1
|
Kundu S, Maity A, Misra R, Bhunia M, Nanda B, Adhikary A, Sahoo A, Baitalik S, Pal U, Saha S, Maiti NC. Morin Interacts with α-Synuclein and Retards Its Fibrillation. J Phys Chem B 2025. [PMID: 40372795 DOI: 10.1021/acs.jpcb.4c08635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
α-Synuclein is a small (14 kDa) intrinsically disordered water-soluble protein, and its unwanted aggregation and fibrillation are believed to play a critical role in the pathogenesis of Parkinson's disease. Our current investigation uniquely utilized intrinsic tyrosine fluorescence of α-synuclein and showed that morin hydrate (MOR), a polyhydroxyflavonol, in aqueous solution formed a 1:1 complex with a sub-micromolar range of binding affinity and stabilized the protein structure at an ambient solution condition. Steady-state fluorescence of the protein, in the presence of MOR, was quenched; however, the fluorescence lifetime (∼1.28 ns) was not significantly perturbed; it indicated formation of ground-state association of the flavonol with the protein. The estimated binding constant was ∼4.5 × 104 M-1 and indicated a weak binding interaction at room temperature (∼25 °C). However, the presence of the MOR stabilizes the protein residues in their α-helical space; circular dichroism spectroscopic analysis revealed reduction in disordered content and an elevation of the protein conformation more toward the folded structure. A tandem use of atomic force microscopy and thioflavin T-based fluorescence measurement of the incubated samples in the presence of flavonol showed retardation of aggregation and associated fibrillation. Computational analysis also showed that the presence of the molecule rendered α-synuclein to be more compacted, and a greater number of amino acid residues were found to be in α-helical conformational space. Residues Val40, Glu126, Gln134, and Tyr136 were involved mainly in hydrogen bond interaction, and residues Gly41, Lys43, and Asp135 enhanced conformational stability via water bridges. The results confirmed that the weak but ample interaction of morin hydrate provided structural stability to otherwise highly fluctuating α-synuclein via hydrophobic and hydrogen bond interaction. It caused retardation in the processes of hydrophobic zipping (among the amyloidogenic regions), which is believed to be a key event in the processes of cross-β-sheet-rich amyloid fibril formation, the event that is highly implicated in the pathology of Parkinson and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Shubham Kundu
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S.C. Mallick Road, Kolkata 700032, India
| | - Anupam Maity
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S.C. Mallick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Rajdip Misra
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S.C. Mallick Road, Kolkata 700032, India
| | - Mrinmay Bhunia
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S.C. Mallick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Banadipa Nanda
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S.C. Mallick Road, Kolkata 700032, India
| | - Ananya Adhikary
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S.C. Mallick Road, Kolkata 700032, India
| | - Anik Sahoo
- Department of Chemistry, Jadavpur University, 188, Raja S.C. Mallick Rd., Kolkata 700032, India
| | - Sujoy Baitalik
- Department of Chemistry, Jadavpur University, 188, Raja S.C. Mallick Rd., Kolkata 700032, India
| | - Uttam Pal
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S.C. Mallick Road, Kolkata 700032, India
| | - Saumen Saha
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S.C. Mallick Road, Kolkata 700032, India
| | - Nakul C Maiti
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S.C. Mallick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| |
Collapse
|
2
|
Ghosh D, Biswas A, Radhakrishna M. Advanced computational approaches to understand protein aggregation. BIOPHYSICS REVIEWS 2024; 5:021302. [PMID: 38681860 PMCID: PMC11045254 DOI: 10.1063/5.0180691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/18/2024] [Indexed: 05/01/2024]
Abstract
Protein aggregation is a widespread phenomenon implicated in debilitating diseases like Alzheimer's, Parkinson's, and cataracts, presenting complex hurdles for the field of molecular biology. In this review, we explore the evolving realm of computational methods and bioinformatics tools that have revolutionized our comprehension of protein aggregation. Beginning with a discussion of the multifaceted challenges associated with understanding this process and emphasizing the critical need for precise predictive tools, we highlight how computational techniques have become indispensable for understanding protein aggregation. We focus on molecular simulations, notably molecular dynamics (MD) simulations, spanning from atomistic to coarse-grained levels, which have emerged as pivotal tools in unraveling the complex dynamics governing protein aggregation in diseases such as cataracts, Alzheimer's, and Parkinson's. MD simulations provide microscopic insights into protein interactions and the subtleties of aggregation pathways, with advanced techniques like replica exchange molecular dynamics, Metadynamics (MetaD), and umbrella sampling enhancing our understanding by probing intricate energy landscapes and transition states. We delve into specific applications of MD simulations, elucidating the chaperone mechanism underlying cataract formation using Markov state modeling and the intricate pathways and interactions driving the toxic aggregate formation in Alzheimer's and Parkinson's disease. Transitioning we highlight how computational techniques, including bioinformatics, sequence analysis, structural data, machine learning algorithms, and artificial intelligence have become indispensable for predicting protein aggregation propensity and locating aggregation-prone regions within protein sequences. Throughout our exploration, we underscore the symbiotic relationship between computational approaches and empirical data, which has paved the way for potential therapeutic strategies against protein aggregation-related diseases. In conclusion, this review offers a comprehensive overview of advanced computational methodologies and bioinformatics tools that have catalyzed breakthroughs in unraveling the molecular basis of protein aggregation, with significant implications for clinical interventions, standing at the intersection of computational biology and experimental research.
Collapse
Affiliation(s)
- Deepshikha Ghosh
- Department of Biological Sciences and Engineering, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gujarat 382355, India
| | - Anushka Biswas
- Department of Chemical Engineering, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gujarat 382355, India
| | | |
Collapse
|
3
|
Ghosh D, Sojitra KA, Biswas A, Agarwal M, Radhakrishna M. Effect of mutations on the folding and stability of γD-crystallin protein. J Biomol Struct Dyn 2023; 42:12062-12076. [PMID: 37830785 DOI: 10.1080/07391102.2023.2266768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023]
Abstract
Interprotein interactions between the partially unfolded states of γD-crystallin (γD-crys) protein are known to cause cataracts. Therefore, understanding the unfolding pathways of native γD-crys is extremely crucial to delineate their aggregation mechanism. In this study, we have performed extensive all-atom Molecular Dynamics simulations with explicit solvent to understand the role of the critical residues that drive the stability of the motifs and domains of γD-crys in its wild type and mutant forms. Our findings show that while the individual motifs of wild type are not stable in the native form, the individual domains remain structurally stable at 425K. This enhanced stability of the domain was attributed to the hydrophobic interactions between the motifs. Single and double point mutations of the domains with negatively charged aspartic and glutamic acid amino acid residues (I3E, W42D, W42E, I3D/W42D, I3E/W42E, and L92D/W157D) decreases the structural stability, leading to unfolding of individual domains of γD-crys. We believe that our study sheds light on the weakest links of γD-crys, along with the role of interactions stabilizing the domains. Further, this study bolsters and provides a better understanding of the domain swapping mechanism of aggregation of γD-crys.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Deepshikha Ghosh
- Department of Biological Sciences and Engineering, Indian Institute of Technology (IIT), Gandhinagar, Palaj, Gujarat, India
| | - Kandarp Ashokbhai Sojitra
- Replace with:Department of Chemical Engineering, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gujarat, India
| | - Anushka Biswas
- Replace with:Department of Chemical Engineering, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gujarat, India
| | - Manish Agarwal
- Computer Services Centre, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, Delhi
| | - Mithun Radhakrishna
- Replace with:Department of Chemical Engineering, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gujarat, India
- Center for Biomedical Engineering, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gujarat, India
| |
Collapse
|
4
|
Guo C, Li Q, Xiao J, Ma F, Xia X, Shi M. Identification of defactinib derivatives targeting focal adhesion kinase using ensemble docking, molecular dynamics simulations and binding free energy calculations. J Biomol Struct Dyn 2023; 41:8654-8670. [PMID: 36281703 DOI: 10.1080/07391102.2022.2135601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/08/2022] [Indexed: 10/31/2022]
Abstract
Focal adhesion kinase (FAK) belongs to the nonreceptor tyrosine kinases, which selectively phosphorylate tyrosine residues on substrate proteins. FAK is associated with bladder, esophageal, gastric, neck, breast, ovarian and lung cancers. Thus, FAK has been considered as a potential target for tumor treatment. Currently, there are six adenosine triphosphate (ATP)-competitive FAK inhibitors tested in clinical trials but no approved inhibitors targeting FAK. Defactinib (VS-6063) is a second-generation FAK inhibitor with an IC50 of 0.6 nM. The binding model of VS-6063 with FAK may provide a reference model for developing new antitumor FAK-targeting drugs. In this study, the VS-6063/FAK binding model was constructed using ensemble docking and molecular dynamics simulations. Furthermore, the molecular mechanics/generalized Born (GB) surface area (MM/GBSA) method was employed to estimate the binding free energy between VS-6063 and FAK. The key residues involved in VS-6063/FAK binding were also determined using per-residue energy decomposition analysis. Based on the binding model, VS-6063 could be separated into seven regions to enhance its binding affinity with FAK. Meanwhile, 60 novel defactinib-based compounds were designed and verified using ensemble docking. Overall, the present study improves our understanding of the binding mechanism of human FAK with VS-6063 and provides new insights into future drug designs targeting FAK.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Chuan Guo
- Clinical Medical College, Chengdu Medical College, Chengdu, Sichuan, China
| | - Qinxuan Li
- Clinical Medical College, Chengdu Medical College, Chengdu, Sichuan, China
| | - Jiujia Xiao
- Clinical Medical College, Chengdu Medical College, Chengdu, Sichuan, China
| | - Feng Ma
- Clinical Medical College, Chengdu Medical College, Chengdu, Sichuan, China
| | - Xun Xia
- Clinical Medical College, Chengdu Medical College, Chengdu, Sichuan, China
| | - Mingsong Shi
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Zsidó BZ, Bayarsaikhan B, Börzsei R, Hetényi C. Construction of Histone-Protein Complex Structures by Peptide Growing. Int J Mol Sci 2023; 24:13831. [PMID: 37762134 PMCID: PMC10530865 DOI: 10.3390/ijms241813831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The structures of histone complexes are master keys to epigenetics. Linear histone peptide tails often bind to shallow pockets of reader proteins via weak interactions, rendering their structure determination challenging. In the present study, a new protocol, PepGrow, is introduced. PepGrow uses docked histone fragments as seeds and grows the full peptide tails in the reader-binding pocket, producing atomic-resolution structures of histone-reader complexes. PepGrow is able to handle the flexibility of histone peptides, and it is demonstrated to be more efficient than linking pre-docked peptide fragments. The new protocol combines the advantages of popular program packages and allows fast generation of solution structures. AutoDock, a force-field-based program, is used to supply the docked peptide fragments used as structural seeds, and the building algorithm of Modeller is adopted and tested as a peptide growing engine. The performance of PepGrow is compared to ten other docking methods, and it is concluded that in situ growing of a ligand from a seed is a viable strategy for the production of complex structures of histone peptides at atomic resolution.
Collapse
Affiliation(s)
| | | | | | - Csaba Hetényi
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Út 12, 7624 Pécs, Hungary; (B.Z.Z.); (B.B.); (R.B.)
| |
Collapse
|
6
|
Islam S, Do M, Frank BS, Hom GL, Wheeler S, Fujioka H, Wang B, Minocha G, Sell DR, Fan X, Lampi KJ, Monnier VM. α-Crystallin chaperone mimetic drugs inhibit lens γ-crystallin aggregation: potential role for cataract prevention. J Biol Chem 2022; 298:102417. [PMID: 36037967 PMCID: PMC9525908 DOI: 10.1016/j.jbc.2022.102417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
Γ-Crystallins play a major role in age-related lens transparency. Their destabilization by mutations and physical chemical insults are associated with cataract formation. Therefore, drugs that increase their stability should have anticataract properties. To this end, we screened 2560 Federal Drug Agency–approved drugs and natural compounds for their ability to suppress or worsen H2O2 and/or heat-mediated aggregation of bovine γ-crystallins. The top two drugs, closantel (C), an antihelminthic drug, and gambogic acid (G), a xanthonoid, attenuated thermal-induced protein unfolding and aggregation as shown by turbidimetry fluorescence spectroscopy dynamic light scattering and electron microscopy of human or mouse recombinant crystallins. Furthermore, binding studies using fluorescence inhibition and hydrophobic pocket–binding molecule bis-8-anilino-1-naphthalene sulfonic acid revealed static binding of C and G to hydrophobic sites with medium-to-low affinity. Molecular docking to HγD and other γ-crystallins revealed two binding sites, one in the “NC pocket” (residues 50–150) of HγD and one spanning the “NC tail” (residues 56–61 to 168–174 in the C-terminal domain). Multiple binding sites overlap with those of the protective mini αA-crystallin chaperone MAC peptide. Mechanistic studies using bis-8-anilino-1-naphthalene sulfonic acid as a proxy drug showed that it bound to MAC sites, improved Tm of both H2O2 oxidized and native human gamma D, and suppressed turbidity of oxidized HγD, most likely by trapping exposed hydrophobic sites. The extent to which these drugs act as α-crystallin mimetics and reduce cataract progression remains to be demonstrated. This study provides initial insights into binding properties of C and G to γ-crystallins.
Collapse
Affiliation(s)
- Sidra Islam
- Dept of Pathology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Michael Do
- Dept of Pathology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Brett S Frank
- Dept of Pathology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Grant L Hom
- Dept of Pathology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Samuel Wheeler
- Dept of Integrative Biosciences, Oregon Health & Sciences University, Portland, OR 97239
| | - Hisashi Fujioka
- Cryo-EM Core Facility, School of Medicine, Case Western Reserve University, Case Western Reserve University, Cleveland, OH 44016
| | - Benlian Wang
- Center for Proteomics and Bioinformatics, Dept of Nutrition, Case Western Reserve University, Cleveland, OH 44106
| | - Geeta Minocha
- Dept of Pathology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - David R Sell
- Dept of Pathology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Xingjun Fan
- Dept of Cell Biology and Anatomy, Augusta University, Georgia, GA 30912
| | - Kirsten J Lampi
- Dept of Integrative Biosciences, Oregon Health & Sciences University, Portland, OR 97239
| | - Vincent M Monnier
- Dept of Pathology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106; Dept of Biochemistry, Case Western Reserve University, Cleveland OH 44106.
| |
Collapse
|