1
|
Manoj KM. Murburn posttranslational modifications of proteins: Cellular redox processes and murzyme-mediated metabolo-proteomics. J Cell Physiol 2024; 239:e30954. [PMID: 36716112 DOI: 10.1002/jcp.30954] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/31/2023]
Abstract
Murburn concept constitutes the thesis that diffusible reactive species or DRS are obligatorily involved in routine metabolic and physiological activities. Murzymes are defined as biomolecules/proteins that generate/modulate/sustain/utilize DRS. Murburn posttranslational modifications (PTMs) result because murburn/murzyme functionalism is integral to cellular existence. Cells must incorporate the inherently stochastic nature of operations mediated by DRS. Due to the earlier/inertial stigmatic perception that DRS are mere agents of chaos, several such outcomes were either understood as deterministic modulations sponsored by house-keeping enzymes or deemed as unregulated nonenzymatic events resulting out of "oxidative stress". In the current review, I dispel the myths around DRS-functions, and undertake systematic parsing and analyses of murburn modifications of proteins. Although it is impossible to demarcate all PTMs into the classical or murburn modalities, telltale signs of the latter are evident from the relative inaccessibility of the locus, non-specificities and mechanistic details. It is pointed out that while many murburn PTMs may be harmless, some others could have deleterious or beneficial physiological implications. Some details of reversible/irreversible modifications of amino acid residues and cofactors that may be subjected to phosphorylation, halogenation, glycosylation, alkylation/acetylation, hydroxylation/oxidation, etc. are listed, along with citations of select proteins where such modifications have been reported. The contexts of these modifications and their significance in (patho)physiology/aging and therapy are also presented. With more balanced explorations and statistically verified data, a definitive understanding of normal versus pathological contexts of murburn modifications would be obtainable in the future.
Collapse
|
2
|
Manoj KM, Jacob VD, Kavdia M, Tamagawa H, Jaeken L, Soman V. Questioning rotary functionality in the bacterial flagellar system and proposing a murburn model for motility. J Biomol Struct Dyn 2023; 41:15691-15714. [PMID: 36970840 DOI: 10.1080/07391102.2023.2191146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/09/2023] [Indexed: 03/29/2023]
Abstract
Bacterial flagellar system (BFS) was the primary example of a purported 'rotary-motor' functionality in a natural assembly. This mandates the translation of a circular motion of components inside into a linear displacement of the cell body outside, which is supposedly orchestrated with the following features of the BFS: (i) A chemical/electrical differential generates proton motive force (pmf, including a trans-membrane potential, TMP), which is electro-mechanically transduced by inward movement of protons via BFS. (ii) Membrane-bound proteins of BFS serve as stators and the slender filament acts as an external propeller, culminating into a hook-rod that pierces the membrane to connect to a 'broader assembly of deterministically movable rotor'. We had disclaimed the purported pmf/TMP-based respiratory/photosynthetic physiology involving Complex V, which was also perceived as a 'rotary machine' earlier. We pointed out that the murburn redox logic was operative therein. We pursue the following similar perspectives in BFS-context: (i) Low probability for the evolutionary attainment of an ordered/synchronized teaming of about two dozen types of proteins (assembled across five-seven distinct phases) towards the singular agendum of rotary motility. (ii) Vital redox activity (not the gambit of pmf/TMP!) powers the molecular and macroscopic activities of cells, including flagella. (iii) Flagellar movement is noted even in ambiances lacking/countering the directionality mandates sought by pmf/TMP. (iv) Structural features of BFS lack component(s) capable of harnessing/achieving pmf/TMP and functional rotation. A viable murburn model for conversion of molecular/biochemical activity into macroscopic/mechanical outcomes is proposed herein for understanding BFS-assisted motility. HIGHLIGHTSThe motor-like functionalism of bacterial flagellar system (BFS) is analyzedProton/Ion-differential based powering of BFS is unviable in bacteriaUncouplers-sponsored effects were misinterpreted, resulting in a detour in BFS researchThese findings mandate new explanation for nano-bio-mechanical movements in BFSA minimalist murburn model for the bacterial flagella-aided movement is proposedCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kelath Murali Manoj
- Satyamjayatu, The Science & Ethics Foundation, Palakkad District, Kerala, India
| | - Vivian David Jacob
- Satyamjayatu, The Science & Ethics Foundation, Palakkad District, Kerala, India
| | - Mahendra Kavdia
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| | - Hirohisa Tamagawa
- Department of Mechanical Engineering, Gifu University, Gifu City, Japan
| | - Laurent Jaeken
- Department of Industrial Sciences and Technology, Karel de Grote-Hogeschool, Antwerp University Association, Belgium
| | - Vidhu Soman
- Department of Bioscience & Bioengineering, IIT Bombay (& DSS Imagetech Pvt. Ltd), Mumbai, Maharashtra, India
| |
Collapse
|
3
|
Manoj KM, Bazhin NM, Jacob VD, Parashar A, Gideon DA, Manekkathodi A. Structure-function correlations and system dynamics in oxygenic photosynthesis: classical perspectives and murburn precepts. J Biomol Struct Dyn 2022; 40:10997-11023. [PMID: 34323659 DOI: 10.1080/07391102.2021.1953606] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
HIGHLIGHTS Contemporary beliefs on oxygenic photosynthesis are critiqued.Murburn model is suggested as an alternative explanation.In the new model, diffusible reactive species are the main protagonists.All pigments are deemed photo-redox active in the new stochastic mechanism.NADPH synthesis occurs via simple electron transfers, not via elaborate ETC.Oxygenesis is delocalized and not just centered at Mn-Complex.Energetics of murburn proposal for photophosphorylation is provided.The proposal ushers in a paradigm shift in photosynthesis research.
Collapse
Affiliation(s)
| | | | - Vivian David Jacob
- Satyamjayatu: The Science & Ethics Foundation, Kulappully, Kerala, India
| | - Abhinav Parashar
- Satyamjayatu: The Science & Ethics Foundation, Kulappully, Kerala, India
| | | | - Afsal Manekkathodi
- Satyamjayatu: The Science & Ethics Foundation, Kulappully, Kerala, India
| |
Collapse
|
4
|
Manoj KM, Gideon DA. Structural foundations for explaining the physiological roles of murzymes embedded in diverse phospholipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183981. [PMID: 35690100 DOI: 10.1016/j.bbamem.2022.183981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
The advent of improved structural biology protocols and bioinformatics methodologies have provided paradigm-shifting insights on metabolic or physiological processes catalyzed by homo-/hetero- proteins (super)complexes embedded in phospholipid membranes of cells/organelles. In this panoramic review, we succinctly elucidate the structural features of select redox proteins from four systems: hepatocyte/adrenal cortex endoplasmic reticulum (microsomes), inner mitochondrial membrane (cristae), thylakoid membrane (grana), and in the flattened disks of rod/cone cells (in retina). Besides catalyzing fast/crucial (photo)chemical reactions, these proteins utilize the redox-active diatomic gaseous molecule of oxygen, the elixir of aerobic life. Quite contrary to extant perceptions that invoke primarily deterministic affinity-binding or conformation-change based "proton-pump"/"serial electron-relay" type roles, we advocate murzyme functions for the membrane-embedded proteins in these systems. Murzymes are proteins that generate/stabilize/utilize diffusible reactive (oxygen) species (DRS/DROS) based activities. Herein, we present a brief compendium of the recently revealed wealth of structural information and mechanistic concepts on how the membrane proteins use DRS/DROS to aid 'effective charge separation' and facilitate trans-membrane dynamics of diverse species in milieu, thereby enabling the cells to function as 'simple chemical engines'.
Collapse
Affiliation(s)
- Kelath Murali Manoj
- Satyamjayatu: The Science & Ethics Foundation, Snehatheeram, Shoranur-2 (PO), Kerala 679122, India.
| | - Daniel Andrew Gideon
- Satyamjayatu: The Science & Ethics Foundation, Snehatheeram, Shoranur-2 (PO), Kerala 679122, India.
| |
Collapse
|
5
|
Manoj KM, Nirusimhan V, Parashar A, Edward J, Gideon DA. Murburn precepts for lactic-acidosis, Cori cycle, and Warburg effect: Interactive dynamics of dehydrogenases, protons, and oxygen. J Cell Physiol 2021; 237:1902-1922. [PMID: 34927737 DOI: 10.1002/jcp.30661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 12/24/2022]
Abstract
It is unresolved why lactate is transported to the liver for further utilization within the physiological purview of Cori cycle, when muscles have more lactate dehydrogenase (LDH) than liver. We point out that the answer lies in thermodynamics/equilibriums. While the utilization of NADH for the reduction of pyruvate to lactate can be mediated via the classical mechanism, the oxidation of lactate (with/without the uphill reduction of NAD+ ) necessitates alternative physiological approaches. The latter pathway occurs via interactive equilibriums involving the enzyme, protons and oxygen or diffusible reactive oxygen species (DROS). Since liver has high DROS, the murburn activity at LDH would enable the cellular system to tide over the unfavorable energy barriers of the forward reaction (~476 kJ/mol; earlier miscalculated as ~26 kJ/mole). Further, the new mechanism does not necessitate any "smart decision-making" or sophisticated control by/of proteins. The DROS-based murburn theory explains the invariant active-site structure of LDH isozymes and their multimeric nature. The theoretical insights, in silico evidence and analyses of literature herein also enrich our understanding of the underpinnings of "lactic acidosis" (lowering of physiological pH accompanied by lactate production), Warburg effect (increased lactate production at high pO2 by cancer cells) and approach for cancer therapy.
Collapse
Affiliation(s)
- Kelath Murali Manoj
- Department of Biochemistry, Satyamjayatu: The Science & Ethics Foundation, Palakkad, Kerala, India
| | - Vijay Nirusimhan
- Department of Biochemistry, Satyamjayatu: The Science & Ethics Foundation, Palakkad, Kerala, India
| | - Abhinav Parashar
- Department of Biochemistry, Satyamjayatu: The Science & Ethics Foundation, Palakkad, Kerala, India
| | - Jesucastin Edward
- Department of Biochemistry, Satyamjayatu: The Science & Ethics Foundation, Palakkad, Kerala, India
| | - Daniel Andrew Gideon
- Department of Biochemistry, Satyamjayatu: The Science & Ethics Foundation, Palakkad, Kerala, India
| |
Collapse
|
6
|
Manoj KM, Gideon DA, Jaeken L. Why do cells need oxygen? Insights from mitochondrial composition and function. Cell Biol Int 2021; 46:344-358. [PMID: 34918410 DOI: 10.1002/cbin.11746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 02/03/2023]
Abstract
Mitochondrial membrane-embedded redox proteins are classically perceived as deterministic "electron transport chain" (ETC) arrays cum proton pumps; and oxygen is seen as an "immobile terminal electron acceptor." This is untenable because: (1) there are little free protons to be pumped out of the matrix; (2) proton pumping would be highly endergonic; (3) ETC-chemiosmosis-rotary ATP synthesis proposal is "irreducibly complex"/"non-evolvable" and does not fit with mitochondrial architecture or structural/distribution data of the concerned proteins/components; (4) a plethora of experimental observations do not conform to the postulates/requisites; for example, there is little evidence for viable proton-pumps/pH-gradient in mitochondria, trans-membrane potential (TMP) is non-fluctuating/non-trappable, oxygen is seen to give copious "diffusible reactive (oxygen) species" (DRS/DROS) in milieu, etc. Quite contrarily, the newly proposed murburn model's tenets agree with known principles of energetics/kinetics, and builds on established structural data and reported observations. In this purview, oxygen is needed to make DRS, the principal component of mitochondrial function. Complex V and porins respectively serve as proton-inlet and turgor-based water-exodus portals, thereby achieving organellar homeostasis. Complexes I to IV possess ADP-binding sites and their redox-centers react/interact with O2 /DRS. At/around these complexes, DRS cross-react or activate/oxidize ADP/Pi via fast thermogenic one-electron reaction(s), condensing to form two-electron stabilized products (H2 O2 /H2 O/ATP). The varied architecture and distribution of components in mitochondria validate DRS as (i) the coupling agent of oxidative reactions and phosphorylations, and (ii) the primary reason for manifestation of TMP in steady-state. Explorations along the new precepts stand to provide greater insights on mitochondrial function and pathophysiology.
Collapse
Affiliation(s)
- Kelath Murali Manoj
- Department of Biochemistry, Satyamjayatu: The Science & Ethics Foundation, Kerala, India
| | - Daniel Andrew Gideon
- Department of Biochemistry, Satyamjayatu: The Science & Ethics Foundation, Kerala, India
| | - Laurent Jaeken
- Industrial Sciences and Technology, Karel de Grote-Hogeschool, Association University and High Schools Antwerp, Antwerpen, Belgium
| |
Collapse
|
7
|
Manoj KM, Tamagawa H. Critical analysis of explanations for cellular homeostasis and electrophysiology from murburn perspective. J Cell Physiol 2021; 237:421-435. [PMID: 34515340 DOI: 10.1002/jcp.30578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 01/20/2023]
Abstract
Pursuits in modern cellular electrophysiology are fraught with disagreements at a fundamental level. While the membrane theory of homeostasis deems the cell membrane and proteins embedded therein as the chief players, the association-induction (or sorption/bulk-phase) hypothesis considers the aqueous phase of dissolved proteins (cytoplasm/protoplasm) as the key determinant of cellular composition and ionic fluxes. In the first school of thought, trans-membrane potential (TMP) and selective ion pumps/channels are deemed as key operative principles. In the latter theory, sorption-desorption dynamics and rearrangements of bulk phase determine the outcomes. In both these schools of thought, theorists believe that the macroscopic phase electroneutrality holds, TMP (whether in resting or in activated state) results solely due to ionic concentration differentials across the membrane, and the concerned proteins undergo major conformation changes to affect/effect the noted outcomes. The new entry into the field, murburn concept, builds starting from molecular considerations to macroscopic observations. It moots "effective charge separation" and intricate "molecule-ion-radical" electron transfer equilibriums as a rationale for ionic concentration differentials and TMP variation. After making an unbiased appraisal of the two classical schools of thought, the review makes a point-wise analysis of some hitherto unresolved observations/considerations and suggests the need to rethink the mechanistic perspectives.
Collapse
Affiliation(s)
- Kelath Murali Manoj
- Satyamjayatu: The Science & Ethics Foundation, Kulappully, Palakkad District, Shoranur-2 (PO), Kerala, India
| | - Hirohisa Tamagawa
- Department of Mechanical Engineering, Gifu University, Yanagido, Gifu City, Japan
| |
Collapse
|
8
|
Manoj KM, Bazhin N. The murburn precepts for aerobic respiration and redox homeostasis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 167:104-120. [DOI: 10.1016/j.pbiomolbio.2021.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/13/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022]
|
9
|
Manoj KM, Manekkathodi A. Light's interaction with pigments in chloroplasts: The murburn perspective. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2020.100015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
10
|
Silva PJ. Chemiosmotic misunderstandings. Biophys Chem 2020; 264:106424. [PMID: 32717593 DOI: 10.1016/j.bpc.2020.106424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 02/04/2023]
Abstract
Recent publications have questioned the appropriateness of the chemiosmotic theory, a key tenet of modern bioenergetics originally described by Mitchell and since widely improved upon and applied. In one of them, application of Gauss' law to a model charge distribution in mitochondria was argued to refute the possibility of ATP generation through H+ movement in the absence of a counterion, whereas a different author advocated, for other reasons, the impossibility of chemiosmosis and proposed that a novel energy-generation scheme (referred to as "murburn") relying on superoxide-catalyzed (or superoxide-promoted) ADP phosphorylation would operate instead. In this letter, those proposals are critically examined and found to be inconsistent with established experimental data and new theoretical calculations.
Collapse
Affiliation(s)
- Pedro J Silva
- FP-ENAS/Fac. de Ciências da Saúde, Universidade Fernando Pessoa, Porto, Portugal; UCIBIO@REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
11
|
Manoj KM, Ramasamy S, Parashar A, Gideon DA, Soman V, Jacob VD, Pakshirajan K. Acute toxicity of cyanide in aerobic respiration: Theoretical and experimental support for murburn explanation. Biomol Concepts 2020; 11:32-56. [PMID: 32187011 DOI: 10.1515/bmc-2020-0004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/19/2020] [Indexed: 12/30/2022] Open
Abstract
The inefficiency of cyanide/HCN (CN) binding with heme proteins (under physiological regimes) is demonstrated with an assessment of thermodynamics, kinetics, and inhibition constants. The acute onset of toxicity and CN's mg/Kg LD50 (μM lethal concentration) suggests that the classical hemeFe binding-based inhibition rationale is untenable to account for the toxicity of CN. In vitro mechanistic probing of CN-mediated inhibition of hemeFe reductionist systems was explored as a murburn model for mitochondrial oxidative phosphorylation (mOxPhos). The effect of CN in haloperoxidase catalyzed chlorine moiety transfer to small organics was considered as an analogous probe for phosphate group transfer in mOxPhos. Similarly, inclusion of CN in peroxidase-catalase mediated one-electron oxidation of small organics was used to explore electron transfer outcomes in mOxPhos, leading to water formation. The free energy correlations from a Hammett study and IC50/Hill slopes analyses and comparison with ligands ( CO/ H 2 S/ N 3 - ) $\left( {\text{CO}}/{{{{\text{H}}_{2}}\text{S}}/{\text{N}_{3}^{\text{-}}}\;}\; \right)$ provide insights into the involvement of diffusible radicals and proton-equilibriums, explaining analogous outcomes in mOxPhos chemistry. Further, we demonstrate that superoxide (diffusible reactive oxygen species, DROS) enables in vitro ATP synthesis from ADP+phosphate, and show that this reaction is inhibited by CN. Therefore, practically instantaneous CN ion-radical interactions with DROS in matrix catalytically disrupt mOxPhos, explaining the acute lethal effect of CN.
Collapse
Affiliation(s)
- Kelath Murali Manoj
- Satyamjayatu: The Science & Ethics Foundation Snehatheeram, Kulappully, Shoranur-2 (PO), Kerala, India-679122
| | - Surjith Ramasamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India-781039
| | - Abhinav Parashar
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Guntur, India-522213
| | - Daniel Andrew Gideon
- Department of Biotechnology, Bishop Heber College, Tiruchirappalli, Tamil Nadu, India-620017
| | - Vidhu Soman
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India-110016
| | - Vivian David Jacob
- Satyamjayatu: The Science & Ethics Foundation Snehatheeram, Kulappully, Shoranur-2 (PO), Kerala, India-679122
| | - Kannan Pakshirajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India-781039
| |
Collapse
|