1
|
Hofmann KP, Lamb TD. Rhodopsin, light-sensor of vision. Prog Retin Eye Res 2023; 93:101116. [PMID: 36273969 DOI: 10.1016/j.preteyeres.2022.101116] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022]
Abstract
The light sensor of vertebrate scotopic (low-light) vision, rhodopsin, is a G-protein-coupled receptor comprising a polypeptide chain with bound chromophore, 11-cis-retinal, that exhibits remarkable physicochemical properties. This photopigment is extremely stable in the dark, yet its chromophore isomerises upon photon absorption with 70% efficiency, enabling the activation of its G-protein, transducin, with high efficiency. Rhodopsin's photochemical and biochemical activities occur over very different time-scales: the energy of retinaldehyde's excited state is stored in <1 ps in retinal-protein interactions, but it takes milliseconds for the catalytically active state to form, and many tens of minutes for the resting state to be restored. In this review, we describe the properties of rhodopsin and its role in rod phototransduction. We first introduce rhodopsin's gross structural features, its evolution, and the basic mechanisms of its activation. We then discuss light absorption and spectral sensitivity, photoreceptor electrical responses that result from the activity of individual rhodopsin molecules, and recovery of rhodopsin and the visual system from intense bleaching exposures. We then provide a detailed examination of rhodopsin's molecular structure and function, first in its dark state, and then in the active Meta states that govern its interactions with transducin, rhodopsin kinase and arrestin. While it is clear that rhodopsin's molecular properties are exquisitely honed for phototransduction, from starlight to dawn/dusk intensity levels, our understanding of how its molecular interactions determine the properties of scotopic vision remains incomplete. We describe potential future directions of research, and outline several major problems that remain to be solved.
Collapse
Affiliation(s)
- Klaus Peter Hofmann
- Institut für Medizinische Physik und Biophysik (CC2), Charité, and, Zentrum für Biophysik und Bioinformatik, Humboldt-Unversität zu Berlin, Berlin, 10117, Germany.
| | - Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia.
| |
Collapse
|
2
|
Caruso G, Klaus C, Hamm HE, Gurevich VV, Bisegna P, Andreucci D, DiBenedetto E, Makino CL. Pepperberg plot: Modeling flash response saturation in retinal rods of mouse. Front Mol Neurosci 2023; 15:1054449. [PMID: 36710929 PMCID: PMC9880052 DOI: 10.3389/fnmol.2022.1054449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/09/2022] [Indexed: 01/15/2023] Open
Abstract
Retinal rods evolved to be able to detect single photons. Despite their exquisite sensitivity, rods operate over many log units of light intensity. Several processes inside photoreceptor cells make this incredible light adaptation possible. Here, we added to our previously developed, fully space resolved biophysical model of rod phototransduction, some of the mechanisms that play significant roles in shaping the rod response under high illumination levels: the function of RGS9 in shutting off G protein transducin, and calcium dependences of the phosphorylation rates of activated rhodopsin, of the binding of cGMP to the light-regulated ion channel, and of two membrane guanylate cyclase activities. A well stirred version of this model captured the responses to bright, saturating flashes in WT and mutant mouse rods and was used to explain "Pepperberg plots," that graph the time during which the response is saturated against the natural logarithm of flash strength for bright flashes. At the lower end of the range, saturation time increases linearly with the natural logarithm of flash strength. The slope of the relation (τD) is dictated by the time constant of the rate-limiting (slowest) step in the shutoff of the phototransduction cascade, which is the hydrolysis of GTP by transducin. We characterized mathematically the X-intercept ( Φ o ) which is the number of photoisomerizations that just saturates the rod response. It has been observed that for flash strengths exceeding a few thousand photoisomerizations, the curves depart from linearity. Modeling showed that the "upward bend" for very bright flash intensities could be explained by the dynamics of RGS9 complex and further predicted that there would be a plateau at flash strengths giving rise to more than ~107 photoisomerizations due to activation of all available PDE. The model accurately described alterations in saturation behavior of mutant murine rods resulting from transgenic perturbations of the cascade targeting membrane guanylate cyclase activity, and expression levels of GRK, RGS9, and PDE. Experimental results from rods expressing a mutant light-regulated channel purported to lack calmodulin regulation deviated from model predictions, suggesting that there were other factors at play.
Collapse
Affiliation(s)
- Giovanni Caruso
- Italian National Research Council, Istituto di Scienze del Patrimonio Culturale, Rome, Italy
| | - Colin Klaus
- The College of Public Health Division of Biostatistics and The Mathematical Biosciences Institute, The Ohio State University, Columbus, OH, United States
| | - Heidi E. Hamm
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Paolo Bisegna
- Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, Rome, Italy
| | - Daniele Andreucci
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Rome, Italy
| | | | - Clint L. Makino
- Department of Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
3
|
Human cone elongation responses can be explained by photoactivated cone opsin and membrane swelling and osmotic response to phosphate produced by RGS9-catalyzed GTPase. Proc Natl Acad Sci U S A 2022; 119:e2202485119. [PMID: 36122241 PMCID: PMC9522364 DOI: 10.1073/pnas.2202485119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Optical coherence tomography has established that human cone photoreceptor outer segments elongate in response to stimuli bleaching large fractions of their visual pigment. Elongation responses are completely described over their 200-fold bleaching range as the sum of two exponentially rising components differing 13-fold in time constants and 4-fold in light sensitivity. Bleaching measurements of individual cones with adaptive optics scanning laser ophthalmoscopy (SLO) suggest that component 2 arises from cone opsin and disk membrane swelling triggered by photoactivation. Application of a model of phototransduction suggests that component 1 corresponds to free phosphate generated by regulator of G-protein signaling 9 (RGS9)-catalyzed hydrolysis of guanosine triphosphate (GTP) in the α-subunit of G protein complexed with phosphodiesterase. Human cone outer segment (COS) length changes in response to stimuli bleaching up to 99% of L- and M-cone opsins were measured with high resolution, phase-resolved optical coherence tomography (OCT). Responses comprised a fast phase (∼5 ms), during which COSs shrink, and two slower phases (1.5 s), during which COSs elongate. The slower components saturated in amplitude (∼425 nm) and initial rate (∼3 nm ms−1) and are well described over the 200-fold bleaching range as the sum of two exponentially rising functions with time constants of 80 to 90 ms (component 1) and 1,000 to 1,250 ms (component 2). Measurements with adaptive optics reflection densitometry revealed component 2 to be linearly related to cone pigment bleaching, and the hypothesis is proposed that it arises from cone opsin and disk membrane swelling triggered by isomerization and rate-limited by chromophore hydrolysis and its reduction to membrane-localized all-trans retinol. The light sensitivity and kinetics of component 1 suggested that the underlying mechanism is an osmotic response to an amplified soluble by-product of phototransduction. The hypotheses that component 1 corresponds to G-protein subunits dissociating from the membrane, metabolites of cyclic guanosine monophosphate (cGMP) hydrolysis, or by-products of activated guanylate cyclase are rejected, while the hypothesis that it corresponds to phosphate produced by regulator of G-protein signaling 9 (RGS9)-catalyzed hydrolysis of guanosine triphosphate (GTP) in G protein–phosphodiesterase complexes was found to be consistent with the results. These results provide a basis for the assessment with optoretinography of phototransduction in individual cone photoreceptors in health and during disease progression and therapeutic interventions.
Collapse
|
4
|
Sørhus E, Meier S, Donald CE, Furmanek T, Edvardsen RB, Lie KK. Cardiac dysfunction affects eye development and vision by reducing supply of lipids in fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149460. [PMID: 34391158 DOI: 10.1016/j.scitotenv.2021.149460] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/31/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Developing organisms are especially vulnerable to environmental stressors. Crude oil exposure in early life stages of fish result in multiple functional and developmental defects, including cardiac dysfunction and abnormal and smaller eyes. Phenanthrene (Phe) has a reversible impact on cardiac function, and under exposure Phe reduces cardiac contractility. Exposure to a known L-type channel blocker, nicardipine hydrochloride (Nic) also disrupts cardiac function and creates eye deformities. We aimed to investigate whether cardiac dysfunction was the major underlying mechanism of crude oil-, Phe- and Nic-induced eye malformations. We exposed Atlantic haddock (Melanogrammus aeglefinus) early embryos to Nic and crude oil (Oil) and late embryos/early larvae to Phe exposure. All three exposures resulted in cardiac abnormalities and lead to severe, eye, jaw and spinal deformities at early larval stages. At 3 days post hatching, larvae from the exposures and corresponding controls were dissected. Eyes, trunk, head and yolk sac were subjected to lipid profiling, and eyes were also subjected to transcriptomic profiling. Among most enriched pathways in the eye transcriptomes were fatty acid metabolism, calcium signaling and phototransduction. Changes in lipid profiles and the transcriptome suggested that the dysfunctional and abnormal eyes in our exposures were due to both disruption of signaling pathways and insufficient supply of essential fatty acids and other nutrients form the yolk.
Collapse
Affiliation(s)
- Elin Sørhus
- Insititue of Marine Research, Nordnesgaten 50, 5005 Bergen, Norway.
| | - Sonnich Meier
- Insititue of Marine Research, Nordnesgaten 50, 5005 Bergen, Norway
| | - Carey E Donald
- Insititue of Marine Research, Nordnesgaten 50, 5005 Bergen, Norway
| | - Tomasz Furmanek
- Insititue of Marine Research, Nordnesgaten 50, 5005 Bergen, Norway
| | - Rolf B Edvardsen
- Insititue of Marine Research, Nordnesgaten 50, 5005 Bergen, Norway
| | - Kai K Lie
- Insititue of Marine Research, Nordnesgaten 50, 5005 Bergen, Norway
| |
Collapse
|
5
|
Temporal Contrast Sensitivity Increases despite Photoreceptor Degeneration in a Mouse Model of Retinitis Pigmentosa. eNeuro 2021; 8:ENEURO.0020-21.2021. [PMID: 33509952 PMCID: PMC8059883 DOI: 10.1523/eneuro.0020-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 11/21/2022] Open
Abstract
The detection of temporal variations in amplitude of light intensity, or temporal contrast sensitivity (TCS), depends on the kinetics of rod photoresponse recovery. Uncharacteristically fast rod recovery kinetics are facets of both human patients and transgenic animal models with a P23H rhodopsin mutation, a prevalent cause of retinitis pigmentosa (RP). Here, we show that mice with this mutation (RhoP23H/+) exhibit an age-dependent and illumination-dependent enhancement in TCS compared with controls. At retinal illumination levels producing ≥1000 R*/rod/s or more, postnatal day 30 (P30) RhoP23H/+ mice exhibit a 1.2-fold to 2-fold increase in retinal and optomotor TCS relative to controls in response to flicker frequencies of 3, 6, and 12 Hz despite significant photoreceptor degeneration and loss of flash electroretinogram (ERG) b-wave amplitude. Surprisingly, the TCS of RhoP23H/+ mice further increases as degeneration advances. Enhanced TCS is also observed in a second model (rhodopsin heterozygous mice, Rho+/-) with fast rod recovery kinetics and no apparent retinal degeneration. In both mouse models, enhanced TCS is explained quantitatively by a comprehensive model that includes photoresponse recovery kinetics, density and collecting area of degenerating rods. Measurement of TCS may be a non-invasive early diagnostic tool indicative of rod dysfunction in some forms of retinal degenerative disease.
Collapse
|
6
|
Fortenbach C, Peinado Allina G, Shores CM, Karlen SJ, Miller EB, Bishop H, Trimmer JS, Burns ME, Pugh EN. Loss of the K+ channel Kv2.1 greatly reduces outward dark current and causes ionic dysregulation and degeneration in rod photoreceptors. J Gen Physiol 2021; 153:e202012687. [PMID: 33502442 PMCID: PMC7845921 DOI: 10.1085/jgp.202012687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/25/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
Vertebrate retinal photoreceptors signal light by suppressing a circulating "dark current" that maintains their relative depolarization in the dark. This dark current is composed of an inward current through CNG channels and NCKX transporters in the outer segment that is balanced by outward current exiting principally from the inner segment. It has been hypothesized that Kv2.1 channels carry a predominant fraction of the outward current in rods. We examined this hypothesis by comparing whole cell, suction electrode, and electroretinographic recordings from Kv2.1 knockout (Kv2.1-/-) and wild-type (WT) mouse rods. Single cell recordings revealed flash responses with unusual kinetics, and reduced dark currents that were quantitatively consistent with the measured depolarization of the membrane resting potential in the dark. A two-compartment (outer and inner segment) physiological model based on known ionic mechanisms revealed that the abnormal Kv2.1-/- rod photoresponses arise principally from the voltage dependencies of the known conductances and the NCKX exchanger, and a highly elevated fraction of inward current carried by Ca2+ through CNG channels due to the aberrant depolarization. Kv2.1-/- rods had shorter outer segments than WT and dysmorphic mitochondria in their inner segments. Optical coherence tomography of knockout animals demonstrated a slow photoreceptor degeneration over a period of 6 mo. Overall, these findings reveal that Kv2.1 channels carry 70-80% of the non-NKX outward dark current of the mouse rod, and that the depolarization caused by the loss of Kv2.1 results in elevated Ca2+ influx through CNG channels and elevated free intracellular Ca2+, leading to progressive degeneration.
Collapse
Affiliation(s)
| | | | | | - Sarah J. Karlen
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA
| | - Eric B. Miller
- Center for Neuroscience, University of California, Davis, Davis, CA
| | - Hannah Bishop
- Center for Neuroscience, University of California, Davis, Davis, CA
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA
| | - James S. Trimmer
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA
| | - Marie E. Burns
- Center for Neuroscience, University of California, Davis, Davis, CA
- Department of Ophthalmology and Vision Science, University of California, Davis, Davis, CA
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA
| | - Edward N. Pugh
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA
- Department of Ophthalmology and Vision Science, University of California, Davis, Davis, CA
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA
| |
Collapse
|
7
|
Dephosphorylation by protein phosphatase 2A regulates visual pigment regeneration and the dark adaptation of mammalian photoreceptors. Proc Natl Acad Sci U S A 2017; 114:E9675-E9684. [PMID: 29078372 DOI: 10.1073/pnas.1712405114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Resetting of G-protein-coupled receptors (GPCRs) from their active state back to their biologically inert ground state is an integral part of GPCR signaling. This "on-off" GPCR cycle is regulated by reversible phosphorylation. Retinal rod and cone photoreceptors arguably represent the best-understood example of such GPCR signaling. Their visual pigments (opsins) are activated by light, transduce the signal, and are then inactivated by a GPCR kinase and arrestin. Although pigment inactivation by phosphorylation is well understood, the enzyme(s) responsible for pigment dephosphorylation and the functional significance of this reaction remain unknown. Here, we show that protein phosphatase 2A (PP2A) acts as opsin phosphatase in both rods and cones. Elimination of PP2A substantially slows pigment dephosphorylation, visual chromophore recycling, and ultimately photoreceptor dark adaptation. These findings demonstrate that visual pigment dephosphorylation regulates the dark adaptation of photoreceptors and provide insights into the role of this reaction in GPCR signaling.
Collapse
|
8
|
Ehler M, Dobrosotskaya J, Cunningham D, Wong WT, Chew EY, Czaja W, Bonner RF. Modeling Photo-Bleaching Kinetics to Create High Resolution Maps of Rod Rhodopsin in the Human Retina. PLoS One 2015. [PMID: 26196397 PMCID: PMC4510609 DOI: 10.1371/journal.pone.0131881] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We introduce and describe a novel non-invasive in-vivo method for mapping local rod rhodopsin distribution in the human retina over a 30-degree field. Our approach is based on analyzing the brightening of detected lipofuscin autofluorescence within small pixel clusters in registered imaging sequences taken with a commercial 488nm confocal scanning laser ophthalmoscope (cSLO) over a 1 minute period. We modeled the kinetics of rhodopsin bleaching by applying variational optimization techniques from applied mathematics. The physical model and the numerical analysis with its implementation are outlined in detail. This new technique enables the creation of spatial maps of the retinal rhodopsin and retinal pigment epithelium (RPE) bisretinoid distribution with an ≈ 50μm resolution.
Collapse
Affiliation(s)
- Martin Ehler
- Faculty of Mathematics, University of Vienna, Vienna, Austria
- * E-mail:
| | - Julia Dobrosotskaya
- Department of Mathematics, Applied Mathematics, and Statistics, Case Western Reserve University, Cleveland, OH, United States of America
| | - Denise Cunningham
- Office of the Clinical Director, National Eye Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Wai T. Wong
- Unit on Neuron-Glia Interactions, National Eye Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Emily Y. Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Wojtek Czaja
- Department of Mathematics, University of Maryland, College Park, MD, United States of America
| | - Robert F. Bonner
- Section on Medical Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
9
|
Sarria I, Pahlberg J, Cao Y, Kolesnikov AV, Kefalov VJ, Sampath AP, Martemyanov KA. Sensitivity and kinetics of signal transmission at the first visual synapse differentially impact visually-guided behavior. eLife 2015; 4:e06358. [PMID: 25879270 PMCID: PMC4412108 DOI: 10.7554/elife.06358] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/11/2015] [Indexed: 12/29/2022] Open
Abstract
In the retina, synaptic transmission between photoreceptors and downstream ON-bipolar neurons (ON-BCs) is mediated by a GPCR pathway, which plays an essential role in vision. However, the mechanisms that control signal transmission at this synapse and its relevance to behavior remain poorly understood. In this study we used a genetic system to titrate the rate of GPCR signaling in ON-BC dendrites by varying the concentration of key RGS proteins and measuring the impact on transmission of signal between photoreceptors and ON-BC neurons using electroretinography and single cell recordings. We found that sensitivity, onset timing, and the maximal amplitude of light-evoked responses in rod- and cone-driven ON-BCs are determined by different RGS concentrations. We further show that changes in RGS concentration differentially impact visually guided-behavior mediated by rod and cone ON pathways. These findings illustrate that neuronal circuit properties can be modulated by adjusting parameters of GPCR-based neurotransmission at individual synapses. DOI:http://dx.doi.org/10.7554/eLife.06358.001 At the back of the eye, a structure called the retina contains several types of cell that convert light into the electrical signals that the brain interprets to produce vision. Cells called rods and cones detect the light, and then signal to other neurons in the retina that relay this information to the brain. Rods and cones are specialized to respond best to different visual features: cones detect color and can track rapid movement; whereas rods are more sensitive to low light levels and so enable night vision. All rods and cones communicate with particular types of neuron called an ‘ON bipolar cell’: rods send their information to rod-specific ON bipolar cells and cones to cone ON-bipolar cells. To maintain the differences in how visual features are detected, the signals sent by the rod or cone cells need to be tuned separately. Previous studies showed that bipolar cells rely on the action of proteins called RGSs to control how information is passed from rods and cones to ON bipolar cells. However, how the RGS proteins produce their effects is not well understood, and neither is their impact on vision or behavior. Sarria et al. used a genetic approach to create mice that progressively lost RGS proteins from their retina over the course of several weeks. Recording the nerve impulses produced by the bipolar cells as light shone on the retina revealed that RGS depletion affects these neurons in three ways: how sensitive they are to the signals sent by the rod and cone cells, how quickly they respond to a signal, and the size of the electrical response that they produce. Sarria et al. then investigated how these changes affected the behavior of the mice. To test the response of the rod cells, the mice performed tasks in dim light. This revealed that it was only when the sensitivity of the bipolar cells decreased that the mice performed worse. However, in a task involving fast-moving objects that investigated the response of cone cells, only changes to the speed of the response affected vision. Therefore, the RGS protein has different effects on the signals from rod cells and cone cells. These findings will be useful for understanding how different light sensitive cells in the retina communicate their signals to extract important visual features, allowing us to both see well at night and track rapid changes in scenery on a bright sunny day. DOI:http://dx.doi.org/10.7554/eLife.06358.002
Collapse
Affiliation(s)
- Ignacio Sarria
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| | - Johan Pahlberg
- Jules Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, Los Angeles, United States
| | - Yan Cao
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| | - Alexander V Kolesnikov
- Department of Ophthalmology and Visual Sciences, Washington University in St.Louis, St. Louis, United States
| | - Vladimir J Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University in St.Louis, St. Louis, United States
| | - Alapakkam P Sampath
- Jules Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, Los Angeles, United States
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, United States
| |
Collapse
|
10
|
Activation and quenching of the phototransduction cascade in retinal cones as inferred from electrophysiology and mathematical modeling. Mol Vis 2015; 21:244-63. [PMID: 25866462 PMCID: PMC4392649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/05/2015] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To experimentally identify and quantify factors responsible for the lower sensitivity of retinal cones compared to rods. METHODS Electrical responses of frog rods and fish (Carassius) cones to short flashes of light were recorded using the suction pipette technique. A fast solution changer was used to apply a solution that fixed intracellular Ca2+ concentration at the prestimulus level, thereby disabling Ca2+ feedback, to the outer segment (OS). The results were analyzed with a specially designed mathematical model of phototransduction. The model included all basic processes of activation and quenching of the phototransduction cascade but omitted unnecessary mechanistic details of each step. RESULTS Judging from the response versus intensity curves, Carassius cones were two to three orders of magnitude less sensitive than frog rods. There was a large scatter in sensitivity among individual cones, with red-sensitive cones being on average approximately two times less sensitive than green-sensitive ones. The scatter was mostly due to different signal amplification, since the kinetic parameters of the responses among cones were far less variable than sensitivity. We argue that the generally accepted definition of the biochemical amplification in phototransduction cannot be used for comparing amplification in rods and cones, since it depends on an irrelevant factor, that is, the cell's volume. We also show that the routinely used simplified parabolic curve fitting to an initial phase of the response leads to a few-fold underestimate of the amplification. We suggest a new definition of the amplification that only includes molecular parameters of the cascade activation, and show how it can be derived from experimental data. We found that the mathematical model with unrestrained parameters can yield an excellent fit to experimental responses. However, the fits with wildly different sets of parameters can be virtually indistinguishable, and therefore cannot provide meaningful data on underlying mechanisms. Based on results of Ca2+-clamp experiments, we developed an approach to strongly constrain the values of many key parameters that set the time course and sensitivity of the photoresponse (such as the dark turnover rate of cGMP, rates of turnoffs of the photoactivated visual pigment and phosphodiesterase, and kinetics of Ca2+ feedback). We show that applying these constraints to our mathematical model enables accurate determination of the biochemical amplification in phototransduction. It appeared that, contrary to many suggestions, maximum biochemical amplification derived for "best" Carassius cones was as high as in frog rods. On the other hand, all turnoff and recovery reactions in cones proceeded approximately 10 times faster than in rods. CONCLUSIONS The main cause of the differing sensitivity of rods and cones is cones' ability to terminate their photoresponse faster.
Collapse
|
11
|
Chen CK, Woodruff ML, Fain GL. Rhodopsin kinase and recoverin modulate phosphodiesterase during mouse photoreceptor light adaptation. ACTA ACUST UNITED AC 2015; 145:213-24. [PMID: 25667411 PMCID: PMC4338159 DOI: 10.1085/jgp.201411273] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Light stimulates rhodopsin in a retinal rod to activate the G protein transducin, which binds to phosphodiesterase (PDE), relieving PDE inhibition and decreasing guanosine 3',5'-cyclic monophosphate (cGMP) concentration. The decrease in cGMP closes outer segment channels, producing the rod electrical response. Prolonged exposure to light decreases sensitivity and accelerates response kinetics in a process known as light adaptation, mediated at least in part by a decrease in outer segment Ca(2+). Recent evidence indicates that one of the mechanisms of adaptation in mammalian rods is down-regulation of PDE. To investigate the effect of light and a possible role of rhodopsin kinase (G protein-coupled receptor kinase 1 [GRK1]) and the GRK1-regulating protein recoverin on PDE modulation, we used transgenic mice with decreased expression of GTPase-accelerating proteins (GAPs) and, consequently, a less rapid decay of the light response. This slowed decay made the effects of genetic manipulation of GRK1 and recoverin easier to observe and interpret. We monitored the decay of the light response and of light-activated PDE by measuring the exponential response decay time (τREC) and the limiting time constant (τD), the latter of which directly reflects light-activated PDE decay under the conditions of our experiments. We found that, in GAP-underexpressing rods, steady background light decreased both τREC and τD, and the decrease in τD was nearly linear with the decrease in amplitude of the outer segment current. Background light had little effect on τREC or τD if the gene for recoverin was deleted. Moreover, in GAP-underexpressing rods, increased GRK1 expression or deletion of recoverin produced large and highly significant accelerations of τREC and τD. The simplest explanation of our results is that Ca(2+)-dependent regulation of GRK1 by recoverin modulates the decay of light-activated PDE, and that this modulation is responsible for acceleration of response decay and the increase in temporal resolution of rods in background light.
Collapse
Affiliation(s)
- Ching-Kang Chen
- Department of Ophthalmology and Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030 Department of Ophthalmology and Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Michael L Woodruff
- Department of Integrative Biology and Physiology, Department of Ophthalmology, and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | - Gordon L Fain
- Department of Integrative Biology and Physiology, Department of Ophthalmology, and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095 Department of Integrative Biology and Physiology, Department of Ophthalmology, and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095 Department of Integrative Biology and Physiology, Department of Ophthalmology, and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
12
|
Kato A, Reisert J, Ihara S, Yoshikawa K, Touhara K. Evaluation of the role of g protein-coupled receptor kinase 3 in desensitization of mouse odorant receptors in a Mammalian cell line and in olfactory sensory neurons. Chem Senses 2014; 39:771-80. [PMID: 25313015 DOI: 10.1093/chemse/bju050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Thousands of odors are sensed and discriminated by G protein-coupled odorant receptors (ORs) expressed in olfactory sensory neurons (OSNs). G protein-coupled receptor kinases (GRKs) may have a role in desensitization of ORs. However, whether ORs are susceptible to agonist-dependent desensitization and whether GRKs affect odorant responsiveness of OSNs are currently unknown. Here we show that GRK3 attenuated the agonist responsiveness of a specific mouse odorant receptor for eugenol (mOR-EG) upon agonist pretreatment in HEK293 cells, but GRK3 did not affect the response amplitude or the recovery kinetics upon repeated agonist stimulation. We performed electrophysiological recordings of single OSNs which expressed mOR-EG and green fluorescent protein (GFP) in the presence or absence of GRK3. The kinetics and amplitude of agonist responsiveness of individual GFP-labeled mOR-EG neurons were not significantly affected by the absence of GRK3. These results indicate that the role of GRK3 in attenuating ORs responsiveness in OSNs may have been overestimated.
Collapse
Affiliation(s)
- Aya Kato
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan, Present address: Kansei Laboratories, KAO Corporation, Tokyo 131-8501, Japan
| | - Johannes Reisert
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104-3308, USA and
| | - Sayoko Ihara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan, ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo 113-8657, Japan
| | - Keiichi Yoshikawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan, Present address: Kansei Laboratories, KAO Corporation, Tokyo 131-8501, Japan
| | - Kazushige Touhara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan, ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
13
|
Invergo BM, Dell'Orco D, Montanucci L, Koch KW, Bertranpetit J. A comprehensive model of the phototransduction cascade in mouse rod cells. MOLECULAR BIOSYSTEMS 2014; 10:1481-9. [PMID: 24675755 DOI: 10.1039/c3mb70584f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Vertebrate visual phototransduction is perhaps the most well-studied G-protein signaling pathway. A wealth of available biochemical and electrophysiological data has resulted in a rich history of mathematical modeling of the system. However, while the most comprehensive models have relied upon amphibian biochemical and electrophysiological data, modern research typically employs mammalian species, particularly mice, which exhibit significantly faster signaling dynamics. In this work, we present an adaptation of a previously published, comprehensive model of amphibian phototransduction that can produce quantitatively accurate simulations of the murine photoresponse. We demonstrate the ability of the model to predict responses to a wide range of stimuli and under a variety of mutant conditions. Finally, we employ the model to highlight a likely unknown mechanism related to the interaction between rhodopsin and rhodopsin kinase.
Collapse
Affiliation(s)
- Brandon M Invergo
- IBE - Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), CEXS-UPF-PRBB, Barcelona, Catalonia, Spain
| | | | | | | | | |
Collapse
|
14
|
Abstract
Amphibian and mammalian rods can both detect single photons of light even though they differ greatly in physical dimensions, mammalian rods being much smaller in diameter than amphibian rods. To understand the changes in physiology and biochemistry required by such large differences in outer segment geometry, we developed a computational approach, taking into account the spatial organization of the outer segment divided into compartments, together with molecular dynamics simulations of the signaling cascade. We generated simulations of the single-photon response together with intrinsic background fluctuations in toad and mouse rods. Combining this computational approach with electrophysiological data from mouse rods, we determined key biochemical parameters. On average around one phosphodiesterase (PDE) molecule is spontaneously active per mouse compartment, similar to the value for toad, which is unexpected due to the much smaller diameter in mouse. A larger number of spontaneously active PDEs decreases dark noise, thereby improving detection of single photons; it also increases cGMP turnover, which accelerates the decay of the light response. These constraints explain the higher PDE density in mammalian compared with amphibian rods that compensates for the much smaller diameter of mammalian disks. We further find that the rate of cGMP hydrolysis by light-activated PDE is diffusion limited, which is not the case for spontaneously activated PDE. As a consequence, in the small outer segment of a mouse rod only a few activated PDEs are sufficient to generate a signal that overcomes noise, which permits a shorter lifetime of activated rhodopsin and greater temporal resolution.
Collapse
|
15
|
Lin YG, Weadick CJ, Santini F, Chang BSW. Molecular evolutionary analysis of vertebrate transducins: a role for amino acid variation in photoreceptor deactivation. J Mol Evol 2013; 77:231-45. [PMID: 24145862 DOI: 10.1007/s00239-013-9589-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 09/25/2013] [Indexed: 01/05/2023]
Abstract
Transducin is a heterotrimeric G protein that plays a critical role in phototransduction in the rod and cone photoreceptor cells of the vertebrate retina. Rods, highly sensitive cells that recover from photoactivation slowly, underlie dim-light vision, whereas cones are less sensitive, recover more quickly, and underlie bright-light vision. Transducin deactivation is a critical step in photoreceptor recovery and may underlie the functional distinction between rods and cones. Rods and cones possess distinct transducin α subunits, yet they share a common deactivation mechanism, the GTPase activating protein (GAP) complex. Here, we used codon models to examine patterns of sequence evolution in rod (GNAT1) and cone (GNAT2) α subunits. Our results indicate that purifying selection is the dominant force shaping GNAT1 and GNAT2 evolution, but that GNAT2 has additionally been subject to positive selection operating at multiple phylogenetic scales; phylogeny-wide analysis identified several sites in the GNAT2 helical domain as having substantially elevated dN/dS estimates, and branch-site analysis identified several nearby sites as targets of strong positive selection during early vertebrate history. Examination of aligned GNAT and GAP complex crystal structures revealed steric clashes between several positively selected sites and the deactivating GAP complex. This suggests that GNAT2 sequence variation could play an important role in adaptive evolution of the vertebrate visual system via effects on photoreceptor deactivation kinetics and provides an alternative perspective to previous work that focused instead on the effect of GAP complex concentration. Our findings thus further the understanding of the molecular biology, physiology, and evolution of vertebrate visual systems.
Collapse
Affiliation(s)
- Yi G Lin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | | | | | | |
Collapse
|
16
|
Invergo BM, Montanucci L, Koch KW, Bertranpetit J, Dell'orco D. Exploring the rate-limiting steps in visual phototransduction recovery by bottom-up kinetic modeling. Cell Commun Signal 2013; 11:36. [PMID: 23693153 PMCID: PMC3732082 DOI: 10.1186/1478-811x-11-36] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/09/2013] [Indexed: 01/20/2023] Open
Abstract
Background Phototransduction in vertebrate photoreceptor cells represents a paradigm of signaling pathways mediated by G-protein-coupled receptors (GPCRs), which share common modules linking the initiation of the cascade to the final response of the cell. In this work, we focused on the recovery phase of the visual photoresponse, which is comprised of several interacting mechanisms. Results We employed current biochemical knowledge to investigate the response mechanisms of a comprehensive model of the visual phototransduction pathway. In particular, we have improved the model by implementing a more detailed representation of the recoverin (Rec)-mediated calcium feedback on rhodopsin kinase and including a dynamic arrestin (Arr) oligomerization mechanism. The model was successfully employed to investigate the rate limiting steps in the recovery of the rod photoreceptor cell after illumination. Simulation of experimental conditions in which the expression levels of rhodospin kinase (RK), of the regulator of the G-protein signaling (RGS), of Arr and of Rec were altered individually or in combination revealed severe kinetic constraints to the dynamics of the overall network. Conclusions Our simulations confirm that RGS-mediated effector shutdown is the rate-limiting step in the recovery of the photoreceptor and show that the dynamic formation and dissociation of Arr homodimers and homotetramers at different light intensities significantly affect the timing of rhodopsin shutdown. The transition of Arr from its oligomeric storage forms to its monomeric form serves to temper its availability in the functional state. Our results may explain the puzzling evidence that overexpressing RK does not influence the saturation time of rod cells at bright light stimuli. The approach presented here could be extended to the study of other GPCR signaling pathways.
Collapse
Affiliation(s)
- Brandon M Invergo
- Department of Life Sciences and Reproduction, Section of Biological Chemistry and Center for BioMedical Computing (CBMC), University of Verona, Strada le Grazie 8, 37134, Verona, Italy.
| | | | | | | | | |
Collapse
|
17
|
Gross OP, Pugh EN, Burns ME. Spatiotemporal cGMP dynamics in living mouse rods. Biophys J 2012; 102:1775-84. [PMID: 22768933 DOI: 10.1016/j.bpj.2012.03.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 03/02/2012] [Accepted: 03/13/2012] [Indexed: 11/16/2022] Open
Abstract
Signaling of single photons in rod photoreceptors decreases the concentration of the second messenger, cyclic GMP (cGMP), causing closure of cGMP-sensitive channels located in the plasma membrane. Whether the spatiotemporal profiles of the fall in cGMP are narrow and deep, or broad and shallow, has important consequences for the amplification and the fidelity of signaling. The factors that determine the cGMP profiles include the diffusion coefficient for cGMP, the spontaneous rate of cGMP hydrolysis, and the rate of cGMP synthesis, which is powerfully regulated by calcium feedback mechanisms. Here, using suction electrodes to record light-dependent changes in cGMP-activated current in living mouse rods lacking calcium feedback, we have determined the rate constant of spontaneous cGMP hydrolysis and the longitudinal cGMP diffusion coefficient. These measurements result in a fully constrained spatiotemporal model of phototransduction, which we used to determine the effect of feedback to cGMP synthesis in spatially constricting the fall of cGMP during the single-photon response of normal rods. We find that the spatiotemporal cGMP profiles during the single-photon response are optimized for maximal amplification and preservation of signal linearity, effectively operating within an axial signaling domain of ~2 μm.
Collapse
Affiliation(s)
- Owen P Gross
- Center for Neuroscience, University of California, Davis, California, USA
| | | | | |
Collapse
|
18
|
Korenbrot JI. Speed, adaptation, and stability of the response to light in cone photoreceptors: the functional role of Ca-dependent modulation of ligand sensitivity in cGMP-gated ion channels. ACTA ACUST UNITED AC 2012; 139:31-56. [PMID: 22200947 PMCID: PMC3250101 DOI: 10.1085/jgp.201110654] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The response of cone photoreceptors to light is stable and reproducible because of the exceptional regulation of the cascade of enzymatic reactions that link visual pigment (VP) excitation to the gating of cyclic GMP (cGMP)-gated ion channels (cyclic nucleotide–gated [CNG]) in the outer segment plasma membrane. Regulation is achieved in part through negative feedback control of some of these reactions by cytoplasmic free Ca2+. As part of the control process, Ca2+ regulates the phosphorylation of excited VP, the activity of guanylate cyclase, and the ligand sensitivity of the CNG ion channels. We measured photocurrents elicited by stimuli in the form of flashes, steps, and flashes superimposed on steps in voltage-clamped single bass cones isolated from striped bass retina. We also developed a computational model that comprises all the known molecular events of cone phototransduction, including all Ca-dependent controls. Constrained by available experimental data in bass cones and cone transduction biochemistry, we achieved an excellent match between experimental photocurrents and those simulated by the model. We used the model to explore the physiological role of CNG ion channel modulation. Control of CNG channel activity by both cGMP and Ca2+ causes the time course of the light-dependent currents to be faster than if only cGMP controlled their activity. Channel modulation also plays a critical role in the regulation of the light sensitivity and light adaptation of the cone photoresponse. In the absence of ion channel modulation, cone photocurrents would be unstable, oscillating during and at the offset of light stimuli.
Collapse
Affiliation(s)
- Juan I Korenbrot
- Department of Physiology, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
19
|
Korenbrot JI. Speed, sensitivity, and stability of the light response in rod and cone photoreceptors: facts and models. Prog Retin Eye Res 2012; 31:442-66. [PMID: 22658984 DOI: 10.1016/j.preteyeres.2012.05.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 05/19/2012] [Accepted: 05/21/2012] [Indexed: 01/06/2023]
Abstract
The light responses of rod and cone photoreceptors in the vertebrate retina are quantitatively different, yet extremely stable and reproducible because of the extraordinary regulation of the cascade of enzymatic reactions that link photon absorption and visual pigment excitation to the gating of cGMP-gated ion channels in the outer segment plasma membrane. While the molecular scheme of the phototransduction pathway is essentially the same in rods and cones, the enzymes and protein regulators that constitute the pathway are distinct. These enzymes and regulators can differ in the quantitative features of their functions or in concentration if their functions are similar or both can be true. The molecular identity and distinct function of the molecules of the transduction cascade in rods and cones are summarized. The functional significance of these molecular differences is examined with a mathematical model of the signal-transducing enzymatic cascade. Constrained by available electrophysiological, biochemical and biophysical data, the model simulates photocurrents that match well the electrical photoresponses measured in both rods and cones. Using simulation computed with the mathematical model, the time course of light-dependent changes in enzymatic activities and second messenger concentrations in non-mammalian rods and cones are compared side by side.
Collapse
Affiliation(s)
- Juan I Korenbrot
- Department of Physiology, School of Medicine, University of California San Francisco, San Francisco, CA 94920, USA.
| |
Collapse
|
20
|
Arshavsky VY, Burns ME. Photoreceptor signaling: supporting vision across a wide range of light intensities. J Biol Chem 2011; 287:1620-6. [PMID: 22074925 DOI: 10.1074/jbc.r111.305243] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
For decades, photoreceptors have been an outstanding model system for elucidating basic principles in sensory transduction and biochemistry and for understanding many facets of neuronal cell biology. In recent years, new knowledge of the kinetics of signaling and the large-scale movements of proteins underlying signaling has led to a deeper appreciation of the photoreceptor's unique challenge in mediating the first steps in vision over a wide range of light intensities.
Collapse
Affiliation(s)
- Vadim Y Arshavsky
- Departments of Ophthalmology and Pharmacology, Duke University, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
21
|
Gurevich VV, Hanson SM, Song X, Vishnivetskiy SA, Gurevich EV. The functional cycle of visual arrestins in photoreceptor cells. Prog Retin Eye Res 2011; 30:405-430. [PMID: 21824527 PMCID: PMC3196764 DOI: 10.1016/j.preteyeres.2011.07.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/20/2011] [Accepted: 07/21/2011] [Indexed: 01/14/2023]
Abstract
Visual arrestin-1 plays a key role in the rapid and reproducible shutoff of rhodopsin signaling. Its highly selective binding to light-activated phosphorylated rhodopsin is an integral part of the functional perfection of rod photoreceptors. Structure-function studies revealed key elements of the sophisticated molecular mechanism ensuring arrestin-1 selectivity and paved the way to the targeted manipulation of the arrestin-1 molecule to design mutants that can compensate for congenital defects in rhodopsin phosphorylation. Arrestin-1 self-association and light-dependent translocation in photoreceptor cells work together to keep a constant supply of active rhodopsin-binding arrestin-1 monomer in the outer segment. Recent discoveries of arrestin-1 interaction with other signaling proteins suggest that it is a much more versatile signaling regulator than previously thought, affecting the function of the synaptic terminals and rod survival. Elucidation of the fine molecular mechanisms of arrestin-1 interactions with rhodopsin and other binding partners is necessary for the comprehensive understanding of rod function and for devising novel molecular tools and therapeutic approaches to the treatment of visual disorders.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Ave, PRB, Rm 417D, Nashville, TN 37232, USA.
| | | | | | | | | |
Collapse
|
22
|
RGS2 and RGS4 modulate melatonin-induced potentiation of glycine currents in rat retinal ganglion cells. Brain Res 2011; 1411:1-8. [DOI: 10.1016/j.brainres.2011.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 04/08/2011] [Accepted: 07/05/2011] [Indexed: 11/18/2022]
|
23
|
Sakurai K, Young JE, Kefalov VJ, Khani SC. Variation in rhodopsin kinase expression alters the dim flash response shut off and the light adaptation in rod photoreceptors. Invest Ophthalmol Vis Sci 2011; 52:6793-800. [PMID: 21474765 DOI: 10.1167/iovs.11-7158] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Rod photoreceptors are exquisitely sensitive light detectors that function in dim light. The timely inactivation of their light responses is critical for the ability of rods to reliably detect and count photons. A key step in the inactivation of the rod transduction is the phosphorylation of the rod visual pigment, rhodopsin, catalyzed by G-protein-dependent receptor kinase 1 (GRK1). Absence of GRK1 greatly prolongs the photoreceptors' light response and enhances their susceptibility to degeneration. This study examined the light responses from mouse rods expressing various levels of GRK1 to evaluate how their function is modulated by rhodopsin inactivation. METHODS Transretinal and single-cell rod electrophysiological recordings were obtained from several strains of mice expressing GRK1 at 0.3- to 3-fold the wild-type levels. The effect of GRK1 expression level on the function of mouse rods was examined in darkness and during background adaptation. RESULTS Altering the expression of GRK1 from 0.3- to 3-fold that in wild-type rods had little effect on the single photon response amplitude. Notably, increasing the expression level of GRK1 accelerated the dim flash response shut off but had no effect on the saturated response shut off. Additionally, GRK1 excess abolished the acceleration of saturated responses shut off during light adaptation. CONCLUSIONS These results demonstrate that rhodopsin inactivation can modulate the kinetics of recovery from dim light stimulation. More importantly, the ratio of rhodopsin kinase to its modulator recoverin appears critical for the proper adaptation of rods and the acceleration of their response shut off in background light.
Collapse
Affiliation(s)
- Keisuke Sakurai
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | |
Collapse
|
24
|
Abstract
A fundamental question of cell signaling biology is how faint external signals produce robust physiological responses. One universal mechanism relies on signal amplification via intracellular cascades mediated by heterotrimeric G-proteins. This high amplification system allows retinal rod photoreceptors to detect single photons of light. Although much is now known about the role of the α-subunit of the rod-specific G-protein transducin in phototransduction, the physiological function of the auxiliary βγ-complex in this process remains a mystery. Here, we show that elimination of the transducin γ-subunit drastically reduces signal amplification in intact mouse rods. The consequence is a striking decline in rod visual sensitivity and severe impairment of nocturnal vision. Our findings demonstrate that transducin βγ-complex controls signal amplification of the rod phototransduction cascade and is critical for the ability of rod photoreceptors to function in low light conditions.
Collapse
|
25
|
Cleghorn WM, Tsakem EL, Song X, Vishnivetskiy SA, Seo J, Chen J, Gurevich EV, Gurevich VV. Progressive reduction of its expression in rods reveals two pools of arrestin-1 in the outer segment with different roles in photoresponse recovery. PLoS One 2011; 6:e22797. [PMID: 21818392 PMCID: PMC3144249 DOI: 10.1371/journal.pone.0022797] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 07/02/2011] [Indexed: 01/10/2023] Open
Abstract
Light-induced rhodopsin signaling is turned off with sub-second kinetics by rhodopsin phosphorylation followed by arrestin-1 binding. To test the availability of the arrestin-1 pool in dark-adapted outer segment (OS) for rhodopsin shutoff, we measured photoresponse recovery rates of mice with arrestin-1 content in the OS of 2.5%, 5%, 60%, and 100% of wild type (WT) level by two-flash ERG with the first (desensitizing) flash at 160, 400, 1000, and 2500 photons/rod. The time of half recovery (t(half)) in WT retinas increases with the intensity of the initial flash, becoming ∼2.5-fold longer upon activation of 2500 than after 160 rhodopsins/rod. Mice with 60% and even 5% of WT arrestin-1 level recovered at WT rates. In contrast, the mice with 2.5% of WT arrestin-1 had a dramatically slower recovery than the other three lines, with the t(half) increasing ∼28 fold between 160 and 2500 rhodopsins/rod. Even after the dimmest flash, the rate of recovery of rods with 2.5% of normal arrestin-1 was two times slower than in other lines, indicating that arrestin-1 level in the OS between 100% and 5% of WT is sufficient for rapid recovery, whereas with lower arrestin-1 the rate of recovery dramatically decreases with increased light intensity. Thus, the OS has two distinct pools of arrestin-1: cytoplasmic and a separate pool comprising ∼2.5% that is not immediately available for rhodopsin quenching. The observed delay suggests that this pool is localized at the periphery, so that its diffusion across the OS rate-limits the recovery. The line with very low arrestin-1 expression is the first where rhodopsin inactivation was made rate-limiting by arrestin manipulation.
Collapse
Affiliation(s)
- Whitney M. Cleghorn
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Elviche L. Tsakem
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Xiufeng Song
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Sergey A. Vishnivetskiy
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jungwon Seo
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jeannie Chen
- Department of Cell and Neurobiology, University of Southern California, Los Angeles, California, United States of America
| | - Eugenia V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
26
|
Experimental protocols alter phototransduction: the implications for retinal processing at visual threshold. J Neurosci 2011; 31:3670-82. [PMID: 21389222 DOI: 10.1523/jneurosci.4750-10.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Vision in dim light, when photons are scarce, requires reliable signaling of the arrival of single photons. Rod photoreceptors accomplish this task through the use of a G-protein-coupled transduction cascade that amplifies the activity of single active rhodopsin molecules. This process is one of the best understood signaling cascades in biology, yet quantitative measurements of the amplitude and kinetics of the rod's response in mice vary by a factor of ∼ 2 across studies. What accounts for these discrepancies? We used several experimental approaches to reconcile differences in published properties of rod responses. First, we used suction electrode recordings from single rods to compare measurements across a range of recording conditions. Second, we compared measurements of single-cell photocurrents to estimates of rod function from in vitro electroretinograms. Third, we assayed the health of the post-receptor retinal tissue in these different conditions. Several salient points emerge from these experiments: (1) recorded responses can be altered dramatically by how the retina is stored; (2) the kinetics of the recovery of responses to bright but not dim flashes are strongly sensitive to the extracellular concentration of magnesium; (3) experimental conditions that produce very different single-photon responses measured in single rods produce near identical derived rod responses from the electroretinogram. The dependence of rod responses on experimental conditions will be a key consideration in efforts to extract general principles of G-protein signaling from studies of phototransduction and to relate these signals to downstream mechanisms that facilitate visual sensitivity.
Collapse
|
27
|
Kim M, Hanson SM, Vishnivetskiy SA, Song X, Cleghorn WM, Hubbell WL, Gurevich VV. Robust self-association is a common feature of mammalian visual arrestin-1. Biochemistry 2011; 50:2235-2242. [PMID: 21288033 PMCID: PMC3062689 DOI: 10.1021/bi1018607] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Arrestin-1 binds light-activated phosphorhodopsin and ensures rapid signal termination. Its deficiency in humans and mice results in prolonged signaling and rod degeneration. However, most of the biochemical studies were performed on bovine arrestin-1, which was shown to self-associate forming dimers and tetramers, although only the monomer binds rhodopsin. It is unclear whether self-association is a property of arrestin-1 in all mammals or a specific feature of bovine protein. To address this issue, we compared self-association parameters of purified human and mouse arrestin-1 with those of its bovine counterpart using multiangle light scattering. We found that mouse and human arrestin-1 also robustly self-associate, existing in a monomer-dimer-tetramer equilibrium. Interestingly, the combination of dimerization and tetramerization constants in these three species is strikingly different. While tetramerization of bovine arrestin-1 is highly cooperative (K(D,dim)(4) > K(D,tet)), K(D,dim) ∼ K(D,tet) in the mouse form and K(D,dim) ≪ K(D,tet) in the human form. Importantly, in all three species at very high physiological concentrations of arrestin-1 in rod photoreceptors, most of it is predicted to exist in oligomeric form, with a relatively low concentration of the free monomer. Thus, it appears that maintenance of low levels of the active monomer is the biological role of arrestin-1 self-association.
Collapse
Affiliation(s)
- Miyeon Kim
- University of California Los Angeles, Los Angeles, CA 90095
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
In many cases, the coexpression of GPCRs with G-proteins and/or regulators of G-protein signaling (RGS-proteins) allows a successful reconstitution of high-affinity agonist binding and functional responses. However, in some cases, coexpressed GPCRs and G-proteins interact inefficiently, resulting in weak [³⁵S]GTPγS- and steady-state GTPase assay signals. This may be, for example, caused by a rapid dissociation of the G-protein from the plasma membrane, as has been reported for Gα(s). Moreover, for a detailed characterization of GPCR/G-protein interactions, it may be required to work with a defined GPCR/G-protein stoichiometry and to avoid cross-interaction with endogenous G-proteins. Cross-talk to endogenous G-proteins has been shown to play a role in some mammalian expression systems. These problems can be addressed by the generation of GPCR-Gα fusion proteins and their expression in Sf9 insect cells. When the C-terminus of the receptor is fused to the N-terminus of the G-protein, a 1:1 stoichiometry of both proteins is achieved. In addition, the close proximity of GPCR and G-protein in fusion proteins leads to enhanced interaction efficiency, resulting in increased functional signals. This approach can also be extended to fusion proteins of GPCRs with RGS-proteins, specifically when steady-state GTP hydrolysis is used as read-out. GPCR-RGS fusion proteins optimize the interaction of RGS-proteins with coexpressed Gα subunits, since the location of the RGS-protein is close to the site of receptor-mediated G-protein activation. Moreover, in contrast to coexpression systems, GPCR-Gα and GPCR-RGS fusion proteins provide a possibility to imitate physiologically occurring interactions, for example, the precoupling of receptors and G-proteins or the formation of complexes between GPCRs, G-proteins and RGS-proteins (transducisomes). In this chapter, we describe the technique for the generation of fusion proteins and show the application of this approach for the characterization of constitutively active receptors.
Collapse
|
29
|
Song X, Vishnivetskiy SA, Seo J, Chen J, Gurevich EV, Gurevich VV. Arrestin-1 expression level in rods: balancing functional performance and photoreceptor health. Neuroscience 2011; 174:37-49. [PMID: 21075174 PMCID: PMC3020241 DOI: 10.1016/j.neuroscience.2010.11.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 10/31/2010] [Accepted: 11/06/2010] [Indexed: 12/16/2022]
Abstract
In rod photoreceptors, signaling persists as long as rhodopsin remains catalytically active. Phosphorylation by rhodopsin kinase followed by arrestin-1 binding completely deactivates rhodopsin. Timely termination prevents excessive signaling and ensures rapid recovery. Mouse rods express arrestin-1 and rhodopsin at ∼0.8:1 ratio, making arrestin-1 the second most abundant protein in the rod. The biological significance of wild type arrestin-1 expression level remains unclear. Here we investigated the effects of varying arrestin-1 expression on its intracellular distribution in dark-adapted photoreceptors, rod functional performance, recovery kinetics, and morphology. We found that rod outer segments isolated from dark-adapted animals expressing arrestin-1 at wild type or higher level contain much greater fraction of arrestin-1 than previously estimated, 15-25% of the total. The fraction of arrestin-1 residing in the outer segments (OS) in animals with low expression (4-12% of wild type) is much lower, 5-7% of the total. Only 4% of wild type arrestin-1 level in the outer segments was sufficient to maintain near-normal retinal morphology, whereas rapid recovery required at least ∼12%. Supra-physiological arrestin-1 expression improved light sensitivity and facilitated photoresponse recovery, but was detrimental for photoreceptor health, particularly in the peripheral retina. Thus, physiological level of arrestin-1 expression in rods reflects the balance between short-term functional performance of photoreceptors and their long-term health.
Collapse
Affiliation(s)
| | | | | | - Jeannie Chen
- University of Southern California, Los Angeles, California 90033
| | | | | |
Collapse
|
30
|
Caruso G, Bisegna P, Lenoci L, Andreucci D, Gurevich VV, Hamm HE, DiBenedetto E. Kinetics of rhodopsin deactivation and its role in regulating recovery and reproducibility of rod photoresponse. PLoS Comput Biol 2010; 6:e1001031. [PMID: 21200415 PMCID: PMC3002991 DOI: 10.1371/journal.pcbi.1001031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 11/11/2010] [Indexed: 12/31/2022] Open
Abstract
The single photon response (SPR) in vertebrate phototransduction is regulated by the dynamics of R* during its lifetime, including the random number of phosphorylations, the catalytic activity and the random sojourn time at each phosphorylation level. Because of this randomness the electrical responses are expected to be inherently variable. However the SPR is highly reproducible. The mechanisms that confer to the SPR such a low variability are not completely understood. The kinetics of rhodopsin deactivation is investigated by a Continuous Time Markov Chain (CTMC) based on the biochemistry of rhodopsin activation and deactivation, interfaced with a spatio-temporal model of phototransduction. The model parameters are extracted from the photoresponse data of both wild type and mutant mice, having variable numbers of phosphorylation sites and, with the same set of parameters, the model reproduces both WT and mutant responses. The sources of variability are dissected into its components, by asking whether a random number of turnoff steps, a random sojourn time between steps, or both, give rise to the known variability. The model shows that only the randomness of the sojourn times in each of the phosphorylated states contributes to the Coefficient of Variation (CV) of the response, whereas the randomness of the number of R* turnoff steps has a negligible effect. These results counter the view that the larger the number of decay steps of R*, the more stable the photoresponse is. Our results indicate that R* shutoff is responsible for the variability of the photoresponse, while the diffusion of the second messengers acts as a variability suppressor.
Collapse
Affiliation(s)
- Giovanni Caruso
- Construction Technologies Institute, National Research Council, Rome, Italy
| | - Paolo Bisegna
- Department of Civil Engineering, University of Rome Tor Vergata, Rome, Italy
| | - Leonardo Lenoci
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Daniele Andreucci
- Department of Mathematical Methods and Models, University of Rome La Sapienza, Rome, Italy
| | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Heidi E. Hamm
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Emmanuele DiBenedetto
- Department of Mathematics, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
31
|
Membrane anchoring subunits specify selective regulation of RGS9·Gbeta5 GAP complex in photoreceptor neurons. J Neurosci 2010; 30:13784-93. [PMID: 20943919 DOI: 10.1523/jneurosci.1191-10.2010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The RGS9·Gβ5 complex is the key regulator of neuronal G-protein signaling and shows remarkable selectivity of subunit composition. In retinal photoreceptors, RGS9·Gβ5 is bound to the membrane anchor R9AP and the complex regulates visual signaling. In the basal ganglia neurons, RGS9·Gβ5 is instead associated with a homologous protein, R7BP, and regulates reward circuit. Switching this selective subunit composition of the complex in rod photoreceptors allowed us to study the molecular underpinning of signaling specificity in diverse G-protein pathways. We have found that both membrane anchoring subunits play a conserved role in regulating protein levels of RGS9·Gβ5 and enhancing the ability of RGS·Gβ5 complexes to stimulate GTPase activity of G proteins. However, notable differences exist in the subcellular targeting of alternatively configured complexes. Unlike R9AP, which relies on passive targeting mechanisms for the delivery to the outer segments of the photoreceptors, R7BP is excluded from this location and is instead specifically targeted to the plasma membrane. R7BP-containing complexes could be rerouted to the outer segments, where they are capable of regulating the phototransduction cascade by the active targeting signals derived from rhodopsin. These findings illustrate the diversity of the G-protein signaling regulation by RGS·Gβ5 complexes achieved by differential recruitment of the membrane anchors.
Collapse
|
32
|
Sf9 cells: a versatile model system to investigate the pharmacological properties of G protein-coupled receptors. Pharmacol Ther 2010; 128:387-418. [PMID: 20705094 DOI: 10.1016/j.pharmthera.2010.07.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 07/12/2010] [Indexed: 11/23/2022]
Abstract
The Sf9 cell/baculovirus expression system is widely used for high-level protein expression, often with the purpose of purification. However, proteins may also be functionally expressed in the defined Sf9 cell environment. According to the literature, the pharmacology of G-protein-coupled receptors (GPCRs) functionally reconstituted in Sf9 cells is similar to the receptor properties in mammalian cells. Sf9 cells express both recombinant GPCRs and G-proteins at much higher levels than mammalian cells. Sf9 cells can be grown in suspension culture, providing an inexpensive way of obtaining large protein amounts. Co-infection with various baculoviruses allows free combination of GPCRs with different G-proteins. The absence of constitutively active receptors in Sf9 cells provides an excellent signal-to background ratio in functional assays, allowing the detection of agonist-independent receptor activity and of small ligand-induced signals including partial agonistic and inverse agonistic effects. Insect cell Gα(i)-like proteins mostly do not couple productively to mammalian GPCRs. Thus, unlike in mammalian cells, Sf9 cells do not require pertussis toxin treatment to obtain a Gα(i)-free environment. Co-expression of GPCRs with Gα(i1), Gα(i2), Gα(i3) or Gα(o) in Sf9 cells allows the generation of a selectivity profile for these Gα(i/o)-isoforms. Additionally, GPCR-G-protein combinations can be compared with defined 1:1 stoichiometry by expressing GPCR-Gα fusion proteins. Sf9 cells can also be employed for ligand screening in medicinal chemistry programs, using radioligand binding assays or functional assays, like the steady-state GTPase- or [(35)S]GTPγS binding assay. This review shows that Sf9 cells are a versatile model system to investigate the pharmacological properties of GPCRs.
Collapse
|
33
|
Burns ME, Pugh EN. Lessons from photoreceptors: turning off g-protein signaling in living cells. Physiology (Bethesda) 2010; 25:72-84. [PMID: 20430952 DOI: 10.1152/physiol.00001.2010] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phototransduction in retinal rods is one of the most extensively studied G-protein signaling systems. In recent years, our understanding of the biochemical steps that regulate the deactivation of the rod's response to light has greatly improved. Here, we summarize recent advances and highlight some of the remaining puzzles in this model signaling system.
Collapse
Affiliation(s)
- Marie E Burns
- Departments of Ophthalmology and Vision Science, University of California, Davis, California, USA.
| | | |
Collapse
|
34
|
Background light produces a recoverin-dependent modulation of activated-rhodopsin lifetime in mouse rods. J Neurosci 2010; 30:1213-20. [PMID: 20107049 DOI: 10.1523/jneurosci.4353-09.2010] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Ca(2+)-binding protein recoverin is thought to regulate rhodopsin kinase and to modulate the lifetime of the photoexcited state of rhodopsin (Rh*), the visual pigment of vertebrate rods. Recoverin has been postulated to inhibit the kinase in darkness, when Ca(2+) is high, and to be released from the disk membrane in light when Ca(2+) is low, accelerating rhodopsin phosphorylation and shortening the lifetime of Rh*. This proposal has remained controversial, in part because the normally rapid turnoff of Rh* has made Rh* modulation difficult to study in an intact rod. To circumvent this problem, we have made mice that underexpress rhodopsin kinase so that Rh* turnoff is rate limiting for the decay of the rod light response. We show that background light speeds the decay of Rh* turnoff, and that this no longer occurs in mice that have had recoverin knocked out. This is the first demonstration in an intact rod that light accelerates Rh* inactivation and that the Ca(2+)-binding protein recoverin may be required for the light-dependent modulation of Rh* lifetime.
Collapse
|
35
|
Abstract
In rod photoreceptors, deactivation of the light-activated G-protein-coupled receptor rhodopsin (R*) is initiated by phosphorylation and completed through subsequent binding of visual arrestin (Arr1). The in vivo kinetics of these individual interactions have proven difficult to determine with precision since R* lifetime is much shorter than the lifetimes of downstream G-protein and effector molecules. Here, we have used a transgenic mouse line with accelerated downstream deactivation kinetics to reveal the contribution of Arr1 binding to the overall time course of rhodopsin deactivation. Photoresponses revealed that the lifetime of R* is significantly increased in rods that express half of the normal amount of Arr1, in a manner consistent with a twofold decrease in the rate of Arr1 binding across a wide range of flash strengths. A basic model of photoresponse deactivation consistent with established photoreceptor biochemistry shows that R* phosphorylation and Arr1 binding occur with a time constant of approximately 40 ms in wild-type mouse rods, much faster than previous estimates.
Collapse
|
36
|
Gurevich VV, Gurevich EV. Custom-designed proteins as novel therapeutic tools? The case of arrestins. Expert Rev Mol Med 2010; 12:e13. [PMID: 20412604 PMCID: PMC2933791 DOI: 10.1017/s1462399410001444] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multiple genetic disorders can be associated with excessive signalling by mutant G-protein-coupled receptors (GPCRs) that are either constitutively active or have lost sites where phosphorylation by GPCR kinases is necessary for desensitisation by cognate arrestins. Phosphorylation-independent arrestin1 can compensate for defects in phosphorylation of the GPCR rhodopsin in retinal rod cells, facilitating recovery, improving light responsiveness, and promoting photoreceptor survival. These proof-of-principle experiments show that, based on mechanistic understanding of the inner workings of a protein, one can modify its functional characteristics to generate custom-designed mutants that improve the balance of signalling in congenital and acquired disorders. Manipulations of arrestin elements responsible for scaffolding mitogen-activated protein kinase cascades and binding other signalling proteins involved in life-or-death decisions in the cell are likely to yield mutants that affect cell survival and proliferation in the desired direction. Although this approach is still in its infancy, targeted redesign of individual functions of many proteins offers a promise of a completely new therapeutic toolbox with huge potential.
Collapse
|
37
|
Hansen RM, Harris ME, Moskowitz A, Fulton AB. Deactivation of the rod response in retinopathy of prematurity. Doc Ophthalmol 2010; 121:29-35. [PMID: 20349203 DOI: 10.1007/s10633-010-9228-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 03/08/2010] [Indexed: 01/21/2023]
Abstract
It is known that retinopathy of prematurity (ROP) alters the activation of rod photoreceptors, but the effect of ROP on deactivation has not been investigated. We studied deactivation using an electroretinographic (ERG) paired flash procedure in 22 subjects (12 infants and 10 older subjects) with a history of preterm birth and ROP. The amplitude of the rod-isolated a-wave response to a flash presented 2-120 s after a test flash was measured, and the time at which it reached 50% of the single flash amplitude (t(50)) was determined by linear interpolation. Deactivation results were compared to those in former preterms who never had ROP (n = 6) and term-born controls. In infants, t(50) values of ROP subjects did not differ from those in subjects who never had ROP or term-born controls. Among mature ROP subjects, eight of 12 had t(50) values longer than any control subject. Prolonged deactivation in these mature ROP subjects may indicate lack of maturation of the deactivation process (t(50)) or progressive compromise of retinal function with increasing age.
Collapse
Affiliation(s)
- Ronald M Hansen
- Department of Ophthalmology, Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
38
|
Burns ME. Deactivation mechanisms of rod phototransduction: the Cogan lecture. Invest Ophthalmol Vis Sci 2010; 51:1282-8. [PMID: 20185839 DOI: 10.1167/iovs.09-4366] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The absorption of photons in rods and cones of the retina activate homologous biochemical signaling cascades that lead to the electrical changes that subserve the first steps in vision. Persistent activity of the cascade interferes with the ability of the photoreceptor to signal the absorption of subsequent photons, ultimately limiting the photoreceptor's sensitivity and temporal resolution. This article summarizes recent work on transgenic and knockout mouse rods that has revealed the deactivation mechanisms essential for normal response recovery and how each of these processes contributes to the overall time course of the flash response of rods.
Collapse
Affiliation(s)
- Marie E Burns
- Department of Ophthalmology and Vision Science and Center for Neuroscience, University of California, Davis, California, USA
| |
Collapse
|
39
|
Matthews HR, Sampath AP. Photopigment quenching is Ca2+ dependent and controls response duration in salamander L-cone photoreceptors. ACTA ACUST UNITED AC 2010; 135:355-66. [PMID: 20231373 PMCID: PMC2847922 DOI: 10.1085/jgp.200910394] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The time scale of the photoresponse in photoreceptor cells is set by the slowest of the steps that quench the light-induced activity of the phototransduction cascade. In vertebrate photoreceptor cells, this rate-limiting reaction is thought to be either shutoff of catalytic activity in the photopigment or shutoff of the pigment's effector, the transducin-GTP–phosphodiesterase complex. In suction pipette recordings from isolated salamander L-cones, we found that preventing changes in internal [Ca2+] delayed the recovery of the light response and prolonged the dominant time constant for recovery. Evidence that the Ca2+-sensitive step involved the pigment itself was provided by the observation that removal of Cl− from the pigment's anion-binding site accelerated the dominant time constant for response recovery. Collectively, these observations indicate that in L-cones, unlike amphibian rods where the dominant time constant is insensitive to [Ca2+], pigment quenching rate limits recovery and provides an additional mechanism for modulating the cone response during light adaptation.
Collapse
Affiliation(s)
- Hugh R Matthews
- Department of Physiology, Development and Neuroscience, Physiological Laboratory, University of Cambridge, Cambridge, England, UK.
| | | |
Collapse
|