1
|
Mondal A, Dolui S, Dhabal S, Kundu S, Das L, Bhattacharjee A, Maiti NC. Structure specific neuro-toxicity of α-synuclein oligomer. Int J Biol Macromol 2023; 253:126683. [PMID: 37666396 DOI: 10.1016/j.ijbiomac.2023.126683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Parkinson's disease (PD) is linked to α-synuclein (aS) aggregation and deposition of amyloid in the substantia nigra region of the brain tissues. In the current investigation we produced two distinct classes of aS oligomer of differed protein conformation, stability and compared their toxic nature to cultured neuronal cells. Lyophilized oligomer (LO) was produced in storage of aS at-20 °C for 7 days and it was enriched with loosely hold molten globule like structure with residues having preferences for α-helical conformational space. The size of the oligomer was 4-5.5 nm under AFM. This kind of oligomer exhibited potential toxicity towards neuronal cell lines and did not transform into compact β-sheet rich amyloid fiber even after incubation at 37 °C for several days. Formation of another type of oligomer was often observed in the lag phase of aS fibrillation that often occurred at an elevated temperature (37 °C). This kind of heat induced oligomer (IO) was more hydrophobic and relatively less toxic to neuronal cells compared to lyophilized oligomer (LO). Importantly, initiation of hydrophobic zipping of aS caused the transformation of IO into thermodynamically stable β-sheet rich amyloid fibril. On the other hand, the presence of molten globule like conformation in LO, rendered greater toxicity to cultured neuronal cells.
Collapse
Affiliation(s)
- Animesh Mondal
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S.C. Mullick Road, Kolkata 700032, India; Department of Zoology, Government General Degree College-Mangalkote, Purba Bardhaman, West Bengal 713132, India.
| | - Sandip Dolui
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Sukhamoy Dhabal
- Department of Biotechnology, National Institute of Technology-Durgapur, Mahatma Gandhi Rd, A-Zone, Durgapur, West Bengal 713209, India
| | - Shubham Kundu
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Lopamudra Das
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Ashish Bhattacharjee
- Department of Biotechnology, National Institute of Technology-Durgapur, Mahatma Gandhi Rd, A-Zone, Durgapur, West Bengal 713209, India
| | - Nakul C Maiti
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S.C. Mullick Road, Kolkata 700032, India.
| |
Collapse
|
2
|
Zhou X, Sinkjær AW, Zhang M, Pinholt HD, Nielsen HM, Hatzakis NS, van de Weert M, Foderà V. Heterogeneous and Surface-Catalyzed Amyloid Aggregation Monitored by Spatially Resolved Fluorescence and Single Molecule Microscopy. J Phys Chem Lett 2023; 14:912-919. [PMID: 36669144 DOI: 10.1021/acs.jpclett.2c03400] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Amyloid aggregation is associated with many diseases and may also occur in therapeutic protein formulations. Addition of co-solutes is a key strategy to modulate the stability of proteins in pharmaceutical formulations and select inhibitors for drug design in the context of diseases. However, the heterogeneous nature of this multicomponent system in terms of structures and mechanisms poses a number of challenges for the analysis of the chemical reaction. Using insulin as protein system and polysorbate 80 as co-solute, we combine a spatially resolved fluorescence approach with single molecule microscopy and machine learning methods to kinetically disentangle the different contributions from multiple species within a single aggregation experiment. We link the presence of interfaces to the degree of heterogeneity of the aggregation kinetics and retrieve the rate constants and underlying mechanisms for single aggregation events. Importantly, we report that the mechanism of inhibition of the self-assembly process depends on the details of the growth pathways of otherwise macroscopically identical species. This information can only be accessed by the analysis of single aggregate events, suggesting our method as a general tool for a comprehensive physicochemical characterization of self-assembly reactions.
Collapse
Affiliation(s)
- Xin Zhou
- Drug Delivery and Biophysics of Biopharmaceuticals and Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Anders Wilgaard Sinkjær
- Drug Delivery and Biophysics of Biopharmaceuticals and Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Min Zhang
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Nano-Science Center, University of Copenhagen Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Henrik Dahl Pinholt
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hanne Mørck Nielsen
- Drug Delivery and Biophysics of Biopharmaceuticals and Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Nano-Science Center, University of Copenhagen Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Nikos S Hatzakis
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Nano-Science Center, University of Copenhagen Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Marco van de Weert
- Drug Delivery and Biophysics of Biopharmaceuticals and Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Nano-Science Center, University of Copenhagen Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Vito Foderà
- Drug Delivery and Biophysics of Biopharmaceuticals and Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Nano-Science Center, University of Copenhagen Universitetsparken 5, 2100 Copenhagen, Denmark
| |
Collapse
|
3
|
Mandal P, Molla AR. Solvent Perturbation of Protein Structures - A Review Study with Lectins. Protein Pept Lett 2020; 27:538-550. [PMID: 31682206 DOI: 10.2174/0929866526666191104145511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 01/07/2023]
Abstract
Use of organic molecules as co-solvent with water, the ubiquitous biological solvent, to perturb the structure of proteins is popular in the research area of protein structure and folding. These organic co-solvents are believed to somehow mimic the environment near the cell membrane. Apart from that they induce non-native states which can be present in the protein folding pathway or those states also may be representative of the off pathway structures leading to amyloid formation, responsible for various fatal diseases. In this review, we shall focus on organic co-solvent induced structure perturbation of various members of lectin family. Lectins are excellent model systems for protein folding study because of its wide occurrence, diverse structure and versatile biological functions. Lectins were mainly perturbed by two fluoroalcohols - 2,2,2- trifluoroethanol and 1,1,1,3,3,3-hexafluoroisopropanol whereas glycerol, ethylene glycol and polyethylene glycols were used in some cases. Overall, all native lectins were denatured by alcohols and most of the denatured lectins have predominant helical secondary structure. But characterization of the helical states and the transition pathway for various lectins revealed diverse result.
Collapse
Affiliation(s)
- Pritha Mandal
- Department of Chemistry, Krishnagar Government College, Krishnagar, West Bengal-741101, India
| | - Anisur R Molla
- Department of Chemistry, Bidhannagar College, Salt Lake, Kolkata -700 064, India
| |
Collapse
|
4
|
Disentangling the role of solvent polarity and protein solvation in folding and self-assembly of α-lactalbumin. J Colloid Interface Sci 2020; 561:749-761. [DOI: 10.1016/j.jcis.2019.11.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/29/2019] [Accepted: 11/14/2019] [Indexed: 12/31/2022]
|
5
|
Sen S, Chakraborty M, Goley S, Dasgupta S, DasGupta S. Fibrillar disruption by AC electric field induced oscillation: A case study with human serum albumin. Biophys Chem 2017; 226:23-33. [DOI: 10.1016/j.bpc.2017.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/07/2017] [Accepted: 04/12/2017] [Indexed: 11/25/2022]
|
6
|
Sasidharan S, Hazam PK, Ramakrishnan V. Symmetry-Directed Self-Organization in Peptide Nanoassemblies through Aromatic π-π Interactions. J Phys Chem B 2017; 121:404-411. [PMID: 27935713 DOI: 10.1021/acs.jpcb.6b09474] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Almost all biological systems are assemblies of one or more biomolecules from nano- to macrodimensions. Unlike inorganic molecules, peptide systems attune with the conceptual framework of aggregation models when forming nanoassemblies. Three significant recent theoretical models have indicated that nucleation, end-to-end association, and geometry of growth are determined primarily by the size and electrostatics of the individual basic building blocks. In this study, we tested six model systems, differentially modulating the prominence of three design variables, namely, aromatic π-π interactions, local electrostatics, and overall symmetry of the basic building unit. Our results indicate that the crucial design elements in a peptide-based nanoassembly are (a) a stable extended π-π interaction network, (b) size, and (c) overall symmetry of the basic building blocks. The six model systems represent all of the design variables in the best manner possible, considering the complexity of a biomolecule. The results provide important directives in deciding the morphology and crystallinity of peptide nanoassemblies.
Collapse
Affiliation(s)
- Sajitha Sasidharan
- Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati , Guwahati 781039, India
| | - Prakash Kishore Hazam
- Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati , Guwahati 781039, India
| | - Vibin Ramakrishnan
- Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati , Guwahati 781039, India
| |
Collapse
|
7
|
Santangelo MG, Foderà V, Militello V, Vetri V. Back to the oligomeric state: pH-induced dissolution of concanavalin A amyloid-like fibrils into non-native oligomers. RSC Adv 2016. [DOI: 10.1039/c6ra16690c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Changes in solution pH may result in modifications of energy landscape shape making readily accessible or more favourable native or oligomeric intermediate minima with respect to the fibrillar one.
Collapse
Affiliation(s)
- M. G. Santangelo
- Department of Physics and Chemistry
- University of Palermo
- Palermo
- Italy
| | - V. Foderà
- Section for Biologics
- Department of Pharmacy
- Faculty of Health and Medical Sciences
- University of Copenhagen
- Copenhagen
| | - V. Militello
- Department of Physics and Chemistry
- University of Palermo
- Palermo
- Italy
| | - V. Vetri
- Department of Physics and Chemistry
- University of Palermo
- Palermo
- Italy
- Aten Center
| |
Collapse
|