1
|
Speer SL, Stewart CJ, Sapir L, Harries D, Pielak GJ. Macromolecular Crowding Is More than Hard-Core Repulsions. Annu Rev Biophys 2022; 51:267-300. [PMID: 35239418 DOI: 10.1146/annurev-biophys-091321-071829] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells are crowded, but proteins are almost always studied in dilute aqueous buffer. We review the experimental evidence that crowding affects the equilibrium thermodynamics of protein stability and protein association and discuss the theories employed to explain these observations. In doing so, we highlight differences between synthetic polymers and biologically relevant crowders. Theories based on hard-core interactions predict only crowding-induced entropic stabilization. However, experiment-based efforts conducted under physiologically relevant conditions show that crowding can destabilize proteins and their complexes. Furthermore, quantification of the temperature dependence of crowding effects produced by both large and small cosolutes, including osmolytes, sugars, synthetic polymers, and proteins, reveals enthalpic effects that stabilize or destabilize proteins. Crowding-induced destabilization and the enthalpic component point to the role of chemical interactions between and among the macromolecules, cosolutes, and water. We conclude with suggestions for future studies. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Shannon L Speer
- Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina, USA;
| | - Claire J Stewart
- Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina, USA;
| | - Liel Sapir
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA
| | - Daniel Harries
- Institute of Chemistry and The Fritz Haber Research Center, The Hebrew University, Jerusalem, Israel
| | - Gary J Pielak
- Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina, USA; .,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, North Carolina, USA.,Lineberger Cancer Research Center, University of North Carolina at Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Shimizu S, Matubayasi N. Sorption: A Statistical Thermodynamic Fluctuation Theory. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7380-7391. [PMID: 34124912 PMCID: PMC8280703 DOI: 10.1021/acs.langmuir.1c00742] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/20/2021] [Indexed: 05/19/2023]
Abstract
Can the sorption mechanism be proven by fitting an isotherm model to an experiment? Such a question arises because (i) multiple isotherm models, with different assumptions on sorption mechanisms, often fit an experimental isotherm equally well, (ii) some isotherm models [such as Brunauer-Emmett-Teller (BET) and Guggenheim-Anderson-de Boer (GAB)] fit experimental isotherms that do not satisfy the underlying assumptions of the model, and (iii) some isotherms (such as Oswin and Peleg) are empirical equations that do not have a well-defined basis on sorption mechanisms. To overcome these difficulties, we propose a universal route of elucidating the sorption mechanism directly from an experimental isotherm, without an isotherm model, based on the statistical thermodynamic fluctuation theory. We have shown that how sorbate-sorbate interaction depends on activity is the key to understanding the sorption mechanism. Without assuming adsorption sites and planar layers, an isotherm can be derived, which contains the Langmuir, BET, and GAB models as its special cases. We have constructed a universal approach applicable to adsorption and absorption, solid and liquid sorbents, and vapor and liquid sorbates and demonstrated its efficacy using the humidity sorption isotherm of sucrose from both the solid and liquid sides.
Collapse
Affiliation(s)
- Seishi Shimizu
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Osaka, Japan
| |
Collapse
|
3
|
Shimizu S, Matubayasi N. Fluctuation adsorption theory: quantifying adsorbate-adsorbate interaction and interfacial phase transition from an isotherm. Phys Chem Chem Phys 2020; 22:28304-28316. [PMID: 33295900 DOI: 10.1039/d0cp05122e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
How adsorbate-adsorbate interaction determines the functional shape of an adsorption isotherm is an important and challenging question. Many models for the adsorption isotherm have been proposed to answer this question. However, a successful fitting of an isotherm on its own is insufficient to prove the correctness of the model assumptions. Instead, starting from the principles of statistical thermodynamics, we propose how adsorbate-adsorbate interactions can be quantified from an isotherm. This was made possible by extending the key tools of solution statistical thermodynamics to adsorbates at the interface, namely, the Kirkwood-Buff and McMillan-Mayer theories, as well as their relationship to the thermodynamic phase stability condition. When capillary condensation and interfacial phase transition are absent, adsorbate-adsorbate interactions can be quantified from an isotherm using the Kirkwood-Buff integrals, and virial coefficients can yield multiple-body interaction between adsorbates. Such quantities can be obtained directly from the fitting parameters for the well-known isotherm models (e.g., Langmuir, BET). The size of the adsorbate cluster involved in capillary condensation and interfacial phase transition can also be evaluated from the isotherm, which was demonstrated for the adsorption isotherm of water on activated carbons of varying pore sizes from the literature. Signatures of isotherm classifications by IUPAC have been characterized in terms of multiple-body interactions between adsorbates.
Collapse
Affiliation(s)
- Seishi Shimizu
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | | |
Collapse
|
4
|
Shimizu S, Matubayasi N. Intensive nature of fluctuations: Reconceptualizing Kirkwood-Buff theory via elementary algebra. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Harton K, Shimizu S. Response to the "Comments on 'Statistical thermodynamics of casein aggregation: Effects of salts and water' [Biophys Chem. 247 (2019) 34-42]". Biophys Chem 2019; 256:106267. [PMID: 31629560 DOI: 10.1016/j.bpc.2019.106267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kaja Harton
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Seishi Shimizu
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom.
| |
Collapse
|
6
|
Reid JESJ, Aquino PHG, Walker AJ, Karadakov PB, Shimizu S. Statistical Thermodynamics Unveils How Ions Influence an Aqueous Diels‐Alder Reaction. Chemphyschem 2019; 20:1538-1544. [DOI: 10.1002/cphc.201900024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/15/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Joshua E. S. J. Reid
- York Structural Biology Laboratory Department of ChemistryUniversity of York Heslington York YO10 5DD United Kingdom
- Bioniqs Ltd., BioCity Nottingham Pennyfoot Street Nottingham NG1 1GF United Kingdom
| | - Pedro H. G. Aquino
- York Structural Biology Laboratory Department of ChemistryUniversity of York Heslington York YO10 5DD United Kingdom
| | - Adam J. Walker
- Bioniqs Ltd., BioCity Nottingham Pennyfoot Street Nottingham NG1 1GF United Kingdom
| | - Peter B. Karadakov
- Department of ChemistryUniversity of York Heslington York YO10 5DD United Kingdom
| | - Seishi Shimizu
- York Structural Biology Laboratory Department of ChemistryUniversity of York Heslington York YO10 5DD United Kingdom
| |
Collapse
|
7
|
Shimizu S, Abbott S, Adamska K, Voelkel A. Quantifying non-specific interactions via liquid chromatography. Analyst 2019; 144:1632-1641. [PMID: 30644458 DOI: 10.1039/c8an02244e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Determinations of solute-cosolute interactions from chromatography have often resulted in problems, such as the "antibinding" (or a negative binding constant) between the solute and micelle in micellar liquid chromatography (MLC) or indeterminacy of salt-ligand binding strength in high-performance affinity chromatography (HPAC). This shows that the stoichiometric binding models adopted in many chromatographic analyses cannot capture the non-specific nature of solvation interactions. In contrast, an approach using statistical thermodynamics handles these complexities without such problems and directly links chromatographic data to, for example, solubility data via a universal framework based on Kirkwood-Buff integrals (KBI) of the radial distribution functions. The chromatographic measurements can now be interpreted within this universal theoretical framework that has been used to rationalize small solute solubility, biomolecular stability, binding, aggregation and gelation. In particular, KBI analysis identifies key solute-cosolute interactions, including excluded volume effects. We present (i) how KBI can be obtained directly from the cosolute concentration dependence of the distribution coefficient, (ii) how the classical binding model, when used solely as a fitting model, can yield the KBIs directly from the literature data, and (iii) how chromatography and solubility measurements can be compared in the unified theoretical framework provided via KBIs without any arbitrary assumptions about the stationary phase. To perform our own analyses on multiple datasets we have used an "app". To aid readers' understanding and to allow analyses of their own datasets, the app is provided with many datasets and is freely available on-line as an open-source resource.
Collapse
Affiliation(s)
- Seishi Shimizu
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | | | | | | |
Collapse
|
8
|
Editorial: High Pressure Bioscience and Biotechnology. Biophys Chem 2017; 231:1-2. [PMID: 29173654 DOI: 10.1016/j.bpc.2017.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Shimizu S, Smith PE. How Osmolytes Counteract Pressure Denaturation on a Molecular Scale. Chemphyschem 2017; 18:2243-2249. [PMID: 28678423 PMCID: PMC5626881 DOI: 10.1002/cphc.201700503] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 05/30/2017] [Indexed: 11/08/2022]
Abstract
Life in the deep sea exposes enzymes to high hydrostatic pressure, which decreases their stability. For survival, deep sea organisms tend to accumulate various osmolytes, most notably trimethylamine N-oxide used by fish, to counteract pressure denaturation. However, exactly how these osmolytes work remains unclear. Here, a rigorous statistical thermodynamics approach is used to clarify the mechanism of osmoprotection. It is shown that the weak, nonspecific, and dynamic interactions of water and osmolytes with proteins can be characterized only statistically, and that the competition between protein-osmolyte and protein-water interactions is crucial in determining conformational stability. Osmoprotection is driven by a stronger exclusion of osmolytes from the denatured protein than from the native conformation, and water distribution has no significant effect on these changes at low osmolyte concentrations.
Collapse
Affiliation(s)
- Seishi Shimizu
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Paul E Smith
- Department of Chemistry, Kansas State University, 213 CBC Building, Manhattan, Kansas, 66506-0401, USA
| |
Collapse
|
10
|
Shimizu S, Matubayasi N. Unifying hydrotropy under Gibbs phase rule. Phys Chem Chem Phys 2017; 19:23597-23605. [DOI: 10.1039/c7cp02132a] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A rational approach, aiming at constructing a unified theory of hydrotropy, will be presented based upon the first principles of statistical thermodynamics.
Collapse
Affiliation(s)
- Seishi Shimizu
- York Structural Biology Laboratory
- Department of Chemistry
- University of York
- York YO10 5DD
- UK
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering
- Graduate School of Engineering Science
- Osaka University
- Toyonaka
- Japan
| |
Collapse
|
11
|
Shimizu S, Matubayasi N. Hydrotropy and scattering: pre-ouzo as an extended near-spinodal region. Phys Chem Chem Phys 2017; 19:26734-26742. [DOI: 10.1039/c7cp04990k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The relationship between hydrotropic solubilization and mesoscale structuring has been clarified from the first principles of chemical and statistical thermodynamics.
Collapse
Affiliation(s)
- Seishi Shimizu
- York Structural Biology Laboratory
- Department of Chemistry
- University of York
- Heslington
- UK
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering
- Graduate School of Engineering Science
- Osaka University
- Toyonaka
- Japan
| |
Collapse
|