1
|
Buchwald P. Quantification of signal amplification for receptors: the K d/EC 50 ratio of full agonists as a gain parameter. Front Pharmacol 2025; 16:1541872. [PMID: 40264679 PMCID: PMC12011844 DOI: 10.3389/fphar.2025.1541872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/10/2025] [Indexed: 04/24/2025] Open
Abstract
Concentration-response relationships connecting the concentration of ligands to the responses they produce are central to pharmacology in general and form the core of quantitative pharmacology. While typically they can be well-described by hyperbolic functions (sigmoid on commonly used semi-log scales) and characterized by half-maximal concentrations values (EC50), their connection to receptor occupancy, characterized in a similar manner by the equilibrium dissociation constant K d, can be complex due to the intermixing of the effects from occupancy-induced activation with those from partial agonism, constitutive activity, and pathway-specific signal amplification. Here, it is proposed that, as long as both occupancy and response follow such typical concentration-dependencies, signal amplification can be quantified using the gain parameter g K = κ = K d/EC50 measured for full agonists. This is similar to the gain parameter used in electronics (e.g., g V = V out/V in for voltage). On customarily used semi-log representations, log g K corresponds to the horizontal shift between the response and occupancy curves, logK d-logEC50, the presence of which (i.e., K d > EC50) is generally considered as evidence for the existence of "receptor reserve" or "spare receptors". The latter is a misnomer that should be avoided since even if there are excess receptors, there is no special pool of receptors "not required for ordinary use" as spare would imply. For partial agonists, the κ = K d/EC50 shift is smaller than for full agonists as not all occupied receptors are active. The g K gain parameter (full agonist K d/EC50) corresponds to the γ gain parameter of the SABRE receptor model, which includes parameters for Signal Amplification (γ), Binding affinity (K d), and Receptor-activation Efficacy (ε); for partial agonists (ε < 1), SABRE predicts a corresponding shift of κ = εγ-ε+1.
Collapse
Affiliation(s)
- Peter Buchwald
- Department of Molecular and Cellular Pharmacology, Miami, FL, United States
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
2
|
Rajasekaran R, Chang CC, Weix EWZ, Galateo TM, Coyle SM. A programmable reaction-diffusion system for spatiotemporal cell signaling circuit design. Cell 2024; 187:345-359.e16. [PMID: 38181787 PMCID: PMC10842744 DOI: 10.1016/j.cell.2023.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/14/2023] [Accepted: 12/04/2023] [Indexed: 01/07/2024]
Abstract
Cells self-organize molecules in space and time to generate complex behaviors, but we lack synthetic strategies for engineering spatiotemporal signaling. We present a programmable reaction-diffusion platform for designing protein oscillations, patterns, and circuits in mammalian cells using two bacterial proteins, MinD and MinE (MinDE). MinDE circuits act like "single-cell radios," emitting frequency-barcoded fluorescence signals that can be spectrally isolated and analyzed using digital signal processing tools. We define how to genetically program these signals and connect their spatiotemporal dynamics to cell biology using engineerable protein-protein interactions. This enabled us to construct sensitive reporter circuits that broadcast endogenous cell signaling dynamics on a frequency-barcoded imaging channel and to build control signal circuits that synthetically pattern activities in the cell, such as protein condensate assembly and actin filamentation. Our work establishes a paradigm for visualizing, probing, and engineering cellular activities at length and timescales critical for biological function.
Collapse
Affiliation(s)
- Rohith Rajasekaran
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Integrated Program in Biochemistry Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Chih-Chia Chang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Elliott W Z Weix
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Thomas M Galateo
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Scott M Coyle
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
3
|
Jernigan DA, Hart MC, Dodd KK, Jameson S, Farney T. Induced Native Phage Therapy for the Treatment of Lyme Disease and Relapsing Fever: A Retrospective Review of First 14 Months in One Clinic. Cureus 2021; 13:e20014. [PMID: 34873551 PMCID: PMC8636187 DOI: 10.7759/cureus.20014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 11/26/2022] Open
Abstract
The overall failure rate of standard therapeutic options for late/chronic/persistent borreliosis emphasizes the need for novel therapeutic strategies. In this report, we are presenting a novel therapeutic option based on a new technology, Induced Native Phage Therapy (INPT; PhagenCorp, LLC, Sarasota, FL), and its ability to facilitate the elimination of infection more rapidly, efficiently, and with less harm to the patient than conventional treatments. Borrelia species in the environment are themselves always infected by their own type of Borrelia bacteriophages. Both the Borrelia spirochete and the Borrelia bacteriophages are transmitted into humans via the bite of a vector, such as ticks. The Borrelia bacteriophages (phages) are called native phages in that they coexist naturally within the human body, and only infect the specific bacteria host population. Native phages persist in humans only as long as there are host bacteria of the correct type to continue replicating more phages. The purposeful manipulation of native phages to kill their host bacteria is the basis of INPT. INPT is a patent-pending technology that uses a proprietary adjunctive assay called Biospectral Emission Sequencing to identify and isolate the specific complex electromagnetic signatures necessary to induce the native phages to epigenetically revert from their normal quiescent, lysogenic activity to virulent, lytic activity, thereby killing their host bacteria. The strategic subtle, low-frequency/low-energy signatures are imprinted into a proprietary oral formula, Inducen-LD, which serves as a carrier to introduce the signals therapeutically into the body. As a proof-of-concept method validation, a total of 26 patients with post-treatment (antibiotic) Lyme disease syndrome, who initially were found upon Phelix Borrelia-phage testing (R.E.D. Laboratories, Belgium) to have one or more Borrelia species, were submitted to INPT treatment. A total of 20 patients (77%) were found to be negative after two weeks of the total program of care. Six patients who remained positive after the initial therapy received an extended INPT treatment and were retested. Four were subsequently found to be negative for one or more of their previously diagnosed Borrelia strains. Thus a total of 24 out of 26 (92%) patients were successfully treated with INPT. Mild to substantial clinical improvements were reported by all participants without noticeable adverse reactions to the INPT treatments. We have demonstrated a possible mechanism in which native bacteriophages can be induced to epigenetically switch from lysogenic to lytic actions, thereby eliminating the targeted bacteria efficiently, with little to no harm to tissues or the microbiome.
Collapse
Affiliation(s)
- David A Jernigan
- Biological Medicine, Biologix Center for Optimum Health, Franklin, USA
| | - Martin C Hart
- Biological Medicine, Biologix Center for Optimum Health, Franklin, USA
| | - Keeley K Dodd
- Research and Development, PhagenCorp, LLC, Sarasota, USA
| | - Samuel Jameson
- Biological Medicine, Biologix Center for Optimum Health, Franklin, USA
| | - Todd Farney
- Biological Medicine, Biologix Center for Optimum Health, Franklin, USA
| |
Collapse
|
4
|
Grubelnik V, Markovič R, Lipovšek S, Leitinger G, Gosak M, Dolenšek J, Valladolid-Acebes I, Berggren PO, Stožer A, Perc M, Marhl M. Modelling of dysregulated glucagon secretion in type 2 diabetes by considering mitochondrial alterations in pancreatic α-cells. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191171. [PMID: 32218947 PMCID: PMC7029933 DOI: 10.1098/rsos.191171] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/16/2019] [Indexed: 05/15/2023]
Abstract
Type 2 diabetes mellitus (T2DM) has been associated with insulin resistance and the failure of β-cells to produce and secrete enough insulin as the disease progresses. However, clinical treatments based solely on insulin secretion and action have had limited success. The focus is therefore shifting towards α-cells, in particular to the dysregulated secretion of glucagon. Our qualitative electron-microscopy-based observations gave an indication that mitochondria in α-cells are altered in Western-diet-induced T2DM. In particular, α-cells extracted from mouse pancreatic tissue showed a lower density of mitochondria, a less expressed matrix and a lower number of cristae. These deformities in mitochondrial ultrastructure imply a decreased efficiency in mitochondrial ATP production, which prompted us to theoretically explore and clarify one of the most challenging problems associated with T2DM, namely the lack of glucagon secretion in hypoglycaemia and its oversecretion at high blood glucose concentrations. To this purpose, we constructed a novel computational model that links α-cell metabolism with their electrical activity and glucagon secretion. Our results show that defective mitochondrial metabolism in α-cells can account for dysregulated glucagon secretion in T2DM, thus improving our understanding of T2DM pathophysiology and indicating possibilities for new clinical treatments.
Collapse
Affiliation(s)
- Vladimir Grubelnik
- Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia
| | - Rene Markovič
- Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
| | - Saška Lipovšek
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Gerd Leitinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Marko Gosak
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Jurij Dolenšek
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Ismael Valladolid-Acebes
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, 171 76 Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, 171 76 Stockholm, Sweden
| | - Andraž Stožer
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Complexity Science Hub Vienna, 1080 Vienna, Austria
- Authors for correspondence: Matjač Perc e-mail:
| | - Marko Marhl
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Education, University of Maribor, 2000 Maribor, Slovenia
- Authors for correspondence: Marko Marhl e-mail:
| |
Collapse
|
5
|
Grubelnik V, Markovič R, Lipovšek S, Leitinger G, Gosak M, Dolenšek J, Valladolid-Acebes I, Berggren PO, Stožer A, Perc M, Marhl M. Modelling of dysregulated glucagon secretion in type 2 diabetes by considering mitochondrial alterations in pancreatic α-cells. ROYAL SOCIETY OPEN SCIENCE 2020. [PMID: 32218947 DOI: 10.5061/dryad.9n2k1vk] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Type 2 diabetes mellitus (T2DM) has been associated with insulin resistance and the failure of β-cells to produce and secrete enough insulin as the disease progresses. However, clinical treatments based solely on insulin secretion and action have had limited success. The focus is therefore shifting towards α-cells, in particular to the dysregulated secretion of glucagon. Our qualitative electron-microscopy-based observations gave an indication that mitochondria in α-cells are altered in Western-diet-induced T2DM. In particular, α-cells extracted from mouse pancreatic tissue showed a lower density of mitochondria, a less expressed matrix and a lower number of cristae. These deformities in mitochondrial ultrastructure imply a decreased efficiency in mitochondrial ATP production, which prompted us to theoretically explore and clarify one of the most challenging problems associated with T2DM, namely the lack of glucagon secretion in hypoglycaemia and its oversecretion at high blood glucose concentrations. To this purpose, we constructed a novel computational model that links α-cell metabolism with their electrical activity and glucagon secretion. Our results show that defective mitochondrial metabolism in α-cells can account for dysregulated glucagon secretion in T2DM, thus improving our understanding of T2DM pathophysiology and indicating possibilities for new clinical treatments.
Collapse
Affiliation(s)
- Vladimir Grubelnik
- Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia
| | - Rene Markovič
- Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
| | - Saška Lipovšek
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Gerd Leitinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Marko Gosak
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Jurij Dolenšek
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Ismael Valladolid-Acebes
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, 171 76 Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, 171 76 Stockholm, Sweden
| | - Andraž Stožer
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Complexity Science Hub Vienna, 1080 Vienna, Austria
| | - Marko Marhl
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Education, University of Maribor, 2000 Maribor, Slovenia
| |
Collapse
|
6
|
Shin SY, Kim MW, Cho KH, Nguyen LK. Coupled feedback regulation of nuclear factor of activated T-cells (NFAT) modulates activation-induced cell death of T cells. Sci Rep 2019; 9:10637. [PMID: 31337782 PMCID: PMC6650396 DOI: 10.1038/s41598-019-46592-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 05/28/2019] [Indexed: 12/20/2022] Open
Abstract
A properly functioning immune system is vital for an organism’s wellbeing. Immune tolerance is a critical feature of the immune system that allows immune cells to mount effective responses against exogenous pathogens such as viruses and bacteria, while preventing attack to self-tissues. Activation-induced cell death (AICD) in T lymphocytes, in which repeated stimulations of the T-cell receptor (TCR) lead to activation and then apoptosis of T cells, is a major mechanism for T cell homeostasis and helps maintain peripheral immune tolerance. Defects in AICD can lead to development of autoimmune diseases. Despite its importance, the regulatory mechanisms that underlie AICD remain poorly understood, particularly at an integrative network level. Here, we develop a dynamic multi-pathway model of the integrated TCR signalling network and perform model-based analysis to characterize the network-level properties of AICD. Model simulation and analysis show that amplified activation of the transcriptional factor NFAT in response to repeated TCR stimulations, a phenomenon central to AICD, is tightly modulated by a coupled positive-negative feedback mechanism. NFAT amplification is predominantly enabled by a positive feedback self-regulated by NFAT, while opposed by a NFAT-induced negative feedback via Carabin. Furthermore, model analysis predicts an optimal therapeutic window for drugs that help minimize proliferation while maximize AICD of T cells. Overall, our study provides a comprehensive mathematical model of TCR signalling and model-based analysis offers new network-level insights into the regulation of activation-induced cell death in T cells.
Collapse
Affiliation(s)
- Sung-Young Shin
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, 3800, Australia.,Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Min-Wook Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kwang-Hyun Cho
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea. .,Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Lan K Nguyen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, 3800, Australia. .,Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
7
|
Buchwald P. A Receptor Model With Binding Affinity, Activation Efficacy, and Signal Amplification Parameters for Complex Fractional Response Versus Occupancy Data. Front Pharmacol 2019; 10:605. [PMID: 31244653 PMCID: PMC6580154 DOI: 10.3389/fphar.2019.00605] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/14/2019] [Indexed: 12/28/2022] Open
Abstract
In quantitative pharmacology, multi-parameter receptor models are needed to account for the complex nonlinear relationship between fractional occupancy and response that can occur due to the intermixing of the effects of partial receptor activation and post-receptor signal amplification. Here, a general two-state receptor model and corresponding quantitative forms are proposed that unify three distinct processes, each characterized with its own parameter: 1) receptor binding, characterized by Kd, the equilibrium dissociation constant used for binding affinity; 2) receptor activation, characterized by an (intrinsic) efficacy parameter ε; and 3) post-activation signal transduction (amplification), characterized by a gain parameter γ. Constitutive activity is accommodated via an additional εR0 parameter quantifying the activation of the ligand-free receptor. Receptors can be active or inactive in both their ligand-free and ligand-bound states (two-state receptor theory), but ligand binding alters the likelihood of activation (induced fit). Because structural data now confirm that for most receptors in their active conformation, the small-molecule ligand-binding site is buried inside, straightforward binding to the active form (direct conformational selection) is unlikely. The proposed general equation has parameters that are more intuitive and better suited for optimization by nonlinear regression than those of the operational (Black and Leff) or del Castillo–Katz model. The model provides a unified framework for fitting complex data including a) fractional responses that do not match independently measured fractional occupancies, b) responses measured after partial irreversible inactivation of the “receptor reserve” (Furchgott method), c) fractional responses that are different along distinct downstream pathways (biased agonism), and d) responses with constitutive receptor activity. Furthermore, unlike previous models, the present one can be reduced back for special cases of its parameters to consecutively nested simplified forms that can be used on their own when adequate (e.g., εR0 = 0, no constitutive activity; γ = 1: Emax model for partial agonism; ε = 1: Clark equation).
Collapse
Affiliation(s)
- Peter Buchwald
- Department of Molecular and Cellular Pharmacology, Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
8
|
Digital signaling network drives the assembly of the AIM2-ASC inflammasome. Proc Natl Acad Sci U S A 2018; 115:E1963-E1972. [PMID: 29440442 DOI: 10.1073/pnas.1712860115] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The AIM2-ASC inflammasome is a filamentous signaling platform essential for mounting host defense against cytoplasmic dsDNA arising not only from invading pathogens but also from damaged organelles. Currently, the design principles of its underlying signaling network remain poorly understood at the molecular level. We show here that longer dsDNA is more effective in inducing AIM2 assembly, its self-propagation, and downstream ASC polymerization. This observation is related to the increased probability of forming the base of AIM2 filaments, and indicates that the assembly discerns small dsDNA as noise at each signaling step. Filaments assembled by receptor AIM2, downstream ASC, and their joint complex all persist regardless of dsDNA, consequently generating sustained signal amplification and hysteresis. Furthermore, multiple positive feedback loops reinforce the assembly, as AIM2 and ASC filaments accelerate the assembly of nascent AIM2 with or without dsDNA. Together with a quantitative model of the assembly, our results indicate that an ultrasensitive digital circuit drives the assembly of the AIM2-ASC inflammasome.
Collapse
|
9
|
Kulawik A, Engesser R, Ehlting C, Raue A, Albrecht U, Hahn B, Lehmann WD, Gaestel M, Klingmüller U, Häussinger D, Timmer J, Bode JG. IL-1β-induced and p38 MAPK-dependent activation of the mitogen-activated protein kinase-activated protein kinase 2 (MK2) in hepatocytes: Signal transduction with robust and concentration-independent signal amplification. J Biol Chem 2017; 292:6291-6302. [PMID: 28223354 DOI: 10.1074/jbc.m117.775023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Indexed: 12/15/2022] Open
Abstract
The IL-1β induced activation of the p38MAPK/MAPK-activated protein kinase 2 (MK2) pathway in hepatocytes is important for control of the acute phase response and regulation of liver regeneration. Many aspects of the regulatory relevance of this pathway have been investigated in immune cells in the context of inflammation. However, very little is known about concentration-dependent activation kinetics and signal propagation in hepatocytes and the role of MK2. We established a mathematical model for IL-1β-induced activation of the p38MAPK/MK2 pathway in hepatocytes that was calibrated to quantitative data on time- and IL-1β concentration-dependent phosphorylation of p38MAPK and MK2 in primary mouse hepatocytes. This analysis showed that, in hepatocytes, signal transduction from IL-1β via p38MAPK to MK2 is characterized by strong signal amplification. Quantification of p38MAPK and MK2 revealed that, in hepatocytes, at maximum, 11.3% of p38MAPK molecules and 36.5% of MK2 molecules are activated in response to IL-1β. The mathematical model was experimentally validated by employing phosphatase inhibitors and the p38MAPK inhibitor SB203580. Model simulations predicted an IC50 of 1-1.2 μm for SB203580 in hepatocytes. In silico analyses and experimental validation demonstrated that the kinase activity of p38MAPK determines signal amplitude, whereas phosphatase activity affects both signal amplitude and duration. p38MAPK and MK2 concentrations and responsiveness toward IL-1β were quantitatively compared between hepatocytes and macrophages. In macrophages, the absolute p38MAPK and MK2 concentration was significantly higher. Finally, in line with experimental observations, the mathematical model predicted a significantly higher half-maximal effective concentration for IL-1β-induced pathway activation in macrophages compared with hepatocytes, underscoring the importance of cell type-specific differences in pathway regulation.
Collapse
Affiliation(s)
- Andreas Kulawik
- From the Department of Gastroenterology, Hepatology, and Infectious Disease, University Hospital, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Raphael Engesser
- the Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany.,the BIOSS Centre for Biological Signaling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
| | - Christian Ehlting
- From the Department of Gastroenterology, Hepatology, and Infectious Disease, University Hospital, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Andreas Raue
- the Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Ute Albrecht
- From the Department of Gastroenterology, Hepatology, and Infectious Disease, University Hospital, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany
| | | | | | - Matthias Gaestel
- the Institute of Physiological Chemistry, Hannover Medical School, 30625 Hannover, Germany, and
| | - Ursula Klingmüller
- Division of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Dieter Häussinger
- From the Department of Gastroenterology, Hepatology, and Infectious Disease, University Hospital, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Jens Timmer
- the Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany.,the BIOSS Centre for Biological Signaling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
| | - Johannes G Bode
- From the Department of Gastroenterology, Hepatology, and Infectious Disease, University Hospital, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany,
| |
Collapse
|
10
|
Kohrt BA, Jordans MJD, Koirala S, Worthman CM. Designing mental health interventions informed by child development and human biology theory: a social ecology intervention for child soldiers in Nepal. Am J Hum Biol 2015; 27:27-40. [PMID: 25380194 PMCID: PMC5483323 DOI: 10.1002/ajhb.22651] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/10/2014] [Accepted: 10/18/2014] [Indexed: 01/27/2023] Open
Abstract
The anthropological study of human biology, health, and child development provides a model with potential to address the gap in population-wide mental health interventions. Four key concepts from human biology can inform public mental health interventions: life history theory and tradeoffs, redundancy and plurality of pathways, cascades and multiplier effects in biological systems, and proximate feedback systems. A public mental health intervention for former child soldiers in Nepal is used to illustrate the role of these concepts in intervention design and evaluation. Future directions and recommendations for applying human biology theory in pursuit of public mental health interventions are discussed.
Collapse
Affiliation(s)
- Brandon A Kohrt
- Department of Anthropology, Emory University, Atlanta; Transcultural Psychosocial Organization (TPO), Nepal, Kathmandu, Nepal
| | | | | | | |
Collapse
|
11
|
Effect of nonidentical signal phases on signal amplification of two coupled excitable neurons. Neurocomputing 2014. [DOI: 10.1016/j.neucom.2013.06.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Liang X, Zhao L. Phase-disorder-induced firing activity in excitable neuronal networks with attractive and repulsive coupling. Neural Netw 2012; 35:40-5. [PMID: 22954477 DOI: 10.1016/j.neunet.2012.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 08/07/2012] [Accepted: 08/13/2012] [Indexed: 11/25/2022]
Abstract
It has been revealed that the network of excitable neurons via attractive coupling can generate spikes under stimuli of subthreshold signals with disordered phases. In this paper, we explore the firing activity induced by phase disorder in excitable neuronal networks consisting of both attractive and repulsive coupling. By increasing the fraction of repulsive coupling, we find that, in the weak coupling strength case, the firing threshold of phase disorder is increased and the system response to subthreshold signals is decreased, indicating that the effect of inducing neuron firing by phase disorder is weakened with repulsive coupling. Interestingly, in the large coupling strength case, we see an opposite situation, where the coupled neurons show a rather large response to the subthreshold signals even with small phase disorder. The latter case implies that the effect of phase disorder is enhanced by repulsive coupling. A system of two-coupled excitable neurons is used to explain the role of repulsive coupling on phase-disorder-induced firing activity.
Collapse
Affiliation(s)
- Xiaoming Liang
- Institute of Mathematics and Computer Science, University of São Paulo, São Carlos, SP, Brazil.
| | | |
Collapse
|
13
|
On the Information Transmission Ability of Nonlinear Stochastic Dynamic Networks. ENTROPY 2012. [DOI: 10.3390/e14091652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Chen BS, Wu CC. On the calculation of signal transduction ability of signaling transduction pathways in intracellular communication: systematic approach. ACTA ACUST UNITED AC 2012; 28:1604-11. [PMID: 22492637 DOI: 10.1093/bioinformatics/bts159] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
MOTIVATION The major function of signal transduction pathways in cells is to sense signals from the environment and process the information through signaling molecules in order to regulate the activity of transcription factors. On the molecular level, the information transmitted by a small number of signal molecules is amplified in the internal signaling pathway through enzyme catalysis, molecular modification and via the activation or inhibition of interactions. However, the dynamic system behavior of a signaling pathway can be complex and, despite knowledge of the pathway components and interactions, it is still a challenge to interpret the pathways behavior. Therefore, a systematic method is proposed in this study to quantify the signal transduction ability. RESULTS Based on the non-linear signal transduction system, signal transduction ability can be investigated by solving a Hamilton-Jacobi inequality (HJI)-constrained optimization problem. To avoid difficulties associated with solving a complex HJI-constrained optimization problem for signal transduction ability, the Takagi-Sugeno fuzzy model is introduced to approximate the non-linear signal transduction system by interpolating several local linear systems so that the HJI-constrained optimization problem can be replaced by a linear matrix inequality (LMI)-constrained optimization problem. The LMI problem can then be efficiently solved for measuring signal transduction ability. Finally, the signal transduction ability of two important signal transduction pathways was measured by the proposed method and confirmed using experimental data, which is useful for biotechnological and therapeutic application and drug design.
Collapse
Affiliation(s)
- Bor-Sen Chen
- Department of Electrical Engineering, Laboratory of Control and Systems Biology, National Tsing Hua University, Hsinchu, Taiwan, ROC.
| | | |
Collapse
|
15
|
Biochemical frequency control by synchronisation of coupled repressilators: an in silico study of modules for circadian clock systems. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2011; 2011:262189. [PMID: 22046179 PMCID: PMC3199195 DOI: 10.1155/2011/262189] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 07/06/2011] [Accepted: 07/06/2011] [Indexed: 11/17/2022]
Abstract
Exploration of chronobiological systems emerges as a growing research field within bioinformatics focusing on various applications in medicine, agriculture, and material sciences. From a systems biological perspective, the question arises whether biological control systems for regulation of oscillatory signals and their technical counterparts utilise similar mechanisms. If so, modelling approaches and parameterisation adopted from building blocks can help to identify general components for frequency control in circadian clocks along with gaining insight into mechanisms of clock synchronisation to external stimuli like the daily rhythm of sunlight and darkness. Phase-locked loops could be an interesting candidate in this context. Both, biology and engineering, can benefit from a unified view resulting from systems modularisation. In a first experimental study, we analyse a model of coupled repressilators. We demonstrate its ability to synchronise clock signals in a monofrequential manner. Several oscillators initially deviate in phase difference and frequency with respect to explicit reaction and diffusion rates. Accordingly, the duration of the synchronisation process depends on dedicated reaction and diffusion parameters whose settings still lack to be sufficiently captured analytically.
Collapse
|
16
|
Li Y. A generic model for open signaling cascades with forward activation. J Math Biol 2011; 65:709-42. [PMID: 22002682 DOI: 10.1007/s00285-011-0480-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Revised: 09/27/2011] [Indexed: 11/25/2022]
Abstract
In this work, cellular signal transduction in an open cascade with forward activation was studied. By proposing a generic model which captures the common features of major existing models in the literature, it is showed how signaling profile changes during the propagation along the cascade. In particular, a typical OFF-ON-OFF switch-like transient behavior with prolonged temporary ON state is revealed, where OFF and ON represent the states of low level and high level concentrations, respectively. Analytically this phenomenon is closely related to uniform convergence of the active protein concentration of downstream cycles in the finite time range and its failure in the entire time domain. Consequently a classification of open signaling cascade which can sustain OFF-ON-OFF behavior in the far downstream cycles is accessible. Relevant biological issues, such as delayed activation of downstream reaction cycles, signal amplification and prolonged signal duration, to the generic model is discussed.
Collapse
Affiliation(s)
- Yongfeng Li
- Division of Space Life Sciences, Universities Space Research Association, 3600 Bay Area Blvd, Houston, TX 77058, USA.
| |
Collapse
|
17
|
Platt CC, Nicholls C, Brookes C, Wood I. Classification of cell signalling in tissue development. CELL COMMUNICATION & ADHESION 2011; 18:9-17. [PMID: 21651343 DOI: 10.3109/15419061.2011.586755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The traditional classification of signalling in biological systems is insufficient and outdated and novel efforts must take into account advances in systems theory, information theory and linguistics. We present some of the classification systems currently used both within and outside of the biological field and discuss some specific aspects of the nature of signalling in tissue development. The analytical methods used in understanding non-biological networks provide a valuable vocabulary, which requires integration and a system of classification to further facilitate development.
Collapse
|
18
|
Theoretical study for regulatory property of scaffold protein on MAPK cascade: A qualitative modeling. Biophys Chem 2010; 147:130-9. [DOI: 10.1016/j.bpc.2010.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 01/17/2010] [Accepted: 01/17/2010] [Indexed: 01/10/2023]
|