018.05.083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 05/18/2018] [Accepted: 05/26/2018] [Indexed: 06/08/2023]
Abstract
The kinetic self-assembly of type I collagen from tilapia (Oreochromis niloticus) skin was characterized by the fluorescence method based on thioflavin T (ThT). The fluorescence probe could bind to the active monomeric collagen with a higher ordered degree of molecule, which displayed the pH and ionic strength dependence, the binding constant higher at neutral pH and proportional to the NaCl concentration. Compared to the turbidity method, ThT was more suitable to characterize the nucleation phase of collagen self-assembly. The nucleus size was determined through the ThT fluorescence and linear-polymerization model. At various pH and ionic strength, the nucleus size was nearly identical, either one or two monomers, demonstrating that one or two active monomeric collagen formed into the nucleus and different pH and ionic strength didn't alter the self-assembly mechanism of collagen. This approach was beneficial to advance the understanding of the kinetic self-assembly of the fish-sourced collagen in vitro.
Collapse
Affiliation(s)
- Mingyan Yan
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Xinping Wang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| |
Collapse
|
7
|
Impact of Residual Impurities and Contaminants on Protein Stability. J Pharm Sci 2014; 103:1315-30. [DOI: 10.1002/jps.23931] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/17/2014] [Accepted: 02/18/2014] [Indexed: 02/03/2023]
|
8
|
Sabareesan AT, Udgaonkar JB. Amyloid Fibril Formation by the Chain B Subunit of Monellin Occurs by a Nucleation-Dependent Polymerization Mechanism. Biochemistry 2014; 53:1206-17. [DOI: 10.1021/bi401467p] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- A. T. Sabareesan
- National Centre for Biological
Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Jayant B. Udgaonkar
- National Centre for Biological
Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| |
Collapse
|
9
|
Borgia MB, Nickson AA, Clarke J, Hounslow MJ. A mechanistic model for amorphous protein aggregation of immunoglobulin-like domains. J Am Chem Soc 2013; 135:6456-64. [PMID: 23510407 PMCID: PMC3759167 DOI: 10.1021/ja308852b] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein aggregation is associated with many debilitating diseases including Alzheimer's, Parkinson's, and light-chain amyloidosis (AL). Additionally, such aggregation is a major problem in an industrial setting where antibody therapeutics often require high local concentrations of protein domains to be stable for substantial periods of time. However, despite a plethora of research in this field, dating back over 50 years, there is still no consensus on the mechanistic basis for protein aggregation. Here we use experimental data to derive a mechanistic model that well describes the aggregation of Titin I27, an immunoglobulin-like domain. Importantly, we find that models that are suitable for nucleated fibril formation do not fit our aggregation data. Instead, we show that aggregation proceeds via the addition of activated dimers, and that the rate of aggregation is dependent on the surface area of the aggregate. Moreover, we suggest that the "lag time" seen in these studies is not the time needed for a nucleation event to occur, but rather it is the time taken for the concentration of activated dimers to cross a particular solubility limit. These findings are reminiscent of the Finke-Watzky aggregation mechanism, originally based on nanocluster formation and suggest that amorphous aggregation processes may require mechanistic schemes that are substantially different from those of linear fibril formation.
Collapse
Affiliation(s)
- Madeleine B Borgia
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | | | | | | |
Collapse
|
10
|
Real-time analysis and direct observations of different superoxide dismutase (SOD1) molecules bindings to aggregates in temporal evolution step. Colloids Surf B Biointerfaces 2013; 101:266-71. [DOI: 10.1016/j.colsurfb.2012.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 11/19/2022]
|
11
|
Lapidus LJ. Understanding protein aggregation from the view of monomer dynamics. MOLECULAR BIOSYSTEMS 2012; 9:29-35. [PMID: 23104145 DOI: 10.1039/c2mb25334h] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Much work in recent years has been devoted to understanding the complex process of protein aggregation. This review looks at the earliest stages of aggregation, long before the formation of fibrils that are the hallmark of many aggregation-based diseases, and proposes that the first steps are controlled by the reconfiguration dynamics of the monomer. When reconfiguration is much faster or much slower than bimolecular diffusion, then aggregation is slow, but when they are similar, aggregation is fast. The experimental evidence for this model is reviewed and the prospects for small molecule aggregation inhibitors to prevent disease are discussed.
Collapse
Affiliation(s)
- Lisa J Lapidus
- Department of Physics and Astronomy and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
12
|
Phelps EM, Hall CK. Structural transitions and oligomerization along polyalanine fibril formation pathways from computer simulations. Proteins 2012; 80:1582-97. [PMID: 22411226 PMCID: PMC3348993 DOI: 10.1002/prot.24052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 12/09/2011] [Accepted: 12/16/2011] [Indexed: 11/10/2022]
Abstract
The results of a computer simulation study of the aggregation kinetics of a large system of model peptides with particular focus on the formation of intermediates are presented. Discontinuous molecular dynamic simulations were used in combination with our intermediate-resolution protein model, PRIME, to simulate the aggregation of a system of 192 polyalanine (KA(14) K) peptides at a concentration of 5 mM and a reduced temperature of T* = 0.13 starting from a random configuration and ending in the assembly of a fibrillar structure. The population of various structures, including free monomers, beta sheets, amorphous aggregates, hybrid aggregates, and fibrils, and the transitions between the structures were tracked over the course of 30 independent simulations and averaged together. The aggregation pathway for this system starts with the association of free monomers into small amorphous aggregates that then grow to moderate size by incorporating other free monomers or merging with other small amorphous aggregates. These then rearrange into either small beta sheets or hybrid aggregates formed by association between unstructured chains and beta sheets, both of which grow in size by adding free monomer chains or other small aggregates, one at a time. Fibrillar structures are formed initially either by the stacking of beta sheets, rearrangement of hybrid aggregates or association between beta sheets and hybrid aggregates. They grow by the addition of beta sheets, hybrid aggregates, and other small fibrillar structures. The rearrangement of amorphous aggregates into beta sheets is a critical and necessary step in the fibril formation pathway.
Collapse
Affiliation(s)
- Erin M. Phelps
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Carol K. Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
13
|
Bax ML, Aubry L, Ferreira C, Daudin JD, Gatellier P, Rémond D, Santé-Lhoutellier V. Cooking temperature is a key determinant of in vitro meat protein digestion rate: investigation of underlying mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:2569-2576. [PMID: 22335241 DOI: 10.1021/jf205280y] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The present study aimed to evaluate the digestion rate and nutritional quality of pig muscle proteins in relation to different meat processes (aging, mincing, and cooking). Under our experimental conditions, aging and mincing had little impact on protein digestion. Heat treatments had different temperature-dependent effects on the meat protein digestion rate and degradation potential. At 70 °C, the proteins underwent denaturation that enhanced the speed of pepsin digestion by increasing enzyme accessibility to protein cleavage sites. Above 100 °C, oxidation-related protein aggregation slowed pepsin digestion but improved meat protein overall digestibility. The digestion parameters defined here open new insights on the dynamics governing the in vitro digestion of meat protein. However, the effect of cooking temperature on protein digestion observed in vitro needs to be confirmed in vivo.
Collapse
Affiliation(s)
- Marie-Laure Bax
- INRA, UR370 Qualité des Produits Animaux, F-63122 Saint Genès Champanelle, France
| | | | | | | | | | | | | |
Collapse
|
14
|
A protein aggregation based test for screening of the agents affecting thermostability of proteins. PLoS One 2011; 6:e22154. [PMID: 21760963 PMCID: PMC3132324 DOI: 10.1371/journal.pone.0022154] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 06/19/2011] [Indexed: 11/30/2022] Open
Abstract
To search for agents affecting thermal stability of proteins, a test based on the registration of protein aggregation in the regime of heating with a constant rate was used. The initial parts of the dependences of the light scattering intensity (I) on temperature (T) were analyzed using the following empiric equation: I = Kagg(T−T0)2, where Kagg is the parameter characterizing the initial rate of aggregation and T0 is a temperature at which the initial increase in the light scattering intensity is registered. The aggregation data are interpreted in the frame of the model assuming the formation of the start aggregates at the initial stages of the aggregation process. Parameter T0 corresponds to the moment of the origination of the start aggregates. The applicability of the proposed approach was demonstrated on the examples of thermal aggregation of glycogen phosphorylase b from rabbit skeletal muscles and bovine liver glutamate dehydrogenase studied in the presence of agents of different chemical nature. The elaborated approach to the study of protein aggregation may be used for rapid identification of small molecules that interact with protein targets.
Collapse
|
15
|
Li Y, Lubchenko V, Vekilov PG. The use of dynamic light scattering and brownian microscopy to characterize protein aggregation. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2011; 82:053106. [PMID: 21639491 DOI: 10.1063/1.3592581] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Dynamic light scattering (DLS) is often used to monitor aggregation in protein solutions. Here, we explore the veracity of the aggregate sizes, size distribution widths, concentrations, and lifetime resulting from DLS. We use as an example a solution of the protein lysozyme in which dense liquid clusters of radius about 100 nm reproducibly exist. We compare the results of DLS to those of brownian microscopy. We show that because of the sixth power dependence of the scattered light intensity on the size of the scatterers, DLS overestimates the mean size of the clusters. The factor of overestimation depends on the shape of the size distribution and is ∼1.6 × in the studied solution. The related underestimate of the cluster concentration is ∼10 ×. The CONTIN algorithm, often employed to process DLS data, may, in some instances, produce non-physical results. We put forth an alternative method to determine the aggregates' sizes, concentrations, and volume fractions. We show that DLS yields a reliable width of the cluster size distribution only if the cluster concentration is above 10(9) cm(-3) and their volume fraction is above 10(-6). DLS yields a lower bound of the cluster lifetime, which may be orders of magnitude lower than the real one.
Collapse
Affiliation(s)
- Ye Li
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA
| | | | | |
Collapse
|
16
|
Understanding protein adsorption phenomena at solid surfaces. Adv Colloid Interface Sci 2011; 162:87-106. [PMID: 21295764 DOI: 10.1016/j.cis.2010.12.007] [Citation(s) in RCA: 1054] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 12/21/2010] [Accepted: 12/28/2010] [Indexed: 11/21/2022]
Abstract
Protein adsorption at solid surfaces plays a key role in many natural processes and has therefore promoted a widespread interest in many research areas. Despite considerable progress in this field there are still widely differing and even contradictive opinions on how to explain the frequently observed phenomena such as structural rearrangements, cooperative adsorption, overshooting adsorption kinetics, or protein aggregation. In this review recent achievements and new perspectives on protein adsorption processes are comprehensively discussed. The main focus is put on commonly postulated mechanistic aspects and their translation into mathematical concepts and model descriptions. Relevant experimental and computational strategies to practically approach the field of protein adsorption mechanisms and their impact on current successes are outlined.
Collapse
|
17
|
Changed dynamics in myofibrillar protein aggregation as a consequence of heating time and temperature. Meat Sci 2010; 85:625-31. [DOI: 10.1016/j.meatsci.2010.03.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 03/14/2010] [Accepted: 03/15/2010] [Indexed: 11/21/2022]
|
18
|
Lim KH, Le YTH, Collver HH, Putnam-Evans C, Kenney JM. Characterization of amyloidogenic intermediate states through a combined use of CD and NMR spectroscopy. Biophys Chem 2010; 151:155-9. [PMID: 20619955 DOI: 10.1016/j.bpc.2010.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 06/10/2010] [Accepted: 06/14/2010] [Indexed: 11/30/2022]
Abstract
Characterization of amyloidogenic intermediate states is of central importance in understanding the molecular mechanism of amyloid formation. In this study, we utilized CD and NMR spectroscopy to investigate secondary structure of the monomeric amyloidogenic intermediate of a beta-structured SH3 domain, which was induced by trifluoroethanol (TFE). The combined biophysical studies showed that the native state SH3 domain is gradually converted to the amyloidogenic intermediate state at TFE concentrations of 20-26% (v/v) and the aggregation-prone state contains substantial amount of the beta-sheet conformation ( approximately 30%) with disordered (54%) and some helical characters (16%). Under weaker amyloidogenic conditions of higher TFE concentrations (>40%), the beta-sheet structures were gradually changed to helical conformations and the relative content of the helical and beta-sheet conformations was highly correlated with the aggregation propensity of the SH3 domain. This indicates that the beta-sheet characters of the amyloidogenic states may be critical to the effective amyloid formation.
Collapse
Affiliation(s)
- Kwang Hun Lim
- Department of Chemistry, East Carolina University, Greenville, NC 27858, United States.
| | | | | | | | | |
Collapse
|
19
|
Morel B, Varela L, Conejero-Lara F. The Thermodynamic Stability of Amyloid Fibrils Studied by Differential Scanning Calorimetry. J Phys Chem B 2010; 114:4010-9. [DOI: 10.1021/jp9102993] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bertrand Morel
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Lorena Varela
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Francisco Conejero-Lara
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
20
|
Xu X, Didio DM, Leister KJ, Ghose S. Disaggregation of high-molecular weight species during downstream processing to recover functional monomer. Biotechnol Prog 2009; 26:717-26. [DOI: 10.1002/btpr.373] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Bernacki JP, Murphy RM. Model discrimination and mechanistic interpretation of kinetic data in protein aggregation studies. Biophys J 2009; 96:2871-87. [PMID: 19348769 DOI: 10.1016/j.bpj.2008.12.3903] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 12/01/2008] [Accepted: 12/08/2008] [Indexed: 12/11/2022] Open
Abstract
Given the importance of protein aggregation in amyloid diseases and in the manufacture of protein pharmaceuticals, there has been increased interest in measuring and modeling the kinetics of protein aggregation. Several groups have analyzed aggregation data quantitatively, typically measuring aggregation kinetics by following the loss of protein monomer over time and invoking a nucleated growth mechanism. Such analysis has led to mechanistic conclusions about the size and nature of the nucleus, the aggregation pathway, and/or the physicochemical properties of aggregation-prone proteins. We have examined some of the difficulties that arise when extracting mechanistic meaning from monomer-loss kinetic data. Using literature data on the aggregation of polyglutamine, a mutant beta-clam protein, and protein L, we determined parameter values for 18 different kinetic models. We developed a statistical model discrimination method to analyze protein aggregation data in light of competing mechanisms; a key feature of the method is that it penalizes overparameterization. We show that, for typical monomer-loss kinetic data, multiple models provide equivalent fits, making mechanistic determination impossible. We also define the type and quality of experimental data needed to make more definitive conclusions about the mechanism of aggregation. Specifically, we demonstrate how direct measurement of fibril size provides robust discrimination.
Collapse
Affiliation(s)
- Joseph P Bernacki
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin, USA
| | | |
Collapse
|
22
|
Weaver TM, Hocking JM, Bailey LJ, Wawrzyn GT, Howard DR, Sikkink LA, Ramirez-Alvarado M, Thompson JR. Structural and functional studies of truncated hemolysin A from Proteus mirabilis. J Biol Chem 2009; 284:22297-22309. [PMID: 19494116 DOI: 10.1074/jbc.m109.014431] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In this study we analyzed the structure and function of a truncated form of hemolysin A (HpmA265) from Proteus mirabilis using a series of functional and structural studies. Hemolysin A belongs to the two-partner secretion pathway. The two-partner secretion pathway has been identified as the most common protein secretion pathway among Gram-negative bacteria. Currently, the mechanism of action for the two-partner hemolysin members is not fully understood. In this study, hemolysis experiments revealed a unidirectional, cooperative, biphasic activity profile after full-length, inactive hemolysin A was seeded with truncated hemolysin A. We also solved the first x-ray structure of a TpsA hemolysin. The truncated hemolysin A formed a right-handed parallel beta-helix with three adjoining segments of anti-parallel beta-sheet. A CXXC disulfide bond, four buried solvent molecules, and a carboxyamide ladder were all located at the third complete beta-helix coil. Replacement of the CXXC motif led to decreased activity and stability according to hemolysis and CD studies. Furthermore, the crystal structure revealed a sterically compatible, dry dimeric interface formed via anti-parallel beta-sheet interactions between neighboring beta-helix monomers. Laser scanning confocal microscopy further supported the unidirectional interconversion of full-length hemolysin A. From these results, a model has been proposed, where cooperative, beta-strand interactions between HpmA265 and neighboring full-length hemolysin A molecules, facilitated in part by the highly conserved CXXC pattern, account for the template-assisted hemolysis.
Collapse
Affiliation(s)
- Todd M Weaver
- Departments of Chemistry, La Crosse, Wisconsin 54601
| | | | | | | | - David R Howard
- Biology, University Wisconsin-La Crosse, La Crosse, Wisconsin 54601
| | - Laura A Sikkink
- the Departments of Biochemistry and Molecular Biology, Rochester, Minnesota 55905
| | | | - James R Thompson
- Physiology and Biomedical Imaging, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905
| |
Collapse
|
23
|
Fawzi NL, Yap EH, Okabe Y, Kohlstedt KL, Brown SP, Head-Gordon T. Contrasting disease and nondisease protein aggregation by molecular simulation. Acc Chem Res 2008; 41:1037-47. [PMID: 18646868 PMCID: PMC2895938 DOI: 10.1021/ar800062k] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[Figurre: see text]. Protein aggregation can be defined as the sacrifice of stabilizing intrachain contacts of the functional state that are replaced with interchain contacts to form non-functional states. The resulting aggregate morphologies range from amorphous structures without long-range order typical of nondisease proteins involved in inclusion bodies to highly structured fibril assemblies typical of amyloid disease proteins. In this Account, we describe the development and application of computational models for the investigation of nondisease and disease protein aggregation as illustrated for the proteins L and G and the Alzheimer's Abeta systems. In each case, we validate the models against relevant experimental observables and then expand on the experimental window to better elucidate the link between molecular properties and aggregation outcomes. Our studies show that each class of protein exhibits distinct aggregation mechanisms that are dependent on protein sequence, protein concentration, and solution conditions. Nondisease proteins can have native structural elements in the denatured state ensemble or rapidly form early folding intermediates, which offers avenues of protection against aggregation even at relatively high concentrations. The possibility that early folding intermediates may be evolutionarily selected for their protective role against unwanted aggregation could be a useful strategy for reengineering sequences to slow aggregation and increase folding yield in industrial protein production. The observed oligomeric aggregates that we see for nondisease proteins L and G may represent the nuclei for larger aggregates, not just for large amorphous inclusion bodies, but potentially as the seeds of ordered fibrillar aggregates, since most nondisease proteins can form amyloid fibrils under conditions that destabilize the native state. By contrast, amyloidogenic protein sequences such as Abeta 1-40,42 and the familial Alzheimer's disease (FAD) mutants favor aggregation into ordered fibrils once the free-energy barrier for forming a critical nucleus is crossed. However, the structural characteristics and oligomer size of the soluble nucleation species have yet to be determined experimentally for any disease peptide sequence, and the molecular mechanism of polymerization that eventually delineates a mature fibril is unknown. This is in part due to the limited experimental access to very low peptide concentrations that are required to characterize these early aggregation events, providing an opportunity for theoretical studies to bridge the gap between the monomer and fibril end points and to develop testable hypotheses. Our model shows that Abeta 1-40 requires as few as 6-10 monomer chains (depending on sequence) to begin manifesting the cross-beta order that is a signature of formation of amyloid filaments or fibrils assessed in dye-binding kinetic assays. The richness of the oligomeric structures and viable filament and fibril polymorphs that we observe may offer structural clues to disease virulence variations that are seen for the WT and hereditary mutants.
Collapse
Affiliation(s)
- Nicolas Lux Fawzi
- UCSF/UCB Joint Graduate Group in Bioengineering, Berkeley, California 94720
| | - Eng-Hui Yap
- UCSF/UCB Joint Graduate Group in Bioengineering, Berkeley, California 94720
| | - Yuka Okabe
- Department of Bioengineering, University of California, Berkeley, California 94720
| | - Kevin L. Kohlstedt
- Department of Chemical and Biological Engineering, Northwestern University Evanston, Illinois 60208
| | - Scott P. Brown
- Abbott Laboratories, 1401 Sheridan Road, North Chicago, Illinois 60064-400
| | - Teresa Head-Gordon
- UCSF/UCB Joint Graduate Group in Bioengineering, Berkeley, California 94720
- Department of Bioengineering, University of California, Berkeley, California 94720
| |
Collapse
|
24
|
Blanch H. The kinetics of aggregation of poly-glutamic acid based polypeptides. Biophys Chem 2008; 136:74-86. [PMID: 18538463 PMCID: PMC2518206 DOI: 10.1016/j.bpc.2008.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 04/21/2008] [Accepted: 04/21/2008] [Indexed: 11/30/2022]
Abstract
The aggregation of two negatively-charged polypeptides, poly-L-glutamic acid (PE) and a copolymer of poly-glutamic acid and poly-alanine (PEA), has been studied at different peptide and salt concentrations and solution pH conditions. The kinetics of aggregation were based on Thioflavin T (ThT) fluorescence measurements. The observed lag phase shortened and the aggregation was faster as the pH approached the polypeptides' isoelectric points. While the initial polypeptide structures of PE and PEA appeared identical as determined from circular dichroism spectroscopy, the final aggregate morphology differed; PE assumed large twisted lamellar structures and the PEA formed typical amyloid-like fibrils, although both contained extensive beta-sheet structure. Differences in aggregation behavior were observed for the two polypeptides as a function of salt concentration; aggregation progressed more slowly for PE and more quickly for PEA with increasing salt concentration. Several models of aggregation kinetics were fit to the data. No model yielded consistent rate constants or a critical nucleus size. A modified nucleated polymerization model was developed based on that of Powers and Powers [E.T. Powers, D.L. Powers, The kinetics of nucleated polymerizations at high concentrations: Amyloid fibril formation near and above the "supercritical concentration", Biophys. J. 91 (2006) 122-132], which incorporated the ability of oligomeric species to interact. This provided a best fit to the experimental data.
Collapse
Affiliation(s)
- Harvey Blanch
- Department of Chemical Engineering, University of California Berkeley, Berkeley, CA 94720, Phone – 510-642-1387, Fax – 510-643-1228, Email –
| |
Collapse
|
25
|
Hawe A, Sutter M, Jiskoot W. Extrinsic fluorescent dyes as tools for protein characterization. Pharm Res 2008; 25:1487-99. [PMID: 18172579 PMCID: PMC2440933 DOI: 10.1007/s11095-007-9516-9] [Citation(s) in RCA: 906] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Accepted: 12/05/2007] [Indexed: 11/16/2022]
Abstract
Noncovalent, extrinsic fluorescent dyes are applied in various fields of protein analysis, e.g. to characterize folding intermediates, measure surface hydrophobicity, and detect aggregation or fibrillation. The main underlying mechanisms, which explain the fluorescence properties of many extrinsic dyes, are solvent relaxation processes and (twisted) intramolecular charge transfer reactions, which are affected by the environment and by interactions of the dyes with proteins. In recent time, the use of extrinsic fluorescent dyes such as ANS, Bis-ANS, Nile Red, Thioflavin T and others has increased, because of their versatility, sensitivity and suitability for high-throughput screening. The intention of this review is to give an overview of available extrinsic dyes, explain their spectral properties, and show illustrative examples of their various applications in protein characterization.
Collapse
Affiliation(s)
- Andrea Hawe
- Division of Drug Delivery Technology, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Marc Sutter
- Division of Drug Delivery Technology, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
- Novartis Pharma AG, WSJ-316.4.14, CH-4056 Basel, Switzerland
| | - Wim Jiskoot
- Division of Drug Delivery Technology, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
26
|
Nagarajan S, Ramalingam K, Neelakanta Reddy P, Cereghetti DM, Padma Malar EJ, Rajadas J. Lipid-induced conformational transition of the amyloid core fragment Abeta(28-35) and its A30G and A30I mutants. FEBS J 2008; 275:2415-27. [PMID: 18422968 DOI: 10.1111/j.1742-4658.2008.06378.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The interaction of the beta-amyloid peptide (Abeta) with neuronal membranes could play a key role in the pathogenesis of Alzheimer's disease. Recent studies have focused on the interactions of Abeta oligomers to explain the neuronal toxicity accompanying Alzheimer's disease. In our study, we have investigated the role of lipid interactions with soluble Abeta(28-35) (wild-type) and its mutants A30G and A30I in their aggregation and conformational preferences. CD and Trp fluorescence spectroscopic studies indicated that, immediately on dissolution, these peptides adopted a random coil structure. Upon addition of negatively charged 1,2-dipalmitoyl-syn-glycero-3-phospho-rac-(glycerol) sodium salt (PG) lipid, the wild-type and A30I mutant underwent reorganization into a predominant beta-sheet structure. However, no conformational changes were observed in the A30G mutant on interaction with PG. In contrast, the presence of zwitterionic 1,2-dipalmitoyl-syn-glycero-3-phosphatidylcholine (PC) lipid had no effect on the conformation of these three peptides. These observations were also confirmed with atomic force microscopy and the thioflavin-T assay. In the presence of PG vesicles, both the wild-type and A30I mutant formed fibrillar structures within 2 days of incubation in NaCl/P(i), but not in their absence. Again, no oligomerization was observed with PC vesicles. The Trp studies also revealed that both ends of the three peptides are not buried deep in the vesicle membrane. Furthermore, fluorescence spectroscopy using the environment-sensitive probe 1,6-diphenyl-1,3,5-hexatriene showed an increase in the membrane fluidity upon exposure of the vesicles to the peptides. The latter effect may result from the lipid head group interactions with the peptides. Fluorescence resonance energy transfer experiments revealed that these peptides undergo a random coil-to-sheet conversion in solution on aging and that this process is accelerated by negatively charged lipid vesicles. These results indicate that aggregation depends on hydrophobicity and propensity to form beta-sheets of the amyloid peptide, and thus offer new insights into the mechanism of amyloid neurodegenerative disease.
Collapse
Affiliation(s)
- Sureshbabu Nagarajan
- Bio-Organic and Neurochemistry Laboratory, Central Leather Research Institute, Adyar, Chennai, India
| | | | | | | | | | | |
Collapse
|