1
|
Schneider KM, Kummen M, Trivedi PJ, Hov JR. Role of microbiome in autoimmune liver diseases. Hepatology 2024; 80:965-987. [PMID: 37369002 PMCID: PMC11407779 DOI: 10.1097/hep.0000000000000506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/25/2023] [Indexed: 06/29/2023]
Abstract
The microbiome plays a crucial role in integrating environmental influences into host physiology, potentially linking it to autoimmune liver diseases, such as autoimmune hepatitis, primary biliary cholangitis, and primary sclerosing cholangitis. All autoimmune liver diseases are associated with reduced diversity of the gut microbiome and altered abundance of certain bacteria. However, the relationship between the microbiome and liver diseases is bidirectional and varies over the course of the disease. This makes it challenging to dissect whether such changes in the microbiome are initiating or driving factors in autoimmune liver diseases, secondary consequences of disease and/or pharmacological intervention, or alterations that modify the clinical course that patients experience. Potential mechanisms include the presence of pathobionts, disease-modifying microbial metabolites, and more nonspecific reduced gut barrier function, and it is highly likely that the effect of these change during the progression of the disease. Recurrent disease after liver transplantation is a major clinical challenge and a common denominator in these conditions, which could also represent a window to disease mechanisms of the gut-liver axis. Herein, we propose future research priorities, which should involve clinical trials, extensive molecular phenotyping at high resolution, and experimental studies in model systems. Overall, autoimmune liver diseases are characterized by an altered microbiome, and interventions targeting these changes hold promise for improving clinical care based on the emerging field of microbiota medicine.
Collapse
Affiliation(s)
| | - Martin Kummen
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Palak J. Trivedi
- National Institute for Health and Care Research Birmingham Biomedical Research Centre, Centre for Liver and Gastroenterology Research, University of Birmingham, UK
- Liver Unit, University Hospitals Birmingham Queen Elizabeth, Birmingham, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, UK
- Institute of Applied Health Research, University of Birmingham, UK
| | - Johannes R. Hov
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
2
|
Hochman J, Braitbard O. Life after Cleavage: The Story of a β-Retroviral (MMTV) Signal Peptide-From Murine Lymphoma to Human Breast Cancer. Viruses 2022; 14:v14112435. [PMID: 36366533 PMCID: PMC9694287 DOI: 10.3390/v14112435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
An increasing body of evidence in recent years supports an association of the betaretrovirus mouse mammary tumor virus (MMTV) with human breast cancer. This is an issue that still raises heated controversy. We have come to address this association using the signal peptide p14 of the MMTV envelope precursor protein as a key element of our strategy. In addition to its signal peptide function, p14 has some significant post endoplasmic reticulum (ER)-targeting characteristics: (1) it localizes to nucleoli where it binds key proteins (RPL5 and B23) involved (among other activities) in the regulation of nucleolar stress response, ribosome biogenesis and p53 stabilization; (2) p14 is a nuclear export factor; (3) it is expressed on the cell surface of infected cells, and as such, is amenable to, and successfully used, in preventive vaccination against experimental tumors that harbor MMTV; (4) the growth of such tumors is impaired in vivo using a combination of monoclonal anti-p14 antibodies or adoptive T-cell transfer treatments; (5) p14 is a phospho-protein endogenously phosphorylated by two different serine kinases. The phosphorylation status of the two sites determines whether p14 will function in an oncogenic or tumor-suppressing capacity; (6) transcriptional activation of genes (RPL5, ErbB4) correlates with the oncogenic potential of MMTV; (7) finally, polyclonal anti-p14 antibodies have been applied in immune histochemistry analyses of breast cancer cases using formalin fixed paraffin-embedded sections, supporting the associations of MMTV with the disease. Taken together, the above findings constitute a road map towards the diagnosis and possible prevention and treatment of MMTV-associated breast cancer.
Collapse
Affiliation(s)
- Jacob Hochman
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Correspondence: ; Tel.: +972-54-441-4370
| | - Ori Braitbard
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Department of Bioinformatics, The Faculty of Life and Health Sciences, Jerusalem College of Technology, Jerusalem 9372115, Israel
| |
Collapse
|
3
|
Linking Human Betaretrovirus with Autoimmunity and Liver Disease in Patients with Primary Biliary Cholangitis. Viruses 2022; 14:v14091941. [PMID: 36146750 PMCID: PMC9502388 DOI: 10.3390/v14091941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Primary biliary cholangitis (PBC) is an autoimmune liver disease characterized by the production of diagnostic antimitochondrial antibodies (AMA) reactive to the pyruvate dehydrogenase complex. A human betaretrovirus (HBRV) resembling mouse mammary tumor virus has been characterized in patients with PBC. However, linking the viral infection with the disease is not a straight-forward process because PBC is a complex multifactorial disease influenced by genetic, hormonal, autoimmune, environmental, and other factors. Currently, PBC is assumed to have an autoimmune etiology, but the evidence is lacking to support this conjecture. In this review, we describe different approaches connecting HBRV with PBC. Initially, we used co-cultivation of HBRV with biliary epithelial cells to trigger the PBC-specific phenotype with cell surface expression of cryptic mitochondrial autoantigens linked with antimitochondrial antibody expression. Subsequently, we have derived layers of proof to support the role of betaretrovirus infection in mouse models of autoimmune biliary disease with spontaneous AMA production and in patients with PBC. Using Hill’s criteria, we provide an overview of how betaretrovirus infection may trigger autoimmunity and propagate biliary disease. Ultimately, the demonstration that disease can be cured with antiviral therapy may sway the argument toward an infectious disease etiology in an analogous fashion that was used to link H. pylori with peptic ulcer disease.
Collapse
|
4
|
Goubran M, Wang W, Indik S, Faschinger A, Wasilenko ST, Bintner J, Carpenter EJ, Zhang G, Nuin P, Macintyre G, Wong GKS, Mason AL. Isolation of a Human Betaretrovirus from Patients with Primary Biliary Cholangitis. Viruses 2022; 14:v14050886. [PMID: 35632628 PMCID: PMC9146342 DOI: 10.3390/v14050886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
A human betaretrovirus (HBRV) has been linked with the autoimmune liver disease, primary biliary cholangitis (PBC), and various cancers, including breast cancer and lymphoma. HBRV is closely related to the mouse mammary tumor virus, and represents the only exogenous betaretrovirus characterized in humans to date. Evidence of infection in patients with PBC has been demonstrated through the identification of proviral integration sites in lymphoid tissue, the major reservoir of infection, as well as biliary epithelium, which is the site of the disease process. Accordingly, we tested the hypothesis that patients with PBC harbor a transmissible betaretrovirus by co-cultivation of PBC patients’ lymph node homogenates with the HS578T breast cancer line. Because of the low level of HBRV replication, betaretrovirus producing cells were subcloned to optimize viral isolation and production. Evidence of infection was provided by electron microscopy, RT-PCR, in situ hybridization, cloning of the HBRV proviral genome and demonstration of more than 3400 integration sites. Further evidence of viral transmissibility was demonstrated by infection of biliary epithelial cells. While HBRV did not show a preference for integration proximal to specific genomic features, analyses of common insertion sites revealed evidence of integration proximal to cancer associated genes. These studies demonstrate the isolation of HBRV with features similar to mouse mammary tumor virus and confirm that patients with PBC display evidence of a transmissible viral infection.
Collapse
Affiliation(s)
- Mariam Goubran
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.G.); (W.W.); (S.T.W.); (J.B.); (G.Z.); (G.M.); (G.K.-S.W.)
| | - Weiwei Wang
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.G.); (W.W.); (S.T.W.); (J.B.); (G.Z.); (G.M.); (G.K.-S.W.)
| | - Stanislav Indik
- Department of Virology, University of Veterinary Medicine, A-1210 Vienna, Austria; (S.I.); (A.F.)
| | - Alexander Faschinger
- Department of Virology, University of Veterinary Medicine, A-1210 Vienna, Austria; (S.I.); (A.F.)
| | - Shawn T. Wasilenko
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.G.); (W.W.); (S.T.W.); (J.B.); (G.Z.); (G.M.); (G.K.-S.W.)
| | - Jasper Bintner
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.G.); (W.W.); (S.T.W.); (J.B.); (G.Z.); (G.M.); (G.K.-S.W.)
| | - Eric J. Carpenter
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada;
| | - Guangzhi Zhang
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.G.); (W.W.); (S.T.W.); (J.B.); (G.Z.); (G.M.); (G.K.-S.W.)
| | - Paulo Nuin
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2E1, Canada;
| | - Georgina Macintyre
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.G.); (W.W.); (S.T.W.); (J.B.); (G.Z.); (G.M.); (G.K.-S.W.)
| | - Gane K.-S. Wong
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.G.); (W.W.); (S.T.W.); (J.B.); (G.Z.); (G.M.); (G.K.-S.W.)
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada;
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Andrew L. Mason
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.G.); (W.W.); (S.T.W.); (J.B.); (G.Z.); (G.M.); (G.K.-S.W.)
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Correspondence: ; Tel.: +1-(780)-492-8176
| |
Collapse
|
5
|
Genetic Associations and Differential mRNA Expression Levels of Host Genes Suggest a Viral Trigger for Endemic Pemphigus Foliaceus. Viruses 2022; 14:v14050879. [PMID: 35632621 PMCID: PMC9144834 DOI: 10.3390/v14050879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 12/04/2022] Open
Abstract
The long search for the environmental trigger of the endemic pemphigus foliaceus (EPF, fogo selvagem) has not yet resulted in any tangible findings. Here, we searched for genetic associations and the differential expression of host genes involved in early viral infections and innate antiviral defense. Genetic variants could alter the structure, expression sites, or levels of the gene products, impacting their functions. By analyzing 3063 variants of 166 candidate genes in 227 EPF patients and 194 controls, we found 12 variants within 11 genes associated with differential susceptibility (p < 0.005) to EPF. The products of genes TRIM5, TPCN2, EIF4E, EIF4E3, NUP37, NUP50, NUP88, TPR, USP15, IRF8, and JAK1 are involved in different mechanisms of viral control, for example, the regulation of viral entry into the host cell or recognition of viral nucleic acids and proteins. Only two of nine variants were also associated in an independent German cohort of sporadic PF (75 patients, 150 controls), aligning with our hypothesis that antiviral host genes play a major role in EPF due to a specific virus−human interaction in the endemic region. Moreover, CCL5, P4HB, and APOBEC3G mRNA levels were increased (p < 0.001) in CD4+ T lymphocytes of EPF patients. Because there is limited or no evidence that these genes are involved in autoimmunity, their crucial role in antiviral responses and the associations that we observed support the hypothesis of a viral trigger for EPF, presumably a still unnoticed flavivirus. This work opens new frontiers in searching for the trigger of EPF, with the potential to advance translational research that aims for disease prevention and treatment.
Collapse
|
6
|
Turvey SL, Saxinger L, Mason AL. Apples to Apples? A Comparison of Real-World Tolerability of Antiretrovirals in Patients with Human Immunodeficiency Virus Infection and Patients with Primary Biliary Cholangitis. Viruses 2022; 14:v14030516. [PMID: 35336923 PMCID: PMC8949089 DOI: 10.3390/v14030516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/07/2022] [Accepted: 03/01/2022] [Indexed: 12/26/2022] Open
Abstract
We previously characterized a human betaretrovirus and linked infection with the development of primary biliary cholangitis (PBC). There are in vitro and in vivo data demonstrating that antiretroviral therapy used to treat human immunodeficiency virus (HIV) can be repurposed to treat betaretroviruses. As such, PBC patients have been treated with nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs), alone and in combination with a boosted protease inhibitor or an integrase strand transfer inhibitor in case studies and clinical trials. However, a randomized controlled trial using combination antiretroviral therapy with lopinavir was terminated early because 70% of PBC patients discontinued therapy because of gastrointestinal side effects. In the open-label extension, patients tolerating combination therapy underwent a significant reduction in serum liver parameters, whereas those on NRTIs alone rebounded to baseline. Herein, we compare clinical experience in the experimental use of antiretroviral agents in patients with PBC with the broader experience of using these agents in people living with HIV infection. While the incidence of gastrointestinal side effects in the PBC population appears somewhat increased compared to those with HIV infection, the clinical improvement observed in patients with PBC suggests that further studies using the newer and better tolerated antiretroviral agents are warranted.
Collapse
Affiliation(s)
- Shannon L. Turvey
- Division of Infectious Diseases, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada; (S.L.T.); (L.S.)
| | - Lynora Saxinger
- Division of Infectious Diseases, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada; (S.L.T.); (L.S.)
| | - Andrew L. Mason
- Division of Gastroenterology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Correspondence: ; Tel.: +1-780-492-8176; Fax: +1-780-492-1655
| |
Collapse
|
7
|
Lytvyak E, Niazi M, Pai R, He D, Zhang G, Hübscher SG, Mason AL. Combination antiretroviral therapy improves recurrent primary biliary cholangitis following liver transplantation. Liver Int 2021; 41:1879-1883. [PMID: 34008271 PMCID: PMC8362166 DOI: 10.1111/liv.14964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/14/2022]
Abstract
Recurrent primary biliary cholangitis (rPBC) is frequent following liver transplantation and associated with increased morbidity and mortality. It has been argued that rPBC behaves like an infectious disease because more potent immunosuppression with tacrolimus is associated with earlier and more severe recurrence. Prophylactic ursodeoxycholic acid is an established therapeutic option to prevent rPBC, whereas the role of second line therapies, such as obeticholic acid and bezafibrate in rPBC, remains largely unexplored. To address the hypothesis that a human betaretrovirus plays a role in the development of PBC, we have tested antiretroviral therapy in vitro and conducted randomised controlled trials showing improvements in hepatic biochemistry. Herein, we describe the utility of combination antiretroviral therapy to manage rPBC in two patients treated with open label tenofovir/emtricitabine-based regimens in combination with either lopinavir or raltegravir. Both patients experienced sustained biochemical and histological improvement with treatment, but the antiretroviral therapy was associated with side effects.
Collapse
Affiliation(s)
- Ellina Lytvyak
- Department of MedicineUniversity of AlbertaEdmontonAlbertaCanada
| | - Mina Niazi
- Department of MedicineUniversity of AlbertaEdmontonAlbertaCanada
| | - Rohit Pai
- Department of MedicineUniversity of AlbertaEdmontonAlbertaCanada
| | - Daniel He
- Department of MedicineUniversity of AlbertaEdmontonAlbertaCanada
| | - Guangzhi Zhang
- Department of MedicineUniversity of AlbertaEdmontonAlbertaCanada
| | - Stefan G. Hübscher
- Institute of Immunology and ImmunotherapyUniversity of BirminghamBirminghamUK,Department of Cellular PathologyQueen Elizabeth HospitalBirminghamUK
| | - Andrew L. Mason
- Department of MedicineUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
8
|
Leitch AC, Ibrahim I, Abdelghany TM, Charlton A, Roper C, Vidler D, Palmer JM, Wilson C, Jones DE, Blain PG, Wright MC. The methylimidazolium ionic liquid M8OI is detectable in human sera and is subject to biliary excretion in perfused human liver. Toxicology 2021; 459:152854. [PMID: 34271081 PMCID: PMC8366605 DOI: 10.1016/j.tox.2021.152854] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022]
Abstract
M8OI was recently found to be contaminating the environment. M8OI was detected in the sera from 5/20 PBC patients and 1/10 controls. M8OI is taken up by human liver hepatocytes. M8OI is sequentially metabolised by CYPs followed by oxidation by dehydrogenases. The final carboxylic acid metabolite COOH7IM is, in part, excreted into human bile.
A methylimidizolium ionic liquid (M8OI) was recently found to be contaminating the environment and to be related to and/or potentially a component of an environmental trigger for the autoimmune liver disease primary biliary cholangitis (PBC). The aims of this study were to investigate human exposure to M8OI, hepatic metabolism and excretion. PBC patient and control sera were screened for the presence of M8OI. Human livers were perfused with 50μM M8OI in a closed circuit and its hepatic disposition examined. Metabolism was examined in cultured human hepatocytes and differentiated HepaRG cells by the addition of M8OI and metabolites in the range 10–100 μM. M8OI was detected in the sera from 5/20 PBC patients and 1/10 controls. In perfused livers, M8OI was cleared from the plasma with its appearance – primarily in the form of its hydroxylated (HO8IM) and carboxylated (COOH7IM) products – in the bile. Metabolism was reflected in cultured hepatocytes with HO8IM production inhibited by the cytochrome P450 inhibitor ketoconazole. Further oxidation of HO8IM to COOH7IM was sequentially inhibited by the alcohol and acetaldehyde dehydrogenase inhibitors 4-methyl pyrazole and disulfiram respectively. Hepatocytes from 1 donor failed to metabolise M8OI to COOH7IM over a 24 h period. These results demonstrate exposure to M8OI in the human population, monooxygenation by cytochromes P450 followed by alcohol and acetaldehyde dehydrogenase oxidation to a carboxylic acid that are excreted, in part, via the bile in human liver.
Collapse
Affiliation(s)
- Alistair C Leitch
- Institute of Translation and Clinical Research, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom
| | - Ibrahim Ibrahim
- Institute of Translation and Clinical Research, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom; Freeman Hospital, Newcastle upon Tyne, Tyne and Wear, NE7 7DN, United Kingdom
| | - Tarek M Abdelghany
- Institute of Translation and Clinical Research, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - Alex Charlton
- School of Natural and Environmental Sciences, Bedson Building, Newcastle University, NE1 8QB, United Kingdom
| | - Clair Roper
- Institute of Translation and Clinical Research, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom
| | - Dan Vidler
- Institute of Translation and Clinical Research, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom
| | - Jeremy M Palmer
- Institute of Translation and Clinical Research, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom
| | - Colin Wilson
- Institute of Translation and Clinical Research, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom; Freeman Hospital, Newcastle upon Tyne, Tyne and Wear, NE7 7DN, United Kingdom
| | - David E Jones
- Institute of Translation and Clinical Research, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom
| | - Peter G Blain
- Institute of Translation and Clinical Research, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom
| | - Matthew C Wright
- Institute of Translation and Clinical Research, Newcastle University, Newcastle Upon Tyne, NE2 4AA, United Kingdom.
| |
Collapse
|
9
|
Shah RA, Kowdley KV. Current and potential treatments for primary biliary cholangitis. Lancet Gastroenterol Hepatol 2020; 5:306-315. [DOI: 10.1016/s2468-1253(19)30343-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023]
|
10
|
Zhang G, Bashiri K, Kneteman M, Cave K, Hong Y, Mackey JR, Alter HJ, Mason AL. Seroprevalence of Human Betaretrovirus Surface Protein Antibodies in Patients with Breast Cancer and Liver Disease. JOURNAL OF ONCOLOGY 2020; 2020:8958192. [PMID: 32411244 PMCID: PMC7204138 DOI: 10.1155/2020/8958192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 12/07/2019] [Accepted: 01/02/2020] [Indexed: 12/18/2022]
Abstract
Mouse mammary tumor virus (MMTV) is a betaretrovirus that plays a causal role in the development of breast cancer and lymphoma in mice. Closely related sequences that share 91-99% nucleotide identity with MMTV have been repeatedly found in humans with neoplastic and inflammatory diseases. Evidence for infection with a betaretrovirus has been found in patients with breast cancer and primary biliary cholangitis and referred to as the human mammary tumor virus and the human betaretrovirus (HBRV), respectively. Using the gold standard technique of demonstrating retroviral infection, HBRV proviral integrations have been detected in cholangiocytes, lymph nodes, and liver of patients with primary biliary cholangitis. However, the scientific biomedical community has not embraced the hypothesis that MMTV like betaretroviruses may infect humans because reports of viral detection have been inconsistent and robust diagnostic assays are lacking. Specifically, prior serological assays using MMTV proteins have produced divergent results in human disease. Accordingly, a partial HBRV surface (Su) construct was transfected into HEK293 to create an ELISA. The secreted HBRV gp52 Su protein was then used to screen for serological responses in patients with breast cancer and liver disease. A greater proportion of breast cancer patients (n = 98) were found to have serological reactivity to HBRV Su as compared to age- and sex-matched control subjects (10.2% versus 2.0%, P=0.017, OR = 5.6 [1.25-26.3]). Similarly, the frequency of HBRV Su reactivity was higher in patients with primary biliary cholangitis (n = 156) as compared to blood donors (11.5% vs. 3.1%, P=0.0024, OR = 4.09 [1.66-10.1]). While the sensitivity of the HBRV Su ELISA was limited, the assay was highly specific for serologic detection in patients with breast cancer or primary biliary cholangitis, respectively (98.0% [93.1%-99.7%] and 97.0% [93.4%-98.6%]). Additional assays will be required to link immune response to betaretrovirus infection and either breast cancer or primary biliary cholangitis.
Collapse
Affiliation(s)
- Guangzhi Zhang
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, Division of Gastroenterology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- National Microbiology Laboratory, Winnipeg, MB R3E 3M4, Canada
| | - Kiandokht Bashiri
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, Division of Gastroenterology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Mark Kneteman
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, Division of Gastroenterology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Kevan Cave
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, Division of Gastroenterology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Youngkee Hong
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, Division of Gastroenterology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - John R. Mackey
- Department of Medical Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Harvey J. Alter
- Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew L. Mason
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, Division of Gastroenterology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
11
|
Terziroli Beretta-Piccoli B, Mieli-Vergani G, Vergani D, Vierling JM, Adams D, Alpini G, Banales JM, Beuers U, Björnsson E, Bowlus C, Carbone M, Chazouillères O, Dalekos G, De Gottardi A, Harada K, Hirschfield G, Invernizzi P, Jones D, Krawitt E, Lanzavecchia A, Lian ZX, Ma X, Manns M, Mavilio D, Quigley EM, Sallusto F, Shimoda S, Strazzabosco M, Swain M, Tanaka A, Trauner M, Tsuneyama K, Zigmond E, Gershwin ME. The challenges of primary biliary cholangitis: What is new and what needs to be done. J Autoimmun 2019; 105:102328. [PMID: 31548157 DOI: 10.1016/j.jaut.2019.102328] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
Abstract
Primary Biliary Cholangitis (PBC) is an uncommon, chronic, cholangiopathy of autoimmune origin and unknown etiology characterized by positive anti-mitochondrial autoantibodies (AMA), female preponderance and progression to cirrhosis if left untreated. The diagnosis is based on AMA- or PBC-specific anti-nuclear antibody (ANA)-positivity in the presence of a cholestatic biochemical profile, histologic confirmation being mandatory only in seronegative cases. First-line treatment is ursodeoxycholic acid (UDCA), which is effective in preventing disease progression in about two thirds of the patients. The only approved second-line treatment is obeticholic acid. This article summarizes the most relevant conclusions of a meeting held in Lugano, Switzerland, from September 23rd-25th 2018, gathering basic and clinical scientists with various background from around the world to discuss the latest advances in PBC research. The meeting was dedicated to Ian Mackay, pioneer in the field of autoimmune liver diseases. The role of liver histology needs to be reconsidered: liver pathology consistent with PBC in AMA-positive individuals without biochemical cholestasis is increasingly reported, raising the question as to whether biochemical cholestasis is a reliable disease marker for both clinical practice and trials. The urgent need for new biomarkers, including more accurate markers of cholestasis, was also widely discussed during the meeting. Moreover, new insights in interactions of bile acids with biliary epithelia in PBC provide solid evidence of a role for impaired epithelial protection against potentially toxic hydrophobic bile acids, raising the fundamental question as to whether this bile acid-induced epithelial damage is the cause or the consequence of the autoimmune attack to the biliary epithelium. Strategies are needed to identify difficult-to-treat patients at an early disease stage, when new therapeutic approaches targeting immunologic pathways, in addition to bile acid-based therapies, may be effective. In conclusion, using interdisciplinary approaches, groundbreaking advances can be expected before long in respect to our understanding of the etiopathogenesis of PBC, with the ultimate aim of improving its treatment.
Collapse
Affiliation(s)
- Benedetta Terziroli Beretta-Piccoli
- Epatocentro Ticino, Lugano, Switzerland; Institute of Liver Studies, MowatLabs, King's College Hospital, London, UK; European Reference Network ERN RARE-LIVER.
| | - Giorgina Mieli-Vergani
- Paediatric Liver, GI and Nutrition Centre, MowatLabs, King's College Hospital, London, UK
| | - Diego Vergani
- Institute of Liver Studies, MowatLabs, King's College Hospital, London, UK
| | - John M Vierling
- Division of Abdominal Transplantation and Section of Gastroenterology and Hepatology, Departments of Medicine and Surgery, Baylor College of Medicine, Houston, TX, USA
| | - David Adams
- Birmingham NIHR Biomedical Research Centre, Institute of Immunology and Immunotherapy, College of Medical and Dental SciencesMedical School, University of Birmingham, Birmingham, UK
| | - Gianfranco Alpini
- Indiana Center for Liver Research, Richard L. Roudebush VA Medical Center and Indiana University, Indianapolis, IN, USA
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, Ikerbasque, San Sebastián, Spain
| | - Ulrich Beuers
- European Reference Network ERN RARE-LIVER; Department of Gastroenterology & Hepatology and Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Einar Björnsson
- Division of Gastroenterology and Hepatology, Landspitali the National University Hospital of Iceland, Reykjavík, Iceland
| | - Christopher Bowlus
- Division of Gastroenterology and Hepatology, University of California at Davis School of Medicine, Davis, CA, USA
| | - Marco Carbone
- Division Gastroenterology and Center for Autoimmune Liver Diseases, University of Milan-Bicocca School of Medicine, Monza, Italy
| | - Olivier Chazouillères
- European Reference Network ERN RARE-LIVER; Service d'Hépatologie, Hôpital Saint-Antoine, Paris, France
| | - George Dalekos
- Institute of Internal Medicine and Hepatology, Department of Medicine and Research, Laboratory of Internal Medicine, School of Medicine, University of Thessaly, Larissa, Greece
| | - Andrea De Gottardi
- European Reference Network ERN RARE-LIVER; Epatocentro Ticino & Division of Gastroenterology and Hepatology Ente Ospedaliero Cantonale and Università della Svizzera Italiana, Lugano, Switzerland
| | - Kenichi Harada
- Department of Human Pathology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Gideon Hirschfield
- Toronto Centre for Liver Disease, University Health Network and University of Toronto, Toronto, Canada
| | - Pietro Invernizzi
- European Reference Network ERN RARE-LIVER; Division Gastroenterology and Center for Autoimmune Liver Diseases, University of Milan-Bicocca School of Medicine, Monza, Italy
| | - David Jones
- Institute of Cellular Medicine and NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Edward Krawitt
- Department of Medicine, University of Vermont, Burlington, VT, USA
| | | | - Zhe-Xiong Lian
- Institutes for Life Sciences, South China University of Technology, Higher Education Mega Center, Guangzhou, China
| | - Xiong Ma
- Shanghai Institute of Digestive Disease, Renji Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Michael Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Italy
| | - Eamon Mm Quigley
- Lynda K. and David M. Underwood Center for Digestive Disorders, Houston Methodist Hospital and Weill Cornell Medical College, Houston, TX, USA
| | - Federica Sallusto
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
| | - Shinji Shimoda
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Mario Strazzabosco
- Liver Center, Department of Medicine, Yale University, New Haven, CT, USA
| | - Mark Swain
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Atsushi Tanaka
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Ehud Zigmond
- Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, California, USA.
| |
Collapse
|