1
|
Bencs F, Románszki L, Farkas V, Perczel A. Structural Insights Into Amyloid Polymorphism: The Impact of Glutamine to Norleucine Substitutions in GNNQQNY Aggregation. Chemistry 2025; 31:e202404255. [PMID: 40152416 PMCID: PMC12063041 DOI: 10.1002/chem.202404255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/12/2025] [Accepted: 03/27/2025] [Indexed: 03/29/2025]
Abstract
Polypeptides can self-assemble into highly organized amyloid structures through complex and poorly understood mechanisms. To better understand the key parameters governing amyloidogenesis, we investigated the aggregation of the Sup35 prion-derived GNNQQNY sequence alongside two rationally designed mutants, glutamine to norleucine in the 4th or 5th position, where selective removal of hydrogen bonding capacity reduces amyloid structural stability. Our findings reveal that β-sheet arrays form rapidly as an initial step, followed by π-π aromatic interactions between Tyr residues, which drive hierarchical self-assembly into 3D fibrillar structures via hydrophobic zippers and partial water exclusion. As the oligomers grow, they also acquire twist and chirality at the protofilament level, with Tyr ladders serving as key interaction surfaces that dictate the final amyloid architecture. These ladders guide protofibrils to assemble into either oppositely twisted chiral fibers or achiral nanocrystals, contributing to amyloid polymorphism. The emergence of distinct polymorphs is influenced by multiple factors, including fibril twisting, side-chain interactions, solvent exclusion, and local microenvironmental conditions. Our study provides crucial insights into the hierarchical nature of amyloid self-assembly and highlights the structural adaptability of amyloid fibrils, which is essential for designing functional amyloids and understanding the pathogenicity of disease-associated aggregates.
Collapse
Affiliation(s)
- Fruzsina Bencs
- Laboratory of Structural Chemistry and BiologyInstitute of ChemistryELTE Eötvös Loránd UniversityPázmány Péter sétány 1/ABudapestHungary
- ELTE Hevesy György PhD School of ChemistryELTE Eötvös Loránd UniversityPázmány Péter sétány 1/ABudapestHungary
| | - Loránd Románszki
- HUN‐REN Research Centre for Natural SciencesInstitute of Materials and Environmental ChemistryMagyar tudósok körútja 2BudapestHungary
| | - Viktor Farkas
- HUN‐REN – ELTE Protein Modeling Research GroupELTE Eötvös Loránd UniversityPázmány Péter sétány 1/ABudapestHungary
| | - András Perczel
- Laboratory of Structural Chemistry and BiologyInstitute of ChemistryELTE Eötvös Loránd UniversityPázmány Péter sétány 1/ABudapestHungary
- HUN‐REN – ELTE Protein Modeling Research GroupELTE Eötvös Loránd UniversityPázmány Péter sétány 1/ABudapestHungary
| |
Collapse
|
2
|
Hosseini AN, van der Spoel D. Simulations of Amyloid-Forming Peptides in the Crystal State. Protein J 2023:10.1007/s10930-023-10119-3. [PMID: 37145206 DOI: 10.1007/s10930-023-10119-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2023] [Indexed: 05/06/2023]
Abstract
There still is little treatment available for amyloid diseases, despite their significant impact on individuals and the social and economic implications for society. One reason for this is that the physical nature of amyloid formation is not understood sufficiently well. Therefore, fundamental research at the molecular level remains necessary to support the development of therapeutics. A few structures of short peptides from amyloid-forming proteins have been determined. These can in principle be used as scaffolds for designing aggregation inhibitors. Attempts to this end have often used the tools of computational chemistry, in particular molecular simulation. However, few simulation studies of these peptides in the crystal state have been presented so far. Hence, to validate the capability of common force fields (AMBER19SB, CHARMM36m, and OPLS-AA/M) to yield insight into the dynamics and structural stability of amyloid peptide aggregates, we have performed molecular dynamics simulations of twelve different peptide crystals at two different temperatures. From the simulations, we evaluate the hydrogen bonding patterns, the isotropic B-factors, the change in energy, the Ramachandran plots, and the unit cell parameters and compare the results with the crystal structures. Most crystals are stable in the simulations but for all force fields there is at least one that deviates from the experimental crystal, suggesting more work is needed on these models.
Collapse
Affiliation(s)
- A Najla Hosseini
- Department of Cell and Molecular Biology, Uppsala University, Box 596, SE, 75124, Uppsala, Sweden
| | - David van der Spoel
- Department of Cell and Molecular Biology, Uppsala University, Box 596, SE, 75124, Uppsala, Sweden.
| |
Collapse
|
3
|
Skamris T, Vestergaard B, Madsen KL, Langkilde AE, Foderà V. Identifying Biological and Biophysical Features of Different Maturation States of α-Synuclein Amyloid Fibrils. Methods Mol Biol 2023; 2551:321-344. [PMID: 36310213 DOI: 10.1007/978-1-0716-2597-2_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Protein aggregates, hereunder amyloid fibrils, can undergo a maturation process, whereby early formed aggregates undergo a structural and physicochemical transition leading to more mature species. In the case of amyloid-related diseases, such maturation confers distinctive biological properties of the aggregates, which may account for a range of diverse pathological subtypes. Here, we present a protocol for the preparation of α-synuclein amyloid fibrils differing in the level of their maturation. We utilize widely accessible biophysical techniques to characterize the structure and morphology and a simple thermal treatment procedure to test their thermodynamic stability. Their biological properties are probed by means of binding to native plasma membrane sheets originating from mammalian cell lines.
Collapse
Affiliation(s)
- Thomas Skamris
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Bente Vestergaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth L Madsen
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Annette E Langkilde
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Vito Foderà
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Panda S, Hajra S, Mistewicz K, Nowacki B, In-Na P, Krushynska A, Mishra YK, Kim HJ. A focused review on three-dimensional bioprinting technology for artificial organ fabrication. Biomater Sci 2022; 10:5054-5080. [PMID: 35876134 DOI: 10.1039/d2bm00797e] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Three-dimensional (3D) bioprinting technology has attracted a great deal of interest because it can be easily adapted to many industries and research sectors, such as biomedical, manufacturing, education, and engineering. Specifically, 3D bioprinting has provided significant advances in the medical industry, since such technology has led to significant breakthroughs in the synthesis of biomaterials, cells, and accompanying elements to produce composite living tissues. 3D bioprinting technology could lead to the immense capability of replacing damaged or injured tissues or organs with newly dispensed cell biomaterials and functional tissues. Several types of bioprinting technology and different bio-inks can be used to replicate cells and generate supporting units as complex 3D living tissues. Bioprinting techniques have undergone great advancements in the field of regenerative medicine to provide 3D printed models for numerous artificial organs and transplantable tissues. This review paper aims to provide an overview of 3D-bioprinting technologies by elucidating the current advancements, recent progress, opportunities, and applications in this field. It highlights the most recent advancements in 3D-bioprinting technology, particularly in the area of artificial organ development and cancer research. Additionally, the paper speculates on the future progress in 3D-bioprinting as a versatile foundation for several biomedical applications.
Collapse
Affiliation(s)
- Swati Panda
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu-42988, South Korea.
| | - Sugato Hajra
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu-42988, South Korea.
| | - Krystian Mistewicz
- Institute of Physics - Center for Science and Education, Silesian University of Technology, Krasińskiego 8, Katowice, Poland
| | - Bartłomiej Nowacki
- Faculty of Materials Engineering, Silesian University of Technology, Krasińskiego 8, Katowice, Poland
| | - Pichaya In-Na
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Wangmai, Pathumwan, Bangkok-10330, Thailand
| | - Anastasiia Krushynska
- Engineering and Technology Institute Groningen (ENTEG), Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, Netherlands
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400 Sønderborg, Denmark
| | - Hoe Joon Kim
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu-42988, South Korea. .,Robotics and Mechatronics Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu-42988, South Korea
| |
Collapse
|
5
|
Aubrey LD, Blakeman BJF, Lutter L, Serpell CJ, Tuite MF, Serpell LC, Xue WF. Quantification of amyloid fibril polymorphism by nano-morphometry reveals the individuality of filament assembly. Commun Chem 2020; 3:125. [PMID: 36703355 PMCID: PMC9814634 DOI: 10.1038/s42004-020-00372-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 08/12/2020] [Indexed: 01/29/2023] Open
Abstract
Amyloid fibrils are highly polymorphic structures formed by many different proteins. They provide biological function but also abnormally accumulate in numerous human diseases. The physicochemical principles of amyloid polymorphism are not understood due to lack of structural insights at the single-fibril level. To identify and classify different fibril polymorphs and to quantify the level of heterogeneity is essential to decipher the precise links between amyloid structures and their functional and disease associated properties such as toxicity, strains, propagation and spreading. Employing gentle, force-distance curve-based AFM, we produce detailed images, from which the 3D reconstruction of individual filaments in heterogeneous amyloid samples is achieved. Distinctive fibril polymorphs are then classified by hierarchical clustering, and sample heterogeneity is objectively quantified. These data demonstrate the polymorphic nature of fibril populations, provide important information regarding the energy landscape of amyloid self-assembly, and offer quantitative insights into the structural basis of polymorphism in amyloid populations.
Collapse
Affiliation(s)
- Liam D. Aubrey
- grid.9759.20000 0001 2232 2818Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, CT2 7NJ UK
| | - Ben J. F. Blakeman
- grid.9759.20000 0001 2232 2818Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, CT2 7NJ UK
| | - Liisa Lutter
- grid.9759.20000 0001 2232 2818Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, CT2 7NJ UK
| | - Christopher J. Serpell
- grid.9759.20000 0001 2232 2818School of Physical Sciences, University of Kent, Canterbury, CT2 7NH UK
| | - Mick F. Tuite
- grid.9759.20000 0001 2232 2818Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, CT2 7NJ UK
| | - Louise C. Serpell
- grid.12082.390000 0004 1936 7590Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG UK
| | - Wei-Feng Xue
- grid.9759.20000 0001 2232 2818Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, CT2 7NJ UK
| |
Collapse
|
6
|
Amyloid Evolution: Antiparallel Replaced by Parallel. Biophys J 2020; 118:2526-2536. [PMID: 32311316 PMCID: PMC7231890 DOI: 10.1016/j.bpj.2020.03.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 01/08/2023] Open
Abstract
Several atomic structures have now been found for micrometer-scale amyloid fibrils or elongated microcrystals using a range of methods, including NMR, electron microscopy, and X-ray crystallography, with parallel β-sheet appearing as the most common secondary structure. The etiology of amyloid disease, however, indicates nanometer-scale assemblies of only tens of peptides as significant agents of cytotoxicity and contagion. By combining solution X-ray with molecular dynamics, we show that antiparallel structure dominates at the first stages of aggregation for a specific set of peptides, being replaced by parallel at large length scales only. This divergence in structure between small and large amyloid aggregates should inform future design of molecular therapeutics against nucleation or intercellular transmission of amyloid. Calculations and an overview from the literature argue that antiparallel order should be the first appearance of structure in many or most amyloid aggregation processes, regardless of the endpoint. Exceptions to this finding should exist, depending inevitably on the sequence and on solution conditions.
Collapse
|
7
|
Skamris T, Marasini C, Madsen KL, Foderà V, Vestergaard B. Early Stage Alpha-Synuclein Amyloid Fibrils are Reservoirs of Membrane-Binding Species. Sci Rep 2019; 9:1733. [PMID: 30741994 PMCID: PMC6370759 DOI: 10.1038/s41598-018-38271-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 12/19/2018] [Indexed: 11/16/2022] Open
Abstract
The presence of αSN fibrils indisputably associates with the development of synucleinopathies. However, while certain fibril morphologies have been linked to downstream pathological phenotypes, others appear less harmful, leading to the concept of fibril strains, originally described in relation to prion disease. Indeed, the presence of fibrils does not associate directly with neurotoxicity. Rather, it has been suggested that the toxic compounds are soluble amyloidogenic oligomers, potentially co-existing with fibrils. Here, combining synchrotron radiation circular dichroism, transmission electron microscopy and binding assays on native plasma membrane sheets, we reveal distinct biological and biophysical differences between initial and matured fibrils, transformed within the timespan of few days. Immature fibrils are reservoirs of membrane-binding species, which in response to even gentle experimental changes release into solution in a reversible manner. In contrast, mature fibrils, albeit macroscopically indistinguishable from their less mature counterparts, are structurally robust, shielding the solution from the membrane active soluble species. We thus show that particular biological activity resides transiently with the fibrillating sample, distinct for one, but not the other, spontaneously formed fibril polymorph. These results shed new light on the principles of fibril polymorphism with consequent impact on future design of assays and therapeutic development.
Collapse
Affiliation(s)
- Thomas Skamris
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Carlotta Marasini
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Kenneth L Madsen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, The Panum Institute, Maersk Tower 7.5, 2200, Copenhagen, Denmark
| | - Vito Foderà
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| | - Bente Vestergaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
8
|
Periole X, Huber T, Bonito-Oliva A, Aberg KC, van der Wel PCA, Sakmar TP, Marrink SJ. Energetics Underlying Twist Polymorphisms in Amyloid Fibrils. J Phys Chem B 2018; 122:1081-1091. [PMID: 29254334 PMCID: PMC5857390 DOI: 10.1021/acs.jpcb.7b10233] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Amyloid fibrils are highly ordered protein aggregates associated with more than 40 human diseases. The exact conditions under which the fibrils are grown determine many types of reported fibril polymorphism, including different twist patterns. Twist-based polymorphs display unique mechanical properties in vitro, and the relevance of twist polymorphism in amyloid diseases has been suggested. We present transmission electron microscopy images of Aβ42-derived (amyloid β) fibrils, which are associated with Alzheimer's disease, demonstrating the presence of twist variability even within a single long fibril. To better understand the molecular underpinnings of twist polymorphism, we present a structural and thermodynamics analysis of molecular dynamics simulations of the twisting of β-sheet protofilaments of a well-characterized cross-β model: the GNNQQNY peptide from the yeast prion Sup35. The results show that a protofilament model of GNNQQNY is able to adopt twist angles from -11° on the left-hand side to +8° on the right-hand side in response to various external conditions, keeping an unchanged peptide structure. The potential of mean force (PMF) of this cross-β structure upon twisting revealed that only ∼2kBT per peptide are needed to stabilize a straight conformation with respect to the left-handed free-energy minimum. The PMF also shows that the canonical structural core of β-sheets, i.e., the hydrogen-bonded backbone β-strands, favors the straight conformation. However, the concerted effects of the side chains contribute to twisting, which provides a rationale to correlate polypeptide sequence, environmental growth conditions and number of protofilaments in a fibril with twist polymorphisms.
Collapse
Affiliation(s)
- Xavier Periole
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen , Groningen 9747 AG, The Netherlands
| | - Thomas Huber
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University , 1230 York Avenue, New York, New York 10065, United States
| | - Alessandra Bonito-Oliva
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University , 1230 York Avenue, New York, New York 10065, United States
| | - Karina C Aberg
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University , 1230 York Avenue, New York, New York 10065, United States
| | - Patrick C A van der Wel
- Department of Structural Biology and Center for Protein Conformational Diseases, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University , 1230 York Avenue, New York, New York 10065, United States
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet , 141 57 Huddinge, Sweden
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen , Groningen 9747 AG, The Netherlands
| |
Collapse
|
9
|
Davies RPW, Liu B, Maude S, Carrick LM, Nyrkova I, McLeish TC, Harris SA. Peptide strand length controls the energetics of self-assembly and morphology of β-sheet fibrils. Biopolymers 2017; 110. [PMID: 29127706 DOI: 10.1002/bip.23073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 12/24/2022]
Abstract
Self-assembling peptides can be used as versatile, natural, and multifunctional building blocks to produce a variety of well-defined nanostructures, materials and devices for applications in medicine and nanotechnology. Here, we concentrate on the 1D self-assembly of de novo designed Px-2 peptide β-strands into anti-parallel β-sheet tapes and higher order aggregates. We study six members of the Px-2 family, ranging from 3 amino acids (aa) to 13 aa in length, using a range of complementary experimental techniques, computer simulation and theoretical statistical mechanics. The critical concentration for self-assembly (c*) is found to increase systematically with decreasing peptide length. The shortest peptide found to self-assemble into soluble β-tapes in water is a 5 amino acid residue peptide. These investigations help decipher the role of the peptide length in controlling self-assembly, aggregate morphology, and material properties. By extracting free energies from these data using a statistical mechanical analysis and combining the results with computer simulations at the atomistic level, we can extract the entropy of association for individual β-strands.
Collapse
Affiliation(s)
- Robert P W Davies
- Department of Oral Biology, University of Leeds, St James's University Hospital Leeds LS9 7TF
| | - Binbin Liu
- Department of Pediatrics, University of Oxford. Headington, Oxford, OX3 9DU
| | - Steven Maude
- School of Chemistry, University of Leeds, Leeds, LS2 9JT
| | - Lisa M Carrick
- School of Chemistry, University of Leeds, Leeds, LS2 9JT
| | | | - Tom C McLeish
- Department of Physics, Durham University, Durham, DH1 3LE
| | - Sarah A Harris
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT
| |
Collapse
|
10
|
Womack JC, Mardirossian N, Head-Gordon M, Skylaris CK. Self-consistent implementation of meta-GGA functionals for the ONETEP linear-scaling electronic structure package. J Chem Phys 2017; 145:204114. [PMID: 27908114 DOI: 10.1063/1.4967960] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Accurate and computationally efficient exchange-correlation functionals are critical to the successful application of linear-scaling density functional theory (DFT). Local and semi-local functionals of the density are naturally compatible with linear-scaling approaches, having a general form which assumes the locality of electronic interactions and which can be efficiently evaluated by numerical quadrature. Presently, the most sophisticated and flexible semi-local functionals are members of the meta-generalized-gradient approximation (meta-GGA) family, and depend upon the kinetic energy density, τ, in addition to the charge density and its gradient. In order to extend the theoretical and computational advantages of τ-dependent meta-GGA functionals to large-scale DFT calculations on thousands of atoms, we have implemented support for τ-dependent meta-GGA functionals in the ONETEP program. In this paper we lay out the theoretical innovations necessary to implement τ-dependent meta-GGA functionals within ONETEP's linear-scaling formalism. We present expressions for the gradient of the τ-dependent exchange-correlation energy, necessary for direct energy minimization. We also derive the forms of the τ-dependent exchange-correlation potential and kinetic energy density in terms of the strictly localized, self-consistently optimized orbitals used by ONETEP. To validate the numerical accuracy of our self-consistent meta-GGA implementation, we performed calculations using the B97M-V and PKZB meta-GGAs on a variety of small molecules. Using only a minimal basis set of self-consistently optimized local orbitals, we obtain energies in excellent agreement with large basis set calculations performed using other codes. Finally, to establish the linear-scaling computational cost and applicability of our approach to large-scale calculations, we present the outcome of self-consistent meta-GGA calculations on amyloid fibrils of increasing size, up to tens of thousands of atoms.
Collapse
Affiliation(s)
- James C Womack
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Narbe Mardirossian
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Chris-Kriton Skylaris
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
11
|
Cole DJ, Hine NDM. Applications of large-scale density functional theory in biology. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:393001. [PMID: 27494095 DOI: 10.1088/0953-8984/28/39/393001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Density functional theory (DFT) has become a routine tool for the computation of electronic structure in the physics, materials and chemistry fields. Yet the application of traditional DFT to problems in the biological sciences is hindered, to a large extent, by the unfavourable scaling of the computational effort with system size. Here, we review some of the major software and functionality advances that enable insightful electronic structure calculations to be performed on systems comprising many thousands of atoms. We describe some of the early applications of large-scale DFT to the computation of the electronic properties and structure of biomolecules, as well as to paradigmatic problems in enzymology, metalloproteins, photosynthesis and computer-aided drug design. With this review, we hope to demonstrate that first principles modelling of biological structure-function relationships are approaching a reality.
Collapse
Affiliation(s)
- Daniel J Cole
- Theory of Condensed Matter group, Cavendish Laboratory, 19 JJ Thomson Ave, Cambridge CB3 0HE, UK. School of Chemistry, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | | |
Collapse
|
12
|
Ozgur B, Sayar M. Assembly of Triblock Amphiphilic Peptides into One-Dimensional Aggregates and Network Formation. J Phys Chem B 2016; 120:10243-10257. [PMID: 27635660 DOI: 10.1021/acs.jpcb.6b07545] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Peptide assembly plays a key role in both neurological diseases and development of novel biomaterials with well-defined nanostructures. Synthetic model peptides provide a unique platform to explore the role of intermolecular interactions in the assembly process. A triblock peptide architecture designed by the Hartgerink group is a versatile system which relies on Coulomb interactions, hydrogen bonding, and hydrophobicity to guide these peptides' assembly at three different length scales: β-sheets, double-wall ribbon-like aggregates, and finally a highly porous network structure which can support gels with ≤1% by weight peptide concentration. In this study, by using molecular dynamics simulations of a structure based implicit solvent coarse grained model, we analyzed this hierarchical assembly process. Parametrization of our CG model is based on multiple-state points from atomistic simulations, which enables this model to represent the conformational adaptability of the triblock peptide molecule based on the surrounding medium. Our results indicate that emergence of the double-wall β-sheet packing mechanism, proposed in light of the experimental evidence, strongly depends on the subtle balance of the intermolecular forces. We demonstrate that, even though backbone hydrogen bonding dominates the early nucleation stages, depending on the strength of the hydrophobic and Coulomb forces, alternative structures such as zero-dimensional aggregates with two β-sheets oriented orthogonally (which we refer to as a cross-packed structure) and β-sheets with misoriented hydrophobic side chains are also feasible. We discuss the implications of these competing structures for the three different length scales of assembly by systematically investigating the influence of density, counterion valency, and hydrophobicity.
Collapse
Affiliation(s)
| | - Mehmet Sayar
- College of Engineering, Koc University , Istanbul, Turkey.,Chemical & Biological Engineering and Mechanical Engineering Departments, Koc University , Istanbul, Turkey
| |
Collapse
|
13
|
Punihaole D, Workman RJ, Hong Z, Madura JD, Asher SA. Polyglutamine Fibrils: New Insights into Antiparallel β-Sheet Conformational Preference and Side Chain Structure. J Phys Chem B 2016; 120:3012-26. [PMID: 26947327 DOI: 10.1021/acs.jpcb.5b11380] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the structure of polyglutamine (polyQ) amyloid-like fibril aggregates is crucial to gaining insights into the etiology of at least ten neurodegenerative disorders, including Huntington's disease. Here, we determine the structure of D2Q10K2 (Q10) fibrils using ultraviolet resonance Raman (UVRR) spectroscopy and molecular dynamics (MD). Using UVRR, we determine the fibril peptide backbone Ψ and glutamine (Gln) side chain χ3 dihedral angles. We find that most of the fibril peptide bonds adopt antiparallel β-sheet conformations; however, a small population of peptide bonds exist in parallel β-sheet structures. Using MD, we simulate three different potential fibril structural models that consist of either β-strands or β-hairpins. Comparing the experimentally measured Ψ and χ3 angle distributions to those obtained from the MD simulated models, we conclude that the basic structural motif of Q10 fibrils is an extended β-strand structure. Importantly, we determine from our MD simulations that Q10 fibril antiparallel β-sheets are thermodynamically more stable than parallel β-sheets. This accounts for why polyQ fibrils preferentially adopt antiparallel β-sheet conformations instead of in-register parallel β-sheets like most amyloidogenic peptides. In addition, we directly determine, for the first time, the structures of Gln side chains. Our structural data give new insights into the role that the Gln side chains play in the stabilization of polyQ fibrils. Finally, our work demonstrates the synergistic power and utility of combining UVRR measurements and MD modeling to determine the structure of amyloid-like fibrils.
Collapse
Affiliation(s)
- David Punihaole
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Riley J Workman
- Department of Chemistry and Biochemistry, Center for Computational Sciences, Duquesne University , Pittsburgh, Pennsylvania 15282, United States
| | - Zhenmin Hong
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Jeffry D Madura
- Department of Chemistry and Biochemistry, Center for Computational Sciences, Duquesne University , Pittsburgh, Pennsylvania 15282, United States
| | - Sanford A Asher
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
14
|
Langkilde AE, Morris KL, Serpell LC, Svergun DI, Vestergaard B. The architecture of amyloid-like peptide fibrils revealed by X-ray scattering, diffraction and electron microscopy. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:882-95. [PMID: 25849399 PMCID: PMC4388266 DOI: 10.1107/s1399004715001674] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 01/25/2015] [Indexed: 11/12/2022]
Abstract
Structural analysis of protein fibrillation is inherently challenging. Given the crucial role of fibrils in amyloid diseases, method advancement is urgently needed. A hybrid modelling approach is presented enabling detailed analysis of a highly ordered and hierarchically organized fibril of the GNNQQNY peptide fragment of a yeast prion protein. Data from small-angle X-ray solution scattering, fibre diffraction and electron microscopy are combined with existing high-resolution X-ray crystallographic structures to investigate the fibrillation process and the hierarchical fibril structure of the peptide fragment. The elongation of these fibrils proceeds without the accumulation of any detectable amount of intermediate oligomeric species, as is otherwise reported for, for example, glucagon, insulin and α-synuclein. Ribbons constituted of linearly arranged protofilaments are formed. An additional hierarchical layer is generated via the pairing of ribbons during fibril maturation. Based on the complementary data, a quasi-atomic resolution model of the protofilament peptide arrangement is suggested. The peptide structure appears in a β-sheet arrangement reminiscent of the β-zipper structures evident from high-resolution crystal structures, with specific differences in the relative peptide orientation. The complexity of protein fibrillation and structure emphasizes the need to use multiple complementary methods.
Collapse
Affiliation(s)
- Annette E. Langkilde
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Kyle L. Morris
- School of Life Sciences, University of Sussex, Falmer, Brighton, England
| | - Louise C. Serpell
- School of Life Sciences, University of Sussex, Falmer, Brighton, England
| | - Dmitri I. Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, 22607 Hamburg, Germany
| | - Bente Vestergaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
15
|
Wineman-Fisher V, Atsmon-Raz Y, Miller Y. Orientations of residues along the β-arch of self-assembled amylin fibril-like structures lead to polymorphism. Biomacromolecules 2014; 16:156-65. [PMID: 25420121 DOI: 10.1021/bm501326y] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Amylin is an endocrine hormone peptide that consists of 37 residues and is the main component of extracellular amyloid deposits found in the pancreas of most type 2 diabetes patients. Amylin peptides are self-assembled to form oligomers and fibrils. So far, four different molecular structures of the self-assembled amylin fibrils have been observed experimentally: two ssNMR models and two crystal models. This study reveals, for the first time, that there are four self-assembled amylin forms that differ in the orientations of the side chains along the β-arch and are all derived from the two ssNMR models. The two ssNMR models are composed of these four different self-assembled forms of amylin, and the two crystal models are composed of two different self-assembled forms of amylin. This study illustrates at the atomic level the differences among the four experimental models and proposes eight new models of self-assembled amylin that are also composed of the four different self-assembled forms of amylin. Our results show polymorphism of the self-assembled fibril-like amylin, with a slight preference of some of the newly constructed models over the experimental models. Finally, we propose that two different self-assembled fibril-like forms of amylin can interact to form a new fibril-like amylin. We investigated this argument and found that some fibril-like amylin prefers to interact to form stable fibril-like structures, whereas others disfavor it. Our work provides new insights that may suggest strategies for future pharmacological studies that aim to find ways to ameliorate the interactions between polymorphic oligomers and fibrils of amylin.
Collapse
Affiliation(s)
- Vered Wineman-Fisher
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev , Beer-Sheva 84105, Israel
| | | | | |
Collapse
|
16
|
Lara C, Reynolds NP, Berryman JT, Xu A, Zhang A, Mezzenga R. ILQINS Hexapeptide, Identified in Lysozyme Left-Handed Helical Ribbons and Nanotubes, Forms Right-Handed Helical Ribbons and Crystals. J Am Chem Soc 2014; 136:4732-9. [DOI: 10.1021/ja500445z] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Cecile Lara
- Food & Soft Materials, Department of Health Science & Technology, ETH Zurich, Schmelzbergstrasse 9, LFO, E23, 8092 Zürich, Switzerland
| | - Nicholas P. Reynolds
- Materials
Science and Engineering, CSIRO, Private Bag 10, Bayview Avenue, Clayton, Vic 3169, Australia
| | - Joshua T. Berryman
- Faculty
of Science Technology and Communication, University of Luxembourg, 162a Avenue de la Faïencerie, L-1511 Luxembourg
| | - Anqiu Xu
- Department
of Polymer Materials, Shanghai University, Nanchen Street 333, Shanghai 200444, China
| | - Afang Zhang
- Department
of Polymer Materials, Shanghai University, Nanchen Street 333, Shanghai 200444, China
| | - Raffaele Mezzenga
- Food & Soft Materials, Department of Health Science & Technology, ETH Zurich, Schmelzbergstrasse 9, LFO, E23, 8092 Zürich, Switzerland
| |
Collapse
|
17
|
Månsson C, Kakkar V, Monsellier E, Sourigues Y, Härmark J, Kampinga HH, Melki R, Emanuelsson C. DNAJB6 is a peptide-binding chaperone which can suppress amyloid fibrillation of polyglutamine peptides at substoichiometric molar ratios. Cell Stress Chaperones 2014; 19:227-39. [PMID: 23904097 PMCID: PMC3933622 DOI: 10.1007/s12192-013-0448-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 01/17/2023] Open
Abstract
Expanded polyglutamine (polyQ) stretches lead to protein aggregation and severe neurodegenerative diseases. A highly efficient suppressor of polyQ aggregation was identified, the DNAJB6, when molecular chaperones from the HSPH, HSPA, and DNAJ families were screened for huntingtin exon 1 aggregation in cells (Hageman et al. in Mol Cell 37(3):355-369, 2010). Furthermore, also aggregation of polyQ peptides expressed in cells was recently found to be efficiently suppressed by co-expression of DNAJB6 (Gillis et al. in J Biol Chem 288:17225-17237, 2013). These suppression effects can be due to an indirect effect of DNAJB6 on other cellular components or to a direct interaction between DNAJB6 and polyQ peptides that may depend on other cellular components. Here, we have purified the DNAJB6 protein to investigate the suppression mechanism. The purified DNAJB6 protein formed large heterogeneous oligomers, in contrast to the more canonical family member DNAJB1 which is dimeric. Purified DNAJB6 protein, at substoichiometric molar ratios, efficiently suppressed fibrillation of polyQ peptides with 45°Q in a thioflavin T fibrillation. No suppression was obtained with DNAJB1, but with the closest homologue to DNAJB6, DNAJB8. The suppression effect was independent of HSPA1 and ATP. These data, based on purified proteins and controlled fibrillation in vitro, strongly suggest that the fibrillation suppression is due to a direct protein-protein interaction between the polyQ peptides and DNAJB6 and that the DNAJB6 has unique fibrillation suppression properties lacking in DNAJB1. Together, the data obtained in cells and in vitro support the view that DNAJB6 is a peptide-binding chaperone that can interact with polyQ peptides that are incompletely degraded by and released from the proteasome.
Collapse
Affiliation(s)
- Cecilia Månsson
- Department of Biochemistry & Structural Biology, Center for Molecular Protein Science, Lund University, Lund, Sweden,
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Yoon G, Lee M, Kim JI, Na S, Eom K. Role of sequence and structural polymorphism on the mechanical properties of amyloid fibrils. PLoS One 2014; 9:e88502. [PMID: 24551113 PMCID: PMC3925137 DOI: 10.1371/journal.pone.0088502] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 01/13/2014] [Indexed: 11/25/2022] Open
Abstract
Amyloid fibrils playing a critical role in disease expression, have recently been found to exhibit the excellent mechanical properties such as elastic modulus in the order of 10 GPa, which is comparable to that of other mechanical proteins such as microtubule, actin filament, and spider silk. These remarkable mechanical properties of amyloid fibrils are correlated with their functional role in disease expression. This suggests the importance in understanding how these excellent mechanical properties are originated through self-assembly process that may depend on the amino acid sequence. However, the sequence-structure-property relationship of amyloid fibrils has not been fully understood yet. In this work, we characterize the mechanical properties of human islet amyloid polypeptide (hIAPP) fibrils with respect to their molecular structures as well as their amino acid sequence by using all-atom explicit water molecular dynamics (MD) simulation. The simulation result suggests that the remarkable bending rigidity of amyloid fibrils can be achieved through a specific self-aggregation pattern such as antiparallel stacking of β strands (peptide chain). Moreover, we have shown that a single point mutation of hIAPP chain constituting a hIAPP fibril significantly affects the thermodynamic stability of hIAPP fibril formed by parallel stacking of peptide chain, and that a single point mutation results in a significant change in the bending rigidity of hIAPP fibrils formed by antiparallel stacking of β strands. This clearly elucidates the role of amino acid sequence on not only the equilibrium conformations of amyloid fibrils but also their mechanical properties. Our study sheds light on sequence-structure-property relationships of amyloid fibrils, which suggests that the mechanical properties of amyloid fibrils are encoded in their sequence-dependent molecular architecture.
Collapse
Affiliation(s)
- Gwonchan Yoon
- Department of Mechanical Engineering, Korea University, Seoul, Republic of Korea
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Myeongsang Lee
- Department of Mechanical Engineering, Korea University, Seoul, Republic of Korea
| | - Jae In Kim
- Department of Mechanical Engineering, Korea University, Seoul, Republic of Korea
| | - Sungsoo Na
- Department of Mechanical Engineering, Korea University, Seoul, Republic of Korea
- * E-mail: (KE); (SN)
| | - Kilho Eom
- Biomechanics Laboratory, College of Sport Science, Sungkyunkwan University, Suwon, Republic of Korea
- * E-mail: (KE); (SN)
| |
Collapse
|
19
|
Barz B, Wales DJ, Strodel B. A kinetic approach to the sequence-aggregation relationship in disease-related protein assembly. J Phys Chem B 2014; 118:1003-11. [PMID: 24401100 PMCID: PMC3908877 DOI: 10.1021/jp412648u] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It is generally accepted that oligomers of aggregating proteins play an important role in the onset of neurodegenerative diseases. While in silico aggregation studies of full length amyloidogenic proteins are computationally expensive, the assembly of short protein fragments derived from these proteins with similar aggregating properties has been extensively studied. In the present work, molecular dynamics simulations are performed to follow peptide aggregation on the microsecond time scale. By defining aggregation states, we identify transition networks, disconnectivity graphs, and first passage time distributions to describe the kinetics of the assembly process. This approach unravels differences in the aggregation into hexamers of two peptides with different primary structures. The first is GNNQQNY, a hydrophilic fragment from the prion protein Sup35, and the second is KLVFFAE, a fragment from amyloid-β protein, with a hydrophobic core delimited by two charged amino acids. The assembly of GNNQQNY suggests a mechanism of monomer addition, with a bias toward parallel peptide pairs and a gradual increase in the amount of β-strand content. For KLVFFAE, a mechanism involving dimers rather than monomers is revealed, involving a generally higher β-strand content and a transition toward a larger number of antiparallel peptide pairs during the rearrangement of the hexamer. The differences observed for the aggregation of the two peptides suggests the existence of a sequence-aggregation relationship.
Collapse
Affiliation(s)
- Bogdan Barz
- Forschungszentrum Jülich GmbH Institute of Complex Systems: Structural Biochemistry (ICS-6), 52425 Jülich, Germany
| | - David J. Wales
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, UK
| | - Birgit Strodel
- Forschungszentrum Jülich GmbH Institute of Complex Systems: Structural Biochemistry (ICS-6), 52425 Jülich, Germany
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
20
|
Keerthana S, Kolandaivel P. Study of mutation and misfolding of Cu-Zn SOD1 protein. J Biomol Struct Dyn 2013; 33:167-83. [DOI: 10.1080/07391102.2013.865104] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Do TD, Economou NJ, LaPointe NE, Kincannon WM, Bleiholder C, Feinstein SC, Teplow DB, Buratto SK, Bowers MT. Factors that drive peptide assembly and fibril formation: experimental and theoretical analysis of Sup35 NNQQNY mutants. J Phys Chem B 2013; 117:8436-46. [PMID: 23802812 DOI: 10.1021/jp4046287] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Residue mutations have substantial effects on aggregation kinetics and propensities of amyloid peptides and their aggregate morphologies. Such effects are attributed to conformational transitions accessed by various types of oligomers such as steric zipper or single β-sheet. We have studied the aggregation propensities of six NNQQNY mutants: NVVVVY, NNVVNV, NNVVNY, VIQVVY, NVVQIY, and NVQVVY in water using a combination of ion-mobility mass spectrometry, transmission electron microscopy, atomic force microscopy, and all-atom molecular dynamics simulations. Our data show a strong correlation between the tendency to form early β-sheet oligomers and the subsequent aggregation propensity. Our molecular dynamics simulations indicate that the stability of a steric zipper structure can enhance the propensity for fibril formation. Such stability can be attained by either hydrophobic interactions in the mutant peptide or polar side-chain interdigitations in the wild-type peptide. The overall results display only modest agreement with the aggregation propensity prediction methods such as PASTA, Zyggregator, and RosettaProfile, suggesting the need for better parametrization and model peptides for these algorithms.
Collapse
Affiliation(s)
- Thanh D Do
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Osborne KL, Bachmann M, Strodel B. Thermodynamic analysis of structural transitions during GNNQQNY aggregation. Proteins 2013; 81:1141-55. [DOI: 10.1002/prot.24263] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/16/2013] [Accepted: 01/17/2013] [Indexed: 01/10/2023]
Affiliation(s)
- Kenneth L. Osborne
- Institute of Complex Systems: Structural Biochemistry; Research Centre Jülich; 52425 Jülich; Germany
| | - Michael Bachmann
- Center for Simulational Physics; The University of Georgia; Athens; Georgia 30602; USA
| | | |
Collapse
|
23
|
Cheon M, Chang I, Hall CK. Influence of temperature on formation of perfect tau fragment fibrils using PRIME20/DMD simulations. Protein Sci 2012; 21:1514-27. [PMID: 22887126 PMCID: PMC3526993 DOI: 10.1002/pro.2141] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 08/06/2012] [Indexed: 02/06/2023]
Abstract
We investigate the fibrillization process for amyloid tau fragment peptides (VQIVYK) by applying the discontinuous molecular dynamics method to a system of 48 VQIVYK peptides modeled using a new protein model/force field, PRIME20. The aim of the article is to ascertain which factors are most important in determining whether or not a peptide system forms perfect coherent fibrillar structures. Two different directional criteria are used to determine when a hydrogen bond occurs: the original H-bond constraints and a parallel preference H-bond constraint that imparts a slight bias towards the formation of parallel versus antiparallel strands in a β-sheet. Under the original H-bond constraints, the resulting fibrillar structures contain a mixture of parallel and antiparallel pairs of strands within each β-sheet over the whole fibrillization temperature range. Under the parallel preference H-bond constraints, the β-sheets within the fibrillar structures are more likely to be parallel and indeed become perfectly parallel, consistent with X-ray crystallography, at a high temperature slightly below the fibrillization temperature. The high temperature environment encourages the formation of perfect fibril structures by providing enough time and space for peptides to rearrange during the aggregation process. There are two different kinetic mechanisms, template assembly with monomer addition at high temperature and merging/rearrangement without monomer addition at low temperature, which lead to significant differences in the final fibrillar structure. This suggests that the diverse fibril morphologies generally observed in vitro depend more on environmental conditions than has heretofore been appreciated.
Collapse
Affiliation(s)
- Mookyung Cheon
- Center for Proteome Biophysics, Department of Physics, Pusan National UniversityBusan 609-735, Korea
| | - Iksoo Chang
- Center for Proteome Biophysics, Department of Physics, Pusan National UniversityBusan 609-735, Korea
| | - Carol K Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State UniversityRaleigh, North Carolina 27695-7905
| |
Collapse
|
24
|
Bowerman CJ, Nilsson BL. Self-assembly of amphipathic β-sheet peptides: insights and applications. Biopolymers 2012; 98:169-84. [PMID: 22782560 DOI: 10.1002/bip.22058] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Amphipathic peptides composed of alternating polar and nonpolar residues have a strong tendency to self-assemble into one-dimensional, amyloid-like fibril structures. Fibrils derived from peptides of general (XZXZ)(n) sequence in which X is hydrophobic and Z is hydrophilic adopt a putative β-sheet bilayer. The bilayer configuration allows burial of the hydrophobic X side chain groups in the core of the fibril and leaves the polar Z side chains exposed to solvent. This architectural arrangement provides fibrils that maintain high solubility in water and has facilitated the recent exploitation of self-assembled amphipathic peptide fibrils as functional biomaterials. This article is a critical review of the development and application of self-assembling amphipathic peptides with a focus on the fundamental insight these types of peptides provide into peptide self-assembly phenomena.
Collapse
Affiliation(s)
- Charles J Bowerman
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA
| | | |
Collapse
|
25
|
Waldauer SA, Hassan S, Paoli B, Donaldson PM, Pfister R, Hamm P, Caflisch A, Pellarin R. Photocontrol of Reversible Amyloid Formation with a Minimal-Design Peptide. J Phys Chem B 2012; 116:8961-73. [DOI: 10.1021/jp305311z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Steven A. Waldauer
- Institute
of Physical Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057
Zurich, Switzerland
| | - Shabir Hassan
- Institute
of Physical Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057
Zurich, Switzerland
| | - Beatrice Paoli
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057
Zurich, Switzerland
| | - Paul M. Donaldson
- Institute
of Physical Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057
Zurich, Switzerland
| | - Rolf Pfister
- Institute
of Physical Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057
Zurich, Switzerland
| | - Peter Hamm
- Institute
of Physical Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057
Zurich, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057
Zurich, Switzerland
| | - Riccardo Pellarin
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057
Zurich, Switzerland
- Department
of Bioengineering and
Therapeutic Sciences, University of California in San Francisco, 1700 Fourth Street, San Francisco, California
94158, United States
| |
Collapse
|
26
|
Invernizzi G, Papaleo E, Sabate R, Ventura S. Protein aggregation: mechanisms and functional consequences. Int J Biochem Cell Biol 2012; 44:1541-54. [PMID: 22713792 DOI: 10.1016/j.biocel.2012.05.023] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/09/2012] [Accepted: 05/27/2012] [Indexed: 12/31/2022]
Abstract
Understanding the mechanisms underlying protein misfolding and aggregation has become a central issue in biology and medicine. Compelling evidence show that the formation of amyloid aggregates has a negative impact in cell function and is behind the most prevalent human degenerative disorders, including Alzheimer's Parkinson's and Huntington's diseases or type 2 diabetes. Surprisingly, the same type of macromolecular assembly is used for specialized functions by different organisms, from bacteria to human. Here we address the conformational properties of these aggregates, their formation pathways, their role in human diseases, their functional properties and how bioinformatics tools might be of help to study these protein assemblies.
Collapse
Affiliation(s)
- Gaetano Invernizzi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | | | | | | |
Collapse
|
27
|
Fox SJ, Pittock C, Fox T, Tautermann CS, Malcolm N, Skylaris CK. Electrostatic embedding in large-scale first principles quantum mechanical calculations on biomolecules. J Chem Phys 2011; 135:224107. [DOI: 10.1063/1.3665893] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
Danilkovich AV, Lipkin VM, Udovichenko IP. Classification of self-organizing peptides. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2011; 37:780-5. [DOI: 10.1134/s1068162011060069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Cheon M, Chang I, Hall CK. Spontaneous formation of twisted Aβ(16-22) fibrils in large-scale molecular-dynamics simulations. Biophys J 2011; 101:2493-501. [PMID: 22098748 DOI: 10.1016/j.bpj.2011.08.042] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/18/2011] [Accepted: 08/22/2011] [Indexed: 12/15/2022] Open
Abstract
Protein aggregation is associated with fatal neurodegenerative diseases, including Alzheimer's and Parkinson's. Mapping out kinetics along the aggregation pathway could provide valuable insights into the mechanisms that drive oligomerization and fibrillization, but that is beyond the current scope of computational research. Here we trace out the full kinetics of the spontaneous formation of fibrils by 48 Aβ(16-22) peptides, following the trajectories in molecular detail from an initial random configuration to a final configuration of twisted protofilaments with cross-β-structure. We accomplish this by performing large-scale molecular-dynamics simulations based on an implicit-solvent, intermediate-resolution protein model, PRIME20. Structural details such as the intersheet distance, perfectly antiparallel β-strands, and interdigitating side chains analogous to a steric zipper interface are explained by and in agreement with experiment. Two characteristic fibrillization mechanisms - nucleation/templated growth and oligomeric merging/structural rearrangement - emerge depending on the temperature.
Collapse
Affiliation(s)
- Mookyung Cheon
- Center for Proteome Biophysics, Department of Physics, Pusan National University, Busan, Korea
| | | | | |
Collapse
|
30
|
Berhanu WM, Masunov AE. Alternative packing modes leading to amyloid polymorphism in five fragments studied with molecular dynamics. Biopolymers 2011; 98:131-44. [PMID: 22020870 DOI: 10.1002/bip.21731] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/13/2011] [Accepted: 10/14/2011] [Indexed: 12/13/2022]
Abstract
Amyloid aggregates have been implicated in the pathogenesis of diseases such as type 2 diabetes, Alzheimer's, Parkinson's, and prion disease. Recently determined microcrystal structures of several short peptide segments derived from fibril-forming proteins revealed coexistence of alternative aggregation modes (amyloid polymorphism) formed by the same segment. This polymorphism may help in understanding the influence of the side chain packing on the amyloid stability. Here we use molecular dynamics (MD) simulation to analyze the stability of five pairs of polar and nonpolar polymorphic oligomers. MD simulation shows polymorphs with steric zipper interface containing large polar and/or aromatic side chains (GNNQQNY, and NNQNTF) are more stable than steric zipper interfaces made of small or hydrophobic residues (SSTNGVG, VQIVYK, and MVGGVV). Several geometric analyses revealed that larger sheet to sheet interface of the dry steric zipper through polar Q/N rich side chains holds the sheets together. Mutant simulations (Q/N→G) show substitutions with glycine disrupt the steric zipper, leading to unstable oligomers. Stability of Q/N rich oligomers was found to result from the large average number of hydrogen bonds. The molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) method reports the nonpolar component of free energy to be favorable, while electrostatic solvation is unfavorable for β-sheet association. Knowledge of structural properties of these fibrils might be useful for developing therapeutic agents against amyloidoses as well as for developing biomaterials. © 2011 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 98: 131-144, 2012.
Collapse
|
31
|
Lewandowski JR, van der Wel PC, Rigney M, Grigorieff N, Griffin RG. Structural complexity of a composite amyloid fibril. J Am Chem Soc 2011; 133:14686-98. [PMID: 21766841 PMCID: PMC3190136 DOI: 10.1021/ja203736z] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The molecular structure of amyloid fibrils and the mechanism of their formation are of substantial medical and biological importance, but present an ongoing experimental and computational challenge. An early high-resolution view of amyloid-like structure was obtained on amyloid-like crystals of a small fragment of the yeast prion protein Sup35p: the peptide GNNQQNY. As GNNQQNY also forms amyloid-like fibrils under similar conditions, it has been theorized that the crystal's structural features are shared by the fibrils. Here we apply magic-angle-spinning (MAS) NMR to examine the structure and dynamics of these fibrils. Previously multiple NMR signals were observed for such samples, seemingly consistent with the presence of polymorphic fibrils. Here we demonstrate that peptides with these three distinct conformations instead assemble together into composite protofilaments. Electron microscopy (EM) of the ribbon-like fibrils indicates that these protofilaments combine in differing ways to form striations of variable widths, presenting another level of structural complexity. Structural and dynamic NMR data reveal the presence of highly restricted side-chain conformations involved in interfaces between differently structured peptides, likely comprising interdigitated steric zippers. We outline molecular interfaces that are consistent with the observed EM and NMR data. The rigid and uniform structure of the GNNQQNY crystals is found to contrast distinctly with the more complex structural and dynamic nature of these "composite" amyloid fibrils. These results provide insight into the fibril-crystal distinction and also indicate a necessary caution with respect to the extrapolation of crystal structures to the study of fibril structure and formation.
Collapse
Affiliation(s)
- Józef R. Lewandowski
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Patrick C.A. van der Wel
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mike Rigney
- Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02464, USA
| | - Nikolaus Grigorieff
- Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02464, USA
| | - Robert G. Griffin
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
32
|
Berryman JT, Radford SE, Harris SA. Systematic examination of polymorphism in amyloid fibrils by molecular-dynamics simulation. Biophys J 2011; 100:2234-42. [PMID: 21539792 DOI: 10.1016/j.bpj.2011.02.060] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 02/07/2011] [Accepted: 02/15/2011] [Indexed: 10/18/2022] Open
Abstract
Amyloid fibrils often exhibit polymorphism. Polymorphs are formed when proteins or peptides with identical sequences self-assemble into fibrils containing substantially different arrangements of the β-strands. We used atomistic molecular-dynamics simulation to examine the thermodynamic stability of a amyloid fibrils in different polymorphic forms by performing a systematic investigation of sequence and symmetry space for a series of peptides with a range of physicochemical properties. We show that the stability of fibrils depends on both sequence and the symmetry because these factors determine the availability of favorable interactions between the peptide strands within a sheet and in intersheet packing. By performing a detailed analysis of these interactions as a function of symmetry, we obtained a series of simple design rules that can be used to determine which polymorphs of a given sequence are most likely to form thermodynamically stable fibrils. These rules can potentially be employed to design peptide sequences that aggregate into a preferred polymorphic form for nanotechnological purposes.
Collapse
|
33
|
Nasica-Labouze J, Meli M, Derreumaux P, Colombo G, Mousseau N. A multiscale approach to characterize the early aggregation steps of the amyloid-forming peptide GNNQQNY from the yeast prion sup-35. PLoS Comput Biol 2011; 7:e1002051. [PMID: 21625573 PMCID: PMC3098217 DOI: 10.1371/journal.pcbi.1002051] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 03/28/2011] [Indexed: 12/17/2022] Open
Abstract
The self-organization of peptides into amyloidogenic oligomers is one of the key events for a wide range of molecular and degenerative diseases. Atomic-resolution characterization of the mechanisms responsible for the aggregation process and the resulting structures is thus a necessary step to improve our understanding of the determinants of these pathologies. To address this issue, we combine the accelerated sampling properties of replica exchange molecular dynamics simulations based on the OPEP coarse-grained potential with the atomic resolution description of interactions provided by all-atom MD simulations, and investigate the oligomerization process of the GNNQQNY for three system sizes: 3-mers, 12-mers and 20-mers. Results for our integrated simulations show a rich variety of structural arrangements for aggregates of all sizes. Elongated fibril-like structures can form transiently in the 20-mer case, but they are not stable and easily interconvert in more globular and disordered forms. Our extensive characterization of the intermediate structures and their physico-chemical determinants points to a high degree of polymorphism for the GNNQQNY sequence that can be reflected at the macroscopic scale. Detailed mechanisms and structures that underlie amyloid aggregation are also provided. The formation of amyloid fibrils is associated with many neurodegenerative diseases such as Alzheimer's, Creutzfeld-Jakob, Parkinson's, the Prion disease and diabetes mellitus. In all cases, proteins misfold to form highly ordered insoluble aggregates called amyloid fibrils that deposit intra- and extracellularly and are resistant to proteases. All proteins are believed to have the instrinsic capability of forming amyloid fibrils that share common specific structural properties that have been observed by X-ray crystallography and by NMR. However, little is known about the aggregation dynamics of amyloid assemblies, and their toxicity mechanism is therefore poorly understood. It is believed that small amyloid oligomers, formed on the aggregation pathway of full amyloid fibrils, are the toxic species. A detailed atomic characterization of the oligomerization process is thus necessary to further our understanding of the amyloid oligomer's toxicity. Our approach here is to study the aggregation dynamics of a 7-residue amyloid peptide GNNQQNY through a combination of numerical techniques. Our results suggest that this amyloid sequence can form fibril-like structures and is polymorphic, which agrees with recent experimental observations. The ability to fully characterize and describe the aggregation pathway of amyloid sequences numerically is key to the development of future drugs to target amyloid oligomers.
Collapse
Affiliation(s)
| | - Massimiliano Meli
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Milano, Italy
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR9080 CNRS, Institut de Biologie Physico-Chimique, Université Paris 7, and Institut Universitaire de France, Paris, France
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Milano, Italy
- * E-mail: (GC); (NM)
| | - Normand Mousseau
- Département de Physique and GEPROM, Université de Montréal, Montréal, Québec, Canada
- * E-mail: (GC); (NM)
| |
Collapse
|
34
|
Berhanu WM, Masunov AE. Molecular dynamic simulation of wild type and mutants of the polymorphic amyloid NNQNTF segments of elk prion: structural stability and thermodynamic of association. Biopolymers 2011; 95:573-90. [PMID: 21384336 DOI: 10.1002/bip.21611] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 02/02/2011] [Accepted: 02/05/2011] [Indexed: 02/04/2023]
Abstract
A hexapeptide with amino acid sequence NNQNTF from the elk prion protein forms amyloid fibrils. Here we use molecular dynamic simulations of the oligomers and their single point glycine mutants to study their stability. In an effort to probe the structural stability and association thermodynamic in a realistic environment, all wildtype of NNQNTF polymorphic forms with different size and their corresponding double layer 5 strands single point glycine mutants were subjected to a total of 500 ns of explicit-solvent molecular dynamics (MD) simulation. Our results show that the structural stability of the NNQNTF oligomers increases with increasing the number of β-strands for double layers. Our results also demonstrated that hydrophobic interaction is the principle driving force to stabilize the adjacent β-strands while the steric zipper is responsible for holding the neighboring β-sheet layers together. We used MM-PBSA approach free energy calculations to determine the role of nonpolar effects, electrostatics and entropy in binding. Nonpolar effects remained consistently more favorable in wild type and mutants reinforcing the importance of hydrophobic effects in protein-protein binding. While entropy systematically opposed binding in all cases, there was no observed trend in the entropy difference between wildtype and glycine mutant. Free energy decomposition shows residues situated at the interface were found to make favorable contributions to the peptide-peptide association. The study of the wild type and mutants in an explicit solvent may provide valuable insight for amyloid aggregation inhibitor design efforts.
Collapse
Affiliation(s)
- Workalemahu M Berhanu
- NanoScience Technology Center, Department of Chemistry, University of Central Florida, Orlando, FL 32826, USA
| | | |
Collapse
|
35
|
Can molecular dynamics simulations assist in design of specific inhibitors and imaging agents of amyloid aggregation? Structure, stability and free energy predictions for amyloid oligomers of VQIVYK, MVGGVV and LYQLEN. J Mol Model 2010; 17:2423-42. [PMID: 21174134 DOI: 10.1007/s00894-010-0912-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 11/21/2010] [Indexed: 12/15/2022]
Abstract
The aggregation modes of hexapeptide fragments of Tau, Insulin and Aβ peptide (VQIVYK, MVGGVV and LYQLEN) were found from their microcrystalline structures that had been recently resolved by X-ray analysis. The atomic structures reveal a dry self-complementary interface between the neighboring β-sheet layers, termed "steric zipper". In this study we perform several all-atom molecular dynamics simulations with explicit water to analyze stability of the crystalline fragments of 2-10 hexapeptides each and their analogs with single glycine replacement mutations to investigate the structural stability, aggregation behavior and thermodynamic of the amyloid oligomers. Upon comparing single and double layer models, our results reveal that additional strands contribute significantly to the structural stability of the peptide oligomers for double layer model, while in the case of single layer model the stability decreases (or remains the same in the case of LYQLEN). This is in agreement with the previous studies performed on different types of amyloid models. We also replaced the side-chains participating in the steric zipper interfaces with glycine. None of the mutants were structurally stable compared to the respective wild type model, except for mutants V2G and V6G in MVGGVV2 case. The exception can be explained by structural features of this particular polymorph. The double layer decamer and dodecamer aggregates of the wild type hexapeptides appear to be stable at 300K, which is confirmed by the conservation of high anti-parallel β-sheet content throughout the whole simulation time. Deletions of the side chains resulted in decline of secondary structure content compared to corresponding wild type indicating that the role of the replaced amino acid in stabilizing the structure. Detailed analysis of the binding energy reveals that stability of these peptide aggregates is determined mainly by the van der Waals and hydrophobic forces that can serve as quantitative measure of shape complementarities between the side chains. This observation implies that interactions among side chains forming the dehydrated steric zipper, rather than among those exposed to water, are the major structural determinant. The electrostatic repulsion destabilizes the studied double layer aggregates in two cases, while stabilizes the other two. Negative total binding free energy indicates that both wild type and mutants complex formation is favorable. However, the mutants complexation is less favorable than the wild type's. The present study provides the atomic level understanding of the aggregation behavior and the driving force for the amyloid aggregates, and could be useful for rational design of amyloid inhibitors and amyloid-specific biomarkers for diagnostic purposes.
Collapse
|
36
|
van der Wel PC, Lewandowski JR, Griffin RG. Structural characterization of GNNQQNY amyloid fibrils by magic angle spinning NMR. Biochemistry 2010; 49:9457-69. [PMID: 20695483 PMCID: PMC3026921 DOI: 10.1021/bi100077x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Several human diseases are associated with the formation of amyloid aggregates, but experimental characterization of these amyloid fibrils and their oligomeric precursors has remained challenging. Experimental and computational analysis of simpler model systems has therefore been necessary, for instance, on the peptide fragment GNNQQNY7−13 of yeast prion protein Sup35p. Expanding on a previous publication, we report here a detailed structural characterization of GNNQQNY fibrils using magic angle spinning (MAS) NMR. On the basis of additional chemical shift assignments we confirm the coexistence of three distinct peptide conformations within the fibrillar samples, as reflected in substantial chemical shift differences. Backbone torsion angle measurements indicate that the basic structure of these coexisting conformers is an extended β-sheet. We structurally characterize a previously identified localized distortion of the β-strand backbone specific to one of the conformers. Intermolecular contacts are consistent with each of the conformers being present in its own parallel and in-register sheet. Overall the MAS NMR data indicate a substantial difference between the structure of the fibrillar and crystalline forms of these peptides, with a clearly increased complexity in the GNNQQNY fibril structure. These experimental data can provide guidance for future work, both experimental and theoretical, and provide insights into the distinction between fibril growth and crystal formation.
Collapse
Affiliation(s)
| | | | - Robert G. Griffin
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
37
|
Reddy AS, Chopra M, de Pablo JJ. GNNQQNY--investigation of early steps during amyloid formation. Biophys J 2010; 98:1038-45. [PMID: 20303861 DOI: 10.1016/j.bpj.2009.10.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 10/12/2009] [Accepted: 10/23/2009] [Indexed: 12/13/2022] Open
Abstract
Protein aggregation has been implicated in the pathology of several neurodegenerative diseases, and a better understanding of how it proceeds is essential for the development of therapeutic strategies. Recently, the amyloidogenic heptapeptide GNNQQNY has emerged as a molecule of choice for fundamental studies of protein aggregation. A number of experimental and computational studies have examined the structure of the GNNQQNY aggregate. Less work, however, has been aimed at understanding its aggregation pathway. In this study, we present a detailed computational analysis of such a pathway. To that end, transition path sampling Monte Carlo simulations are used to examine the dimerization process. A statistical analysis of the reaction pathways shows that the dimerization reaction proceeds via a zipping mechanism, initiated with the formation of distinct contacts at the third residue (N). Asparagine residues are found to play a key role in the early stages of aggregation. And, contrary to previous belief, it is also shown that the tyrosine terminal group is not required to stabilize the dimer. In fact, an asparagine residue leads to faster aggregation of the peptide.
Collapse
Affiliation(s)
- Allam S Reddy
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | | | | |
Collapse
|
38
|
Marshall KE, Hicks MR, Williams TL, Hoffmann SV, Rodger A, Dafforn TR, Serpell LC. Characterizing the assembly of the Sup35 yeast prion fragment, GNNQQNY: structural changes accompany a fiber-to-crystal switch. Biophys J 2010; 98:330-8. [PMID: 20338855 DOI: 10.1016/j.bpj.2009.10.020] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 10/13/2009] [Accepted: 10/15/2009] [Indexed: 01/18/2023] Open
Abstract
Amyloid-like fibrils can be formed by many different proteins and peptides. The structural characteristics of these fibers are very similar to those of amyloid fibrils that are deposited in a number of protein misfolding diseases, including Alzheimer's disease and the transmissible spongiform encephalopathies. The elucidation of two crystal structures from an amyloid-like fibril-forming fragment of the yeast prion, Sup35, with sequence GNNQQNY, has contributed to knowledge regarding side-chain packing of amyloid-forming peptides. Both structures share a cross-beta steric zipper arrangement but vary in the packing of the peptide, particularly in terms of the tyrosine residue. We investigated the fibrillar and crystalline structure and assembly of the GNNQQNY peptide using x-ray fiber diffraction, electron microscopy, intrinsic and quenched tyrosine fluorescence, and linear dichroism. Electron micrographs reveal that at concentrations between 0.5 and 10 mg/mL, fibers form initially, followed by crystals. Fluorescence studies suggest that the environment of the tyrosine residue changes as crystals form. This is corroborated by linear dichroism experiments that indicate a change in the orientation of the tyrosine residue over time, which suggests that a structural rearrangement occurs as the crystals form. Experimental x-ray diffraction patterns from fibers and crystals also suggest that these species are structurally distinct. A comparison of experimental and calculated diffraction patterns contributes to an understanding of the different arrangements accessed by the peptide.
Collapse
Affiliation(s)
- Karen E Marshall
- Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer, BN1 9QG, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
39
|
Yu X, Wang J, Yang JC, Wang Q, Cheng SZ, Nussinov R, Zheng J. Atomic-scale simulations confirm that soluble beta-sheet-rich peptide self-assemblies provide amyloid mimics presenting similar conformational properties. Biophys J 2010; 98:27-36. [PMID: 20085717 PMCID: PMC2800962 DOI: 10.1016/j.bpj.2009.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 09/20/2009] [Accepted: 10/01/2009] [Indexed: 12/13/2022] Open
Abstract
The peptide self-assembly mimic (PSAM) from the outer surface protein A (OspA) can form highly stable but soluble beta-rich self-assembly-like structures similar to those formed by native amyloid-forming peptides. However, unlike amyloids that predominantly form insoluble aggregates, PSAMs are highly water-soluble. Here, we characterize the conformations of these soluble beta-sheet-rich assemblies. We simulate PSAMs with different-sized beta-sheets in the presence and absence of end-capping proteins using all-atom explicit-solvent molecular dynamics, comparing the structural stability, conformational dynamics, and association force. Structural and free-energy comparisons among beta-sheets with different numbers of layers and sequences indicate that in similarity to amyloids, the intersheet side chain-side chain interactions and hydrogen bonds combined with intrasheet salt bridges are the major driving forces in stabilizing the overall structural organization. A detailed structural analysis shows that in similarity to amyloid fibrils, all wild-type and mutated PSAM structures display twisted and bent beta-sheets to some extent, implying that a twisted and bent beta-sheet is a general motif of beta-rich assemblies. Thus, our studies indicate that soluble beta-sheet-rich peptide self-assemblies can provide good amyloid mimics, and as such confirm on the atomic scale that they are excellent systems for amyloid studies. These results provide further insight into the usefulness of such mimics for nanostructure design.
Collapse
Affiliation(s)
- Xiang Yu
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, Ohio
| | - Jingdai Wang
- Department of Chemical Engineering, Zhejiang University, Hangzhou, China
| | - Jui-Chen Yang
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, Ohio
| | - Qiuming Wang
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, Ohio
| | | | - Ruth Nussinov
- Basic Science Program, SAIC-Frederick Inc., Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, Maryland
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, Ohio
| |
Collapse
|