1
|
Pancsa R, Andreev DE, Dean K. The implication of non-AUG-initiated N-terminally extended proteoforms in cancer. RNA Biol 2025; 22:1-18. [PMID: 40276932 PMCID: PMC12045569 DOI: 10.1080/15476286.2025.2498203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/03/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025] Open
Abstract
Dysregulated translation is a hallmark of cancer, and recent genome-wide studies in tumour cells have uncovered widespread translation of non-canonical reading frames that often initiate at non-AUG codons. If an upstream non-canonical start site is located within a frame with an annotated coding sequence (CDS), such translation events can lead to the production of proteoforms with altered N-termini (PANTs). Certain examples of PANTs from oncogenes (e.g. c-MYC) and tumour suppressors (e.g. PTEN) have been previously linked to cancer. We have performed a systematic computational analysis on recently identified non-AUG initiation-derived N-terminal extensions of cancer-associated proteins, and we discuss how these extended proteoforms may acquire new oncogenic properties. We identified a loss of stability for the N-terminally extended proteoforms of oncogenes TCF-4 and SOX2. Furthermore, we discovered likely functional short linear motifs within the N-terminal extensions of oncogenes and tumour suppressors (SOX2, SUFU, SFPQ, TOP1 and SPEN/SHARP) that could provide an explanation for previously described functionalities or interactions of the proteins. In all, we identify novel cases where PANTs likely show different localization, functions, partner binding or turnover rates compared to the annotated proteoforms. Therefore, we propose that alterations in the stringency of translation initiation, often seen under conditions of cellular stress, may result in reprogramming of translation to generate novel PANTs that influence cancer progression.
Collapse
Affiliation(s)
- Rita Pancsa
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Dmitry E. Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Kellie Dean
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Wagner PA, Song M, Ficner R, Kuhle B, Marintchev A. Molecular basis for the interactions of eIF2β with eIF5, eIF2B, and 5MP1 and their regulation by CK2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591181. [PMID: 38712236 PMCID: PMC11071521 DOI: 10.1101/2024.04.25.591181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The heterotrimeric GTPase eukaryotic translation initiation factor 2 (eIF2) delivers the initiator Met-tRNA i to the ribosomal translation preinitiation complex (PIC). eIF2β has three lysine-rich repeats (K-boxes), important for binding to the GTPase-activating protein eIF5, the guanine nucleotide exchange factor eIF2B, and the regulator eIF5-mimic protein (5MP). Here, we combine X-ray crystallography with NMR to understand the molecular basis and dynamics of these interactions. The crystal structure of yeast eIF5-CTD in complex with eIF2β K-box 3 reveals an extended binding site on eIF2β, far beyond the K-box. We show that eIF2β contains three distinct binding sites, centered on each of the K-boxes, and human eIF5, eIF2Bε, and 5MP1 can bind to all three sites, while reducing each other's affinities. Our results reveal how eIF2B speeds up the dissociation of eIF5 from eIF2-GDP to promote nucleotide exchange; and how 5MP1 can destabilize eIF5 binding to eIF2 and the PIC, to promote stringent start codon selection. All these affinities are increased by CK2 phosphomimetic mutations, highlighting the role of CK2 in both remodeling and stabilizing the translation apparatus.
Collapse
|
3
|
Zhang D, Zhu L, Wang F, Li P, Wang Y, Gao Y. Molecular mechanisms of eukaryotic translation fidelity and their associations with diseases. Int J Biol Macromol 2023; 242:124680. [PMID: 37141965 DOI: 10.1016/j.ijbiomac.2023.124680] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
Converting genetic information into functional proteins is a complex, multi-step process, with each step being tightly regulated to ensure the accuracy of translation, which is critical to cellular health. In recent years, advances in modern biotechnology, especially the development of cryo-electron microscopy and single-molecule techniques, have enabled a clearer understanding of the mechanisms of protein translation fidelity. Although there are many studies on the regulation of protein translation in prokaryotes, and the basic elements of translation are highly conserved in prokaryotes and eukaryotes, there are still great differences in the specific regulatory mechanisms. This review describes how eukaryotic ribosomes and translation factors regulate protein translation and ensure translation accuracy. However, a certain frequency of translation errors does occur in translation, so we describe diseases that arise when the rate of translation errors reaches or exceeds a threshold of cellular tolerance.
Collapse
Affiliation(s)
- Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao, China
| | - Fei Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
4
|
Brender JR, Ramamoorthy A, Gursky O, Bhunia A. Intrinsic disorder and structural biology: Searching where the light isn't. Biophys Chem 2023; 292:106912. [PMID: 36335754 DOI: 10.1016/j.bpc.2022.106912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jeffrey R Brender
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, and Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Olga Gursky
- Boston University School of Medicine, Department of Physiology & Biophysics, W302, 700 Albany St, Boston, MA 02118, USA
| | - Anirban Bhunia
- Biomolecular NMR and Drug Design Laboratory, Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| |
Collapse
|
5
|
Friedrich D, Marintchev A, Arthanari H. The metaphorical swiss army knife: The multitude and diverse roles of HEAT domains in eukaryotic translation initiation. Nucleic Acids Res 2022; 50:5424-5442. [PMID: 35552740 PMCID: PMC9177959 DOI: 10.1093/nar/gkac342] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
Biomolecular associations forged by specific interaction among structural scaffolds are fundamental to the control and regulation of cell processes. One such structural architecture, characterized by HEAT repeats, is involved in a multitude of cellular processes, including intracellular transport, signaling, and protein synthesis. Here, we review the multitude and versatility of HEAT domains in the regulation of mRNA translation initiation. Structural and cellular biology approaches, as well as several biophysical studies, have revealed that a number of HEAT domain-mediated interactions with a host of protein factors and RNAs coordinate translation initiation. We describe the basic structural architecture of HEAT domains and briefly introduce examples of the cellular processes they dictate, including nuclear transport by importin and RNA degradation. We then focus on proteins in the translation initiation system featuring HEAT domains, specifically the HEAT domains of eIF4G, DAP5, eIF5, and eIF2Bϵ. Comparative analysis of their remarkably versatile interactions, including protein-protein and protein-RNA recognition, reveal the functional importance of flexible regions within these HEAT domains. Here we outline how HEAT domains orchestrate fundamental aspects of translation initiation and highlight open mechanistic questions in the area.
Collapse
Affiliation(s)
- Daniel Friedrich
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Assen Marintchev
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, USA
| | - Haribabu Arthanari
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Gamble N, Paul EE, Anand B, Marintchev A. Regulation of the interactions between human eIF5 and eIF1A by the CK2 kinase. Curr Res Struct Biol 2022; 4:308-319. [PMID: 36164648 PMCID: PMC9508154 DOI: 10.1016/j.crstbi.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/26/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Translation initiation in eukaryotes relies on a complex network of interactions that are continuously reorganized throughout the process. As more information becomes available about the structure of the ribosomal preinitiation complex (PIC) at various points in translation initiation, new questions arise about which interactions occur when, their roles, and regulation. The eukaryotic translation factor (eIF) 5 is the GTPase-activating protein (GAP) for the GTPase eIF2, which brings the initiator Met-tRNAi to the PIC. eIF5 also plays a central role in PIC assembly and remodeling through interactions with other proteins, including eIFs 1, 1A, and 3c. Phosphorylation by casein kinase 2 (CK2) significantly increases the eIF5 affinity for eIF2. The interaction between eIF5 and eIF1A was reported to be mediated by the eIF5 C-terminal domain (CTD) and the eIF1A N-terminal tail. Here, we report a new contact interface, between eIF5-CTD and the oligonucleotide/oligosaccharide-binding fold (OB) domain of eIF1A, which contributes to the overall affinity between the two proteins. We also show that the interaction is modulated by dynamic intramolecular interactions within both eIF5 and eIF1A. CK2 phosphorylation of eIF5 increases its affinity for eIF1A, offering new insights into the mechanisms by which CK2 stimulates protein synthesis and cell proliferation. eIF5-CTD interacts with both the N-terminal tail and the OB domain of eIF1A. The OB domain contacts stabilize the overall interaction. The eIF1A C-terminal tail and the eIF5 DWEAR motif interfere with OB domain binding. CK2 phosphorylation of eIF5 increases its affinity for eIF1A.
Collapse
|