1
|
Wray V. Field guide to Nath's research work on ATP synthesis and hydrolysis. Biosystems 2025; 252:105461. [PMID: 40246269 DOI: 10.1016/j.biosystems.2025.105461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025]
Abstract
Adenosine triphosphate (ATP) is the universal biological energy source that participates in the most prevalent chemical reactions in all cell life through the vital processes of oxidative phosphorylation (OXPHOS) and photosynthesis. Its synthesis and utilisation is an area of basic research that has seen significant progress over the last three decades. A series of Nath's publications in the 1990s culminated in a detailed description of the molecular mechanism of ATP synthesis in the FO and F1 portions of FOF1-ATP synthase in which energy from transmembrane ion gradients in FO are converted into chemical energy of ATP in F1. Subsequent papers provided a thorough theoretical basis and exploration of the validity of the new theory-named by other authors as Nath's torsional mechanism of energy transduction and ATP synthesis and Nath's two-ion theory of energy coupling. Violation of several physical laws by previous theories have been dealt with in considerable detail. In particular he has reevaluated the extensive literature on ATP hydrolysis and provides a rigorously argued tri-site molecular mechanism involving the three filled β-catalytic sites during hydrolysis by FO F1/F1-ATPase. Numerous applications have been proposed throughout his work that has resulted in four substantial publications dealing with re-interpretation of the Warburg Effect in cancer cells and a trilogy of papers dealing with biological thermodynamics of ATP synthesis applied to problems in comparative physiology, biochemistry and ecology. Finally strict mathematical methods have opened up new approaches to validate mechanistic events in ATP synthesis/hydrolysis. Here we provide a field guide for easy access to the different aspects of this body of work.
Collapse
Affiliation(s)
- Victor Wray
- Department of Structural Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, Braunschweig, D‒38124, Germany.
| |
Collapse
|
2
|
Zhang Y, Gao Y, Liu X. Focus on cognitive impairment induced by excessive fluoride: An update review. Neuroscience 2024; 558:22-29. [PMID: 39137871 DOI: 10.1016/j.neuroscience.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Fluorosis is a global public health concern. Prolonged exposure to excessive fluoride causes fluoride accumulation in the hippocampus, resulting in cognitive dysfunction. Cell death is necessary for maintaining tissue function and morphology, and changes in the external morphology of nerve cells and the function of many internal organelles are typical features of cell death; however, it is also a typical feature of cognitive impairment caused by fluorosis. However, the pathogenesis of cognitive impairment caused by different degrees of fluoride exposure varies. Herein, we provide an overview of cognitive impairment caused by excessive fluoride exposure in different age groups, and the underlying mechanisms for cognitive impairment in various model organisms. The mechanisms underlying these impairments include oxidative stress, synaptic and neurotransmission dysfunction, disruption of mitochondrial and energy metabolism, and calcium channel dysregulation. This study aims to provide potential insights that serve as a reference for subsequent research on the cognitive function caused by excessive fluoride.
Collapse
Affiliation(s)
- Yuhang Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health (23618504), Harbin, Heilongjiang 150081, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin, Heilongjiang 150081, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health (23618504), Harbin, Heilongjiang 150081, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin, Heilongjiang 150081, China.
| | - Xiaona Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health (23618504), Harbin, Heilongjiang 150081, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin, Heilongjiang 150081, China.
| |
Collapse
|
3
|
Nath S. Coupling and biological free-energy transduction processes as a bridge between physics and life: Molecular-level instantiation of Ervin Bauer's pioneering concepts in biological thermodynamics. Biosystems 2024; 236:105134. [PMID: 38301737 DOI: 10.1016/j.biosystems.2024.105134] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
The nonequilibrium coupled processes of oxidation and ATP synthesis in the biological process of oxidative phosphorylation (OXPHOS) are fundamental to all life on our planet. These steady-state energy transduction processes ‒ coupled by proton and anion/counter-cation concentration gradients in the OXPHOS pathway ‒ generate ∼95 % of the ATP requirement of aerobic systems for cellular function. The rapid energy cycling and homeostasis of metabolites involved in this coupling are shown to be responsible for maintenance and regulation of stable nonequilibrium states, the latter first postulated in pioneering biothermodynamics work by Ervin Bauer between 1920 and 1935. How exactly does this occur? This is shown to be answered by molecular considerations arising from Nath's torsional mechanism of ATP synthesis and two-ion theory of energy coupling developed in 25 years of research work on the subject. A fresh analysis of the biological thermodynamics of coupling that goes beyond the previous work of Stucki and others and shows how the system functions at the molecular level has been carried out. Thermodynamic parameters, such as the overall degree of coupling, q of the coupled system are evaluated for the state 4 to state 3 transition in animal mitochondria with succinate as substrate. The actual or operative P to O ratio, the efficiency of the coupled reactions, η, and the Gibbs energy dissipation, Φ have been calculated and shown to be in good agreement with experimental data. Novel mechanistic insights arising from the above have been discussed. A fourth law/principle of thermodynamics is formulated for a sub-class of physical and biological systems. The critical importance of constraints and time-varying boundary conditions for function and regulation is discussed in detail. Dynamic internal structural changes essential for torsional energy storage within the γ-subunit in a single molecule of the FOF1-ATP synthase and its transduction have been highlighted. These results provide a molecular-level instantiation of Ervin Bauer's pioneering concepts in biological thermodynamics.
Collapse
Affiliation(s)
- Sunil Nath
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
4
|
Nath S. Beyond binding change: the molecular mechanism of ATP hydrolysis by F 1-ATPase and its biochemical consequences. Front Chem 2023; 11:1058500. [PMID: 37324562 PMCID: PMC10266426 DOI: 10.3389/fchem.2023.1058500] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 05/10/2023] [Indexed: 06/17/2023] Open
Abstract
F1-ATPase is a universal multisubunit enzyme and the smallest-known motor that, fueled by the process of ATP hydrolysis, rotates in 120o steps. A central question is how the elementary chemical steps occurring in the three catalytic sites are coupled to the mechanical rotation. Here, we performed cold chase promotion experiments and measured the rates and extents of hydrolysis of preloaded bound ATP and promoter ATP bound in the catalytic sites. We found that rotation was caused by the electrostatic free energy change associated with the ATP cleavage reaction followed by Pi release. The combination of these two processes occurs sequentially in two different catalytic sites on the enzyme, thereby driving the two rotational sub-steps of the 120o rotation. The mechanistic implications of this finding are discussed based on the overall energy balance of the system. General principles of free energy transduction are formulated, and their important physical and biochemical consequences are analyzed. In particular, how exactly ATP performs useful external work in biomolecular systems is discussed. A molecular mechanism of steady-state, trisite ATP hydrolysis by F1-ATPase, consistent with physical laws and principles and the consolidated body of available biochemical information, is developed. Taken together with previous results, this mechanism essentially completes the coupling scheme. Discrete snapshots seen in high-resolution X-ray structures are assigned to specific intermediate stages in the 120o hydrolysis cycle, and reasons for the necessity of these conformations are readily understood. The major roles played by the "minor" subunits of ATP synthase in enabling physiological energy coupling and catalysis, first predicted by Nath's torsional mechanism of energy transduction and ATP synthesis 25 years ago, are now revealed with great clarity. The working of nine-stepped (bMF1, hMF1), six-stepped (TF1, EF1), and three-stepped (PdF1) F1 motors and of the α3β3γ subcomplex of F1 is explained by the same unified mechanism without invoking additional assumptions or postulating different mechanochemical coupling schemes. Some novel predictions of the unified theory on the mode of action of F1 inhibitors, such as sodium azide, of great pharmaceutical importance, and on more exotic artificial or hybrid/chimera F1 motors have been made and analyzed mathematically. The detailed ATP hydrolysis cycle for the enzyme as a whole is shown to provide a biochemical basis for a theory of "unisite" and steady-state multisite catalysis by F1-ATPase that had remained elusive for a very long time. The theory is supported by a probability-based calculation of enzyme species distributions and analysis of catalytic site occupancies by Mg-nucleotides and the activity of F1-ATPase. A new concept of energy coupling in ATP synthesis/hydrolysis based on fundamental ligand substitution chemistry has been advanced, which offers a deeper understanding, elucidates enzyme activation and catalysis in a better way, and provides a unified molecular explanation of elementary chemical events occurring at enzyme catalytic sites. As such, these developments take us beyond binding change mechanisms of ATP synthesis/hydrolysis proposed for oxidative phosphorylation and photophosphorylation in bioenergetics.
Collapse
Affiliation(s)
- Sunil Nath
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| |
Collapse
|
5
|
Nath S. The Need for Consistency with Physical Laws and Logic in Choosing Between Competing Molecular Mechanisms in Biological Processes: A Case Study in Modeling ATP Synthesis. FUNCTION (OXFORD, ENGLAND) 2022; 3:zqac054. [PMID: 36340246 PMCID: PMC9629475 DOI: 10.1093/function/zqac054] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
Abstract
Traditionally, proposed molecular mechanisms of fundamental biological processes have been tested against experiment. However, owing to a plethora of reasons-difficulty in designing, carrying out, and interpreting key experiments, use of different experimental models and systems, conduct of studies under widely varying experimental conditions, fineness in distinctions between competing mechanisms, complexity of the scientific issues, and the resistance of some scientists to discoveries that are contrary to popularly held beliefs-this has not solved the problem despite decades of work in the field/s. The author would like to prescribe an alternative way: that of testing competing models/mechanisms for their adherence to scientific laws and principles, and checking for errors in logic. Such tests are fairly commonly carried out in the mathematics, physics, and engineering literature. Further, reported experimental measurements should not be smaller than minimum detectable values for the measurement technique employed and should truly reflect function of the actual system without inapplicable extrapolation. Progress in the biological fields would be greatly accelerated, and considerable scientific acrimony avoided by adopting this approach. Some examples from the fundamental field of ATP synthesis in oxidative phosphorylation (OXPHOS) have been reviewed that also serve to illustrate the approach. The approach has never let the author down in his 35-yr-long experience on biological mechanisms. This change in thinking should lead to a considerable saving of both time and resources, help channel research efforts toward solution of the right problems, and hopefully provide new vistas to a younger generation of open-minded biological scientists.
Collapse
Affiliation(s)
- Sunil Nath
- Address correspondence to S.N. (e-mail: ; )
| |
Collapse
|
6
|
Nath S. Supercomplex supercomplexes: Raison d’etre and functional significance of supramolecular organization in oxidative phosphorylation. Biomol Concepts 2022; 13:272-288. [DOI: 10.1515/bmc-2022-0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/09/2022] [Indexed: 12/22/2022] Open
Abstract
Abstract
Following structural determination by recent advances in electron cryomicroscopy, it is now well established that the respiratory Complexes I–IV in oxidative phosphorylation (OXPHOS) are organized into supercomplexes in the respirasome. Nonetheless, the reason for the existence of the OXPHOS supercomplexes and their functional role remains an enigma. Several hypotheses have been proposed for the existence of these supercomplex supercomplexes. A commonly-held view asserts that they enhance catalysis by substrate channeling. However, this – and other views – has been challenged based on structural and biophysical information. Hence, new ideas, concepts, and frameworks are needed. Here, a new model of energy transfer in OXPHOS is developed on the basis of biochemical data on the pure competitive inhibition of anionic substrates like succinate by the classical anionic uncouplers of OXPHOS (2,4-dinitrophenol, carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone, and dicoumarol), and pharmacological data on the unique site-selective, energy-linked inhibition of energy conservation pathways in mitochondria induced by the guanidine derivatives. It is further found that uncouplers themselves are site-specific and exhibit differential selectivity and efficacy in reversing the inhibition caused by the Site 1/Complex I or Site 2/Complexes II–III-selective guanidine derivatives. These results lead to new vistas and sufficient complexity in the network of energy conservation pathways in the mitochondrial respiratory chain that necessitate discrete points of interaction with two classes of guanidine derivatives and uncoupling agents and thereby separate and distinct energy transfer pathways between Site 1 and Site 2 and the intermediate that energizes adenosine triphosphate (ATP) synthesis by Complex V. Interpretation based on Mitchell’s single-ion chemiosmotic theory that postulates only a single energy pool is inadequate to rationalize the data and account for the required complexity. The above results and available information are shown to be explained by Nath’s two-ion theory of energy coupling and ATP synthesis, involving coupled movement of succinate anions and protons, along with the requirement postulated by the theory for maintenance of homeostasis and ion translocation across the energy-transducing membrane of both succinate monoanions and succinate dianions by Complexes I–V in the OXPHOS supercomplexes. The new model of energy transfer in mitochondria is mapped onto the solved structures of the supercomplexes and integrated into a consistent model with the three-dimensional electron microscope computer tomography visualization of the internal structure of the cristae membranes in mammalian mitochondria. The model also offers valuable insights into diseased states induced in type 2 diabetes and especially in Alzheimer’s and other neurodegenerative diseases that involve mitochondrial dysfunction.
Collapse
Affiliation(s)
- Sunil Nath
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi , Hauz Khas , New Delhi 110016 , India
| |
Collapse
|
7
|
Energy landscapes and dynamics of ion translocation through membrane transporters: a meeting ground for physics, chemistry, and biology. J Biol Phys 2021; 47:401-433. [PMID: 34792702 DOI: 10.1007/s10867-021-09591-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/04/2021] [Indexed: 10/19/2022] Open
Abstract
The dynamics of ion translocation through membrane transporters is visualized from a comprehensive point of view by a Gibbs energy landscape approach. The ΔG calculations have been performed with the Kirkwood-Tanford-Warshel (KTW) electrostatic theory that properly takes into account the self-energies of the ions. The Gibbs energy landscapes for translocation of a single charge and an ion pair are calculated, compared, and contrasted as a function of the order parameter, and the characteristics of the frustrated system with bistability for the ion pair are described and quantified in considerable detail. These calculations have been compared with experimental data on the ΔG of ion pairs in proteins. It is shown that, under suitable conditions, the adverse Gibbs energy barrier can be almost completely compensated by the sum of the electrostatic energy of the charge-charge interactions and the solvation energy of the ion pair. The maxima in ΔGKTW with interionic distance in the bound H+ - A- charge pair on the enzyme is interpreted in thermodynamic and molecular mechanistic terms, and biological implications for molecular mechanisms of ATP synthesis are discussed. The timescale at which the order parameter moves between two stable states has been estimated by solving the dynamical equations of motion, and a wealth of novel insights into energy transduction during ATP synthesis by the membrane-bound FOF1-ATP synthase transporter is offered. In summary, a unifying analytical framework that integrates physics, chemistry, and biology has been developed for ion translocation by membrane transporters for the first time by means of a Gibbs energy landscape approach.
Collapse
|
8
|
Nath S. Coupling mechanisms in ATP synthesis: Rejoinder to "Response to molecular-level understanding of biological energy coupling and transduction". Biophys Chem 2021; 272:106579. [PMID: 33773332 DOI: 10.1016/j.bpc.2021.106579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 11/29/2022]
Abstract
Recently, an exchange of views on key fundamental aspects of biological energy coupling and ATP synthesis in the vital process of oxidative phosphorylation appeared in the pages of this journal. The very difficult scientific problems are analyzed and clarified. Errors in the mathematical/thermodynamic equations of a previous analysis have been identified that invalidate previous assertions, and the correct equations are derived. The major differences between the two competing models - localized versus delocalized - for biological energy coupling and transduction are discussed from physical, chemical, and mathematical perspectives. The opposing views are summarized, so that the reader can assess for himself or herself the merits of the two coupling mechanisms. A fresh attempt has been made to go to the root of bioenergetics by calculating the desolvation free energy barrier, ∆Gdesolvation for ion transport across biomembranes. Several constructive suggestions are made that have the power to resolve the basic contradictions and the areas of fundamental conflict, and reach a consensus by catalyzing the progress of future research in this interdisciplinary field.
Collapse
Affiliation(s)
- Sunil Nath
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
9
|
Response to "Molecular-level understanding of biological energy coupling and transduction: Response to "Chemiosmotic misunderstandings"". Biophys Chem 2020; 269:106512. [PMID: 33307371 DOI: 10.1016/j.bpc.2020.106512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/15/2020] [Accepted: 11/24/2020] [Indexed: 01/31/2023]
Abstract
The most recent contribution by Sunil Nath in these pages is, mostly, a repetition of his previous claims regarding failures of the chemiosmotic hypotheses, supplemented with some fresh misunderstandings of the points I had sought to clarify in my previous critique. Considerable portions rehash 50-60 years-old controversies, with no apparent understanding that the current chemiosmotic hypothesis, while birthed by Mitchell, differs from Mitchell's details in many respects. As such, Nath has devoted much time dealing with a few errors (or wrong hypotheses) by Mitchell (in a few places I would almost venture to say "typographical mistakes in typesetting") and presents the ensuing conclusions as "refutations" of the chemiosmotic paradigm, completely neglecting that such details (such as the precise H+/ATP or H+:O ratios) are completely irrelevant to the reality (or not) of an electron-transport chain that uses the free energy liberated by electron-transfer to remove H+ from a compartment, to which it returns through and ATP synthase which uses the energy in that spontaneous return to drive ATP synthesis. The thermodynamical mistakes and misunderstandings of the relevant literature present in Nath's new contribution are so numerous, though, that I feel forced to call the attention of the readers of "Biophysical Chemistry" to them.
Collapse
|
10
|
Nath S. Molecular-level understanding of biological energy coupling and transduction: Response to "Chemiosmotic misunderstandings". Biophys Chem 2020; 268:106496. [PMID: 33160142 DOI: 10.1016/j.bpc.2020.106496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/06/2020] [Accepted: 10/27/2020] [Indexed: 02/08/2023]
Abstract
In a recent paper entitled "Chemiosmotic misunderstandings", it is claimed that "enough shortcomings in Mitchell's chemiosmotic theory have not been found and that a novel paradigm that offers at least as much explanatory power as chemiosmosis is not ready." This view is refuted by a wealth of molecular-level experimental data and strong new theoretical and computational evidence. It is shown that the chemiosmotic theory was beset with a large number of major shortcomings ever since the time when it was first proposed in the 1960s. These multiple shortcomings and flaws of chemiosmosis were repeatedly pointed out in incisive critiques by biochemical authorities of the late 20th century. All the shortcomings and flaws have been shown to be rectified by a quantitative, unified molecular-level theory that leads to a deeper and far more accurate understanding of biological energy coupling and ATP synthesis. The new theory is shown to be consistent with pioneering X-ray and cryo-EM structures and validated by state-of-the-art single-molecule techniques. Several new biochemical experimental tests are proposed and constructive ways for providing a revitalizing conceptual background and theory for integration of the available experimental information are suggested.
Collapse
Affiliation(s)
- Sunil Nath
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
11
|
Nath S. A Novel Conceptual Model for the Dual Role of FOF1-ATP Synthase in Cell Life and Cell Death. Biomol Concepts 2020; 11:143-152. [PMID: 32827389 DOI: 10.1515/bmc-2020-0014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/22/2020] [Indexed: 12/31/2022] Open
Abstract
The mitochondrial permeability transition (MPT) has been one of the longstanding enigmas in biology. Its cause is currently at the center of an extensive scientific debate, and several hypotheses on its molecular nature have been put forward. The present view holds that the transition arises from the opening of a high-conductance channel in the energy-transducing membrane, the permeability transition pore (PTP), also called the mitochondrial megachannel or the multiconductance channel (MMC). Here, the novel hypothesis is proposed that the aqueous access channels at the interface of the c-ring and the a-subunit of FO in the FOF1-ATP synthase are repurposed during induction of apoptosis and constitute the elusive PTP/ MMC. A unifying principle based on regulation by local potentials is advanced to rationalize the action of the myriad structurally and chemically diverse inducers and inhibitors of PTP/MMC. Experimental evidence in favor of the hypothesis and its differences from current models of PTP/MMC are summarized. The hypothesis explains in considerable detail how the binding of Ca2+ to a β-catalytic site (site 3) in the F1 portion of ATP synthase triggers the opening of the PTP/MMC. It is also shown to connect to longstanding proposals within Nath's torsional mechanism of energy transduction and ATP synthesis as to how the binding of MgADP to site 3 does not induce PTP/MMC, but instead catalyzes physiological ATP synthesis in cell life. In the author's knowledge, this is the first model that explains how Ca2+ transforms the FOF1-ATP synthase from an exquisite energy-conserving enzyme in cell life into an energy-dissipating structure that promotes cell death. This has major implications for basic as well as for clinical research, such as for the development of drugs that target the MPT, given the established role of PTP/MMC dysregulation in cancer, ischemia, cardiac hypertrophy, and various neurodegenerative diseases.
Collapse
Affiliation(s)
- Sunil Nath
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
12
|
Silva PJ. Chemiosmotic misunderstandings. Biophys Chem 2020; 264:106424. [PMID: 32717593 DOI: 10.1016/j.bpc.2020.106424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 02/04/2023]
Abstract
Recent publications have questioned the appropriateness of the chemiosmotic theory, a key tenet of modern bioenergetics originally described by Mitchell and since widely improved upon and applied. In one of them, application of Gauss' law to a model charge distribution in mitochondria was argued to refute the possibility of ATP generation through H+ movement in the absence of a counterion, whereas a different author advocated, for other reasons, the impossibility of chemiosmosis and proposed that a novel energy-generation scheme (referred to as "murburn") relying on superoxide-catalyzed (or superoxide-promoted) ADP phosphorylation would operate instead. In this letter, those proposals are critically examined and found to be inconsistent with established experimental data and new theoretical calculations.
Collapse
Affiliation(s)
- Pedro J Silva
- FP-ENAS/Fac. de Ciências da Saúde, Universidade Fernando Pessoa, Porto, Portugal; UCIBIO@REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
13
|
Manoj KM. Refutation of the cation-centric torsional ATP synthesis model and advocating murburn scheme for mitochondrial oxidative phosphorylation. Biophys Chem 2019; 257:106278. [PMID: 31767207 DOI: 10.1016/j.bpc.2019.106278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022]
Abstract
The acclaimed explanation for mitochondrial oxidative phosphorylation (mOxPhos) is a proton or cation centric scheme. Such ideas were recently disclaimed and in lieu, an evidence-based oxygen-centric explanation, murburn concept, was proposed. The new understanding vouches for catalytic roles of diffusible reactive oxygen species (DROS). The involvement of DROS explains the "non-discoverability of an enzyme-linked high-energy phosphorylating intermediate", a historical predicament, which had fueled several trans-membrane potential (TMP) based mechano-electrical explanations like the Nath model. This communication aims to briefly apprise the readers some lacunae and inadmissible aspects of the Nath model and project the appeal of murburn scheme of mOxPhos.
Collapse
Affiliation(s)
- Kelath Murali Manoj
- Satyamjayatu: The Science & Ethics Foundation, Shoranur-2 PO, Palakkad District, Kerala 679122, India.
| |
Collapse
|
14
|
Nath S. Consolidation of Nath's torsional mechanism of ATP synthesis and two-ion theory of energy coupling in oxidative phosphorylation and photophosphorylation. Biophys Chem 2019; 257:106279. [PMID: 31757522 DOI: 10.1016/j.bpc.2019.106279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 01/09/2023]
Abstract
In a recent publication, Manoj raises criticisms against consensus views on the ATP synthase. The radical statements and assertions are shown to contradict a vast body of available knowledge that includes i) pioneering single-molecule biochemical and biophysical studies from the respected experimental groups of Kinosita, Yoshida, Noji, Börsch, Dunn, Gräber, Frasch, and Dimroth etc., ii) state-of-the-art X-ray and EM/cryo-EM structural information garnered over the decades by the expert groups of Leslie-Walker, Kühlbrandt, Mueller, Meier, Rubinstein, Sazanov, Duncan, and Pedersen on ATP synthase, iii) the pioneering energy-based computer simulations of Warshel, and iv) the novel theoretical and experimental works of Nath. Valid objections against Mitchell's chemiosmotic theory and Boyer's binding change mechanism put forth by Manoj have been addressed satisfactorily by Nath's torsional mechanism of ATP synthesis and two-ion theory of energy coupling and published 10 to 20 years ago, but these papers are not cited by him. This communication shows conclusively and in great detail that none of his objections apply to Nath's mechanism/theory. Nath's theory is further consolidated based on its previous predictive record, its consistency with biochemical evidence, its unified nature, its application to other related energy transductions and to disease, and finally its ability to guide the design of new experiments. Some constructive suggestions for high-resolution structural experiments that have the power to delve into the heart of the matter and throw unprecedented light on the nature of coupled ion translocation in the membrane-bound FO portion of F1FO-ATP synthase are made.
Collapse
Affiliation(s)
- Sunil Nath
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|