1
|
Seelig J, Seelig A. Pressure Protein Denaturation Compared to Thermal and Chemical Unfolding: Analyses with Cooperative Models. J Phys Chem B 2025; 129:1229-1236. [PMID: 39818862 PMCID: PMC11789134 DOI: 10.1021/acs.jpcb.4c07703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
The thermodynamics of pressure-induced protein denaturation could so far not be directly compared with protein denaturation induced by temperature or chemical agents. Here, we provide a new cooperative model for pressure-induced protein denaturation that allows the quantitative comparison of all three denaturing processes based on their free energy, enthalpy, entropy, and cooperativity. As model proteins, we use apolipoprotein A-1 and lysozyme. The comparison shows that heat-induced unfolding is the most cooperative process. It is characterized by large positive enthalpies and entropies and (due to enthalpy-entropy compensation) small negative free energies. Pressure denaturation is less cooperative. The entropies and enthalpies are less positive, and the resulting free energies are more negative. Chemically induced unfolding is the least cooperative and shows the most negative free energies, in particular, if guanidinium hydrochloride (exhibiting a high binding affinity to certain proteins) is used as a denaturant. The three unfolding processes differ not only with respect to their cooperativity and the thermodynamic parameters but also with respect to the volume changes, suggesting structural differences of the denatured proteins. Using cooperative models thus yields significant new insights into the protein unfolding/folding processes.
Collapse
Affiliation(s)
- Joachim Seelig
- Biozentrum, University
of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland
| | - Anna Seelig
- Biozentrum, University
of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland
| |
Collapse
|
2
|
Seelig J, Seelig A. Protein Stability─Analysis of Heat and Cold Denaturation without and with Unfolding Models. J Phys Chem B 2023; 127:3352-3363. [PMID: 37040567 PMCID: PMC10123674 DOI: 10.1021/acs.jpcb.3c00882] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Protein stability is important in many areas of life sciences. Thermal protein unfolding is investigated extensively with various spectroscopic techniques. The extraction of thermodynamic properties from these measurements requires the application of models. Differential scanning calorimetry (DSC) is less common, but is unique as it measures directly a thermodynamic property, that is, the heat capacity Cp(T). The analysis of Cp(T) is usually performed with the chemical equilibrium two-state model. This is not necessary and leads to incorrect thermodynamic consequences. Here we demonstrate a straightforward model-independent evaluation of heat capacity experiments in terms of protein unfolding enthalpy ΔH(T), entropy ΔS(T), and free energy ΔG(T)). This now allows the comparison of the experimental thermodynamic data with the predictions of different models. We critically examined the standard chemical equilibrium two-state model, which predicts a positive free energy for the native protein, and diverges distinctly from the experimental temperature profiles. We propose two new models which are equally applicable to spectroscopy and calorimetry. The ΘU(T)-weighted chemical equilibrium model and the statistical-mechanical two-state model provide excellent fits of the experimental data. They predict sigmoidal temperature profiles for enthalpy and entropy, and a trapezoidal temperature profile for the free energy. This is illustrated with experimental examples for heat and cold denaturation of lysozyme and β-lactoglobulin. We then show that the free energy is not a good criterion to judge protein stability. More useful parameters are discussed, including protein cooperativity. The new parameters are embedded in a well-defined thermodynamic context and are amenable to molecular dynamics calculations.
Collapse
Affiliation(s)
- Joachim Seelig
- Biozentrum, University of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland
| | - Anna Seelig
- Biozentrum, University of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland
| |
Collapse
|
3
|
Seelig J, Seelig A. Protein Unfolding-Thermodynamic Perspectives and Unfolding Models. Int J Mol Sci 2023; 24:5457. [PMID: 36982534 PMCID: PMC10049513 DOI: 10.3390/ijms24065457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 03/14/2023] Open
Abstract
We review the key steps leading to an improved analysis of thermal protein unfolding. Thermal unfolding is a dynamic cooperative process with many short-lived intermediates. Protein unfolding has been measured by various spectroscopic techniques that reveal structural changes, and by differential scanning calorimetry (DSC) that provides the heat capacity change Cp(T). The corresponding temperature profiles of enthalpy ΔH(T), entropy ΔS(T), and free energy ΔG(T) have thus far been evaluated using a chemical equilibrium two-state model. Taking a different approach, we demonstrated that the temperature profiles of enthalpy ΔH(T), entropy ΔS(T), and free energy ΔG(T) can be obtained directly by a numerical integration of the heat capacity profile Cp(T). DSC thus offers the unique possibility to assess these parameters without resorting to a model. These experimental parameters now allow us to examine the predictions of different unfolding models. The standard two-state model fits the experimental heat capacity peak quite well. However, neither the enthalpy nor entropy profiles (predicted to be almost linear) are congruent with the measured sigmoidal temperature profiles, nor is the parabolic free energy profile congruent with the experimentally observed trapezoidal temperature profile. We introduce three new models, an empirical two-state model, a statistical-mechanical two-state model and a cooperative statistical-mechanical multistate model. The empirical model partially corrects for the deficits of the standard model. However, only the two statistical-mechanical models are thermodynamically consistent. The two-state models yield good fits for the enthalpy, entropy and free energy of unfolding of small proteins. The cooperative statistical-mechanical multistate model yields perfect fits, even for the unfolding of large proteins such as antibodies.
Collapse
Affiliation(s)
- Joachim Seelig
- Biozentrum, University of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland
| | | |
Collapse
|
4
|
Seelig J, Seelig A. Molecular understanding of calorimetric protein unfolding experiments. BIOPHYSICAL REPORTS 2022; 2:100037. [PMID: 36425081 PMCID: PMC9680786 DOI: 10.1016/j.bpr.2021.100037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/02/2021] [Indexed: 06/16/2023]
Abstract
Testing and predicting protein stability gained importance because proteins, including antibodies, became pharmacologically relevant in viral and cancer therapies. Isothermal scanning calorimetry is the principle method to study protein stability. Here, we use the excellent experimental heat capacity Cp(T) data from the literature for a critical inspection of protein unfolding as well as for the test of a new cooperative model. In the relevant literature, experimental temperature profiles of enthalpy, Hcal(T), entropy, Scal(T), and free energy, Gcal(T) are missing. First, we therefore calculate the experimental Hcal(T), Scal(T), and Gcal(T) from published Cp(T) thermograms. Considering only the unfolding transition proper, the heat capacity and all thermodynamic functions are zero in the region of the native protein. In particular, the free energy of the folded proteins is also zero and Gcal(T) displays a trapezoidal temperature profile when cold denaturation is included. Second, we simulate the DSC-measured thermodynamic properties with a new molecular model based on statistical-mechanical thermodynamics. The model quantifies the protein cooperativity and predicts the aggregate thermodynamic variables of the system with molecular parameters only. The new model provides a perfect simulation of all thermodynamic properties, including the observed trapezoidal Gcal(T) temperature profile. Importantly, the new cooperative model can be applied to a broad range of protein sizes, including antibodies. It predicts not only heat and cold denaturation but also provides estimates of the unfolding kinetics and allows a comparison with molecular dynamics calculations and quasielastic neutron scattering experiments.
Collapse
Affiliation(s)
| | - Anna Seelig
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
5
|
Morozova A, Zorkina Y, Abramova O, Pavlova O, Pavlov K, Soloveva K, Volkova M, Alekseeva P, Andryshchenko A, Kostyuk G, Gurina O, Chekhonin V. Neurobiological Highlights of Cognitive Impairment in Psychiatric Disorders. Int J Mol Sci 2022; 23:1217. [PMID: 35163141 PMCID: PMC8835608 DOI: 10.3390/ijms23031217] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
This review is focused on several psychiatric disorders in which cognitive impairment is a major component of the disease, influencing life quality. There are plenty of data proving that cognitive impairment accompanies and even underlies some psychiatric disorders. In addition, sources provide information on the biological background of cognitive problems associated with mental illness. This scientific review aims to summarize the current knowledge about neurobiological mechanisms of cognitive impairment in people with schizophrenia, depression, mild cognitive impairment and dementia (including Alzheimer's disease).The review provides data about the prevalence of cognitive impairment in people with mental illness and associated biological markers.
Collapse
Affiliation(s)
- Anna Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Yana Zorkina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Olga Abramova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Olga Pavlova
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Konstantin Pavlov
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Kristina Soloveva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Maria Volkova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Polina Alekseeva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Alisa Andryshchenko
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Georgiy Kostyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Olga Gurina
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Vladimir Chekhonin
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
6
|
Tidemand FG, Zunino A, Johansen NT, Hansen AF, Westh P, Mosegaard K, Arleth L. Semi-empirical Analysis of Complex ITC Data from Protein-Surfactant Interactions. Anal Chem 2021; 93:12698-12706. [PMID: 34498849 DOI: 10.1021/acs.analchem.1c02558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Isothermal titration calorimetry (ITC) is a widely used method to determine binding affinities and thermodynamics in ligand-receptor interactions, but it also has the capability of providing detailed information on much more complex events. However, the lack of available methods to analyze ITC data is limiting the use of the technique in such multifaceted cases. Here, we present the software ANISPROU. Through a semi-empirical approach that allows for extraction of quantitative information from complex ITC data, ANISPROU solves an inverse problem where three parameters describing a set of predefined functions must be found. In analogy to strategies adopted in other scientific fields, such as geophysics, imaging, and many others, it employs an optimization algorithm which minimizes the difference between calculated and experimental data. In contrast to the existing methods, ANISPROU provides automated and objective analysis of ITC data on sodium dodecyl sulfate (SDS)-induced protein unfolding, and in addition, more information can be extracted from the data. Here, data series on SDS-mediated protein unfolding is analyzed, and binding isotherms and thermodynamic information on the unfolding events are extracted. The obtained binding isotherms as well as the enthalpy of different events are similar to those obtained using the existing manual methods, but our methodology ensures a more robust result, as the entire data set is used instead of single data points. We foresee that ANISPROU will be useful in other cases with complex enthalpograms, for example, in cases with coupled interactions in biomolecular, polymeric, and amphiphilic systems including cases where both structural changes and interactions occur simultaneously.
Collapse
Affiliation(s)
- Frederik G Tidemand
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Andrea Zunino
- Niels Bohr Institute, University of Copenhagen, Tagensvej 16, 2200 Copenhagen, Denmark.,Department of Earth Sciences, ETH Zürich, Sonneggstrasse 5, 8092 Zürich, Switzerland
| | - Nicolai T Johansen
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Anna Freja Hansen
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Peter Westh
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs. Lyngby, Denmark
| | - Klaus Mosegaard
- Niels Bohr Institute, University of Copenhagen, Tagensvej 16, 2200 Copenhagen, Denmark
| | - Lise Arleth
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| |
Collapse
|
7
|
Vignesh R, Aradhyam GK. A Change in Domain Cooperativity Drives the Function of Calnuc. Biochemistry 2020; 59:2507-2517. [PMID: 32543177 DOI: 10.1021/acs.biochem.0c00207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
With the increasing incidence of neurodegenerative disorders, there is an urgent need to understand the protein folding process. Examining the folding process of multidomain proteins remains a prime challenge, as their complex conformational dynamics make them highly susceptible to misfolding and/or aggregation. The presence of multiple domains in a protein can lead to interaction between the partially folded domains, thereby driving misfolding and/or aggregation. Calnuc is one such multidomain protein for which Ca2+ binding plays a pivotal role in governing its structural dynamics and stability and, presumably, in directing its interactions with other proteins. We demonstrate differential structural dynamics between the Ca2+-free and Ca2+-bound forms of calnuc. In the absence of Ca2+, full-length calnuc displays equilibrium structural transitions with four intermediate states, reporting a sum of the behavioral properties of its individual domains. Fragment-based studies illustrate the sequential events of structure adoption proceeding in the following order: EF domain followed by the NT and LZ domains in the apo state. On the other hand, Ca2+ binding increases domain cooperativity and enables the protein to fold as a single unit. Single-tryptophan mutant proteins, designed in a domain-dependent manner, confirm an increase in the number of interdomain interactions in the Ca2+-bound form as compared to the Ca2+-free state of the protein, thereby providing insight into its folding process. The attenuated domain crosstalk in apo-calnuc is likely to influence and regulate its physiologically important intermolecular interactions.
Collapse
Affiliation(s)
- Ravichandran Vignesh
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Gopala Krishna Aradhyam
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
8
|
Garidel P, Eiperle A, Blech M, Seelig J. Thermal and Chemical Unfolding of a Monoclonal IgG1 Antibody: Application of the Multistate Zimm-Bragg Theory. Biophys J 2020; 118:1067-1075. [PMID: 32049058 PMCID: PMC7063443 DOI: 10.1016/j.bpj.2019.12.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/20/2019] [Accepted: 12/30/2019] [Indexed: 11/25/2022] Open
Abstract
The thermal unfolding of a recombinant monoclonal antibody IgG1 (mAb) was measured with differential scanning calorimetry (DSC). The DSC thermograms reveal a pretransition at 72°C with an unfolding enthalpy of ΔHcal ∼200-300 kcal/mol and a main transition at 85°C with an enthalpy of ∼900-1000 kcal/mol. In contrast to small single-domain proteins, mAb unfolding is a complex reaction that is analyzed with the multistate Zimm-Bragg theory. For the investigated mAb, unfolding is characterized by a cooperativity parameter σ ∼6 × 10-5 and a Gibbs free energy of unfolding of gnu ∼100 cal/mol per amino acid. The enthalpy of unfolding provides the number of amino acid residues ν participating in the unfolding reaction. On average, ν∼220 ± 50 amino acids are involved in the pretransition and ν∼850 ± 30 in the main transition, accounting for ∼90% of all amino acids. Thermal unfolding was further studied in the presence of guanidineHCl. The chemical denaturant reduces the unfolding enthalpy ΔHcal and lowers the midpoint temperature Tm. Both parameters depend linearly on the concentration of denaturant. The guanidineHCl concentrations needed to unfold mAb at 25°C are predicted to be 2-3 M for the pretransition and 5-7 M for the main transition, varying with pH. GuanidineHCl binds to mAb with an exothermic binding enthalpy, which partially compensates the endothermic mAb unfolding enthalpy. The number of guanidineHCl molecules bound upon unfolding is deduced from the DSC thermograms. The bound guanidineHCl-to-unfolded amino acid ratio is 0.79 for the pretransition and 0.55 for the main transition. The pretransition binds more denaturant molecules and is more sensitive to unfolding than the main transition. The current study shows the strength of the Zimm-Bragg theory for the quantitative description of unfolding events of large, therapeutic proteins, such as a monoclonal antibody.
Collapse
Affiliation(s)
- Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Biberach an der Riss, Germany.
| | - Andrea Eiperle
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Biberach an der Riss, Germany
| | - Michaela Blech
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Biberach an der Riss, Germany
| | - Joachim Seelig
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, Basel, Switzerland.
| |
Collapse
|
9
|
Markones M, Fippel A, Kaiser M, Drechsler C, Hunte C, Heerklotz H. Stairway to Asymmetry: Five Steps to Lipid-Asymmetric Proteoliposomes. Biophys J 2020; 118:294-302. [PMID: 31843262 PMCID: PMC6976795 DOI: 10.1016/j.bpj.2019.10.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/09/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022] Open
Abstract
Membrane proteins are embedded in a complex lipid environment that influences their structure and function. One key feature of nearly all biological membranes is a distinct lipid asymmetry. However, the influence of membrane asymmetry on proteins is poorly understood, and novel asymmetric proteoliposome systems are beneficial. To our knowledge, we present the first study on a multispanning protein incorporated in large unilamellar liposomes showing a stable lipid asymmetry. These asymmetric proteoliposomes contain the Na+/H+ antiporter NhaA from Salmonella Typhimurium. Asymmetry was introduced by partial, outside-only exchange of anionic phosphatidylglycerol (PG), mimicking this key asymmetry of bacterial membranes. Outer-leaflet and total fractions of PG were determined via ζ-potential (ζ) measurements after lipid exchange and after scrambling of asymmetry. ζ-Values were in good agreement with exclusive outside localization of PG. The electrogenic Na+/H+ antiporter was active in asymmetric liposomes, and it can be concluded that reconstitution and generation of asymmetry were successful. Lipid asymmetry was stable for more than 7 days at 23°C and thus enabled characterization of the Na+/H+ antiporter in an asymmetric lipid environment. We present and validate a simple five-step protocol that addresses key steps to be taken and pitfalls to be avoided for the preparation of asymmetric proteoliposomes: 1) optimization of desired lipid composition, 2) detergent-mediated protein reconstitution with subsequent detergent removal, 3) generation of lipid asymmetry by partial exchange of outer-leaflet lipid, 4) verification of lipid asymmetry and stability, and 5) determination of protein activity in the asymmetric lipid environment. This work offers guidance in designing asymmetric proteoliposomes that will enable researchers to compare functional and structural properties of membrane proteins in symmetric and asymmetric lipid environments.
Collapse
Affiliation(s)
- Marie Markones
- Institute for Pharmaceutical Sciences, University of Freiburg, Breisgau, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Breisgau, Germany; HSGS Hermann Staudinger Graduate School, University of Freiburg, Breisgau, Germany.
| | - Anika Fippel
- Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Breisgau, Germany; HSGS Hermann Staudinger Graduate School, University of Freiburg, Breisgau, Germany
| | - Michael Kaiser
- Institute for Pharmaceutical Sciences, University of Freiburg, Breisgau, Germany; HSGS Hermann Staudinger Graduate School, University of Freiburg, Breisgau, Germany
| | - Carina Drechsler
- Institute for Pharmaceutical Sciences, University of Freiburg, Breisgau, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Breisgau, Germany
| | - Carola Hunte
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Breisgau, Germany; Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Breisgau, Germany
| | - Heiko Heerklotz
- Institute for Pharmaceutical Sciences, University of Freiburg, Breisgau, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Breisgau, Germany; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Li-Blatter X, Seelig J. Thermal and Chemical Unfolding of Lysozyme. Multistate Zimm-Bragg Theory Versus Two-State Model. J Phys Chem B 2019; 123:10181-10191. [PMID: 31686511 DOI: 10.1021/acs.jpcb.9b08816] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thermal and chemical unfolding of lysozyme in the presence of the guanidine HCl denaturant is a model system to compare the conventional two-state model of protein unfolding with the multistate Zimm-Bragg theory. The two-state model is shown to be the noncooperative limit of the Zimm-Bragg theory. In particular, the Zimm-Bragg theory provides a molecular interpretation of the empirical linear extrapolation method (LEM) of the two-state model. Differential scanning calorimetry (DSC) experiments reported in the literature are analyzed with both methods. Lysozyme unfolding is associated with a large endothermic enthalpy that decreases significantly upon addition of guanidine HCl. In contrast, the Gibbs free energy of unfolding is small, negative, and independent of the guanidine HCl concentration, contradicting, in part, the conclusions of the LEM. The unfolding enthalpy is compensated by an even larger entropy term. The multistate Zimm-Bragg theory predicts a larger conformational enthalpy and a smaller Gibbs free energy than the two-state model. The Zimm-Bragg theory provides the protein cooperativity parameter, the average length of independently folding protein domains, and the Gibbs free energy of unfolding of individual amino acid residues. Guanidine HCl binding to lysozyme is exothermic and counteracts the endothermic unfolding enthalpy. The number of bound denaturant molecules is determined from the decrease in enthalpy and is extrapolated to the guanidine HCl-to-amino acid stoichiometry at complete lysozyme unfolding. Chemical unfolding isotherms measured with circular dichroism (CD) spectroscopy are analyzed with both models. The chemical Zimm-Bragg theory is a cooperative molecular model, yielding the guanidine HCl binding constant and the protein cooperativity parameter. It allows a quantitative comparison between thermal and chemical protein unfolding. The two reactions have almost identical changes in Gibbs free energy. However, thermal unfolding is significantly more cooperative than chemical unfolding. Finally, distinct differences are observed in thermal unfolding between DSC and CD spectroscopy.
Collapse
Affiliation(s)
- Xiaochun Li-Blatter
- Biozentrum , University of Basel , Klingelbergstrasse 50/70 , CH-4056 Basel , Switzerland
| | - Joachim Seelig
- Biozentrum , University of Basel , Klingelbergstrasse 50/70 , CH-4056 Basel , Switzerland
| |
Collapse
|