1
|
Kalman-like Self-Tuned Sensitivity in Biophysical Sensing. Cell Syst 2019; 9:459-465.e6. [PMID: 31563474 PMCID: PMC10170658 DOI: 10.1016/j.cels.2019.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/21/2019] [Accepted: 08/20/2019] [Indexed: 02/08/2023]
Abstract
Living organisms need to be sensitive to a changing environment while also ignoring uninformative environmental fluctuations. Here, we argue that living cells can navigate these conflicting demands by dynamically tuning their environmental sensitivity. We analyze the circadian clock in Synechococcus elongatus, showing that clock-metabolism coupling can detect mismatch between clock predictions and the day-night light cycle, temporarily raise the clock's sensitivity to light changes, and thus re-entraining faster. We find analogous behavior in recent experiments on switching between slow and fast osmotic-stress-response pathways in yeast. In both cases, cells can raise their sensitivity to new external information in epochs of frequent challenging stress, much like a Kalman filter with adaptive gain in signal processing. Our work suggests a new class of experiments that probe the history dependence of environmental sensitivity in biophysical sensing mechanisms.
Collapse
|
2
|
Zhang Y, Hess H. Enhanced Diffusion of Catalytically Active Enzymes. ACS CENTRAL SCIENCE 2019; 5:939-948. [PMID: 31263753 PMCID: PMC6598160 DOI: 10.1021/acscentsci.9b00228] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Indexed: 05/03/2023]
Abstract
The past decade has seen an increasing number of investigations into enhanced diffusion of catalytically active enzymes. These studies suggested that enzymes are actively propelled as they catalyze reactions or bind with ligands (e.g., substrates or inhibitors). In this Outlook, we chronologically summarize and discuss the experimental observations and theoretical interpretations and emphasize the potential contradictions in these efforts. We point out that the existing multimeric forms of enzymes or isozymes may cause artifacts in measurements and that the conformational changes upon substrate binding are usually not sufficient to give rise to a diffusion enhancement greater than 30%. Therefore, more rigorous experiments and a more comprehensive theory are urgently needed to quantitatively validate and describe the enhanced enzyme diffusion.
Collapse
Affiliation(s)
- Yifei Zhang
- Department of Biomedical Engineering, Columbia University, 351L Engineering Terrace, 1210 Amsterdam Avenue, New York, New York 10027, United States
| | - Henry Hess
- Department of Biomedical Engineering, Columbia University, 351L Engineering Terrace, 1210 Amsterdam Avenue, New York, New York 10027, United States
| |
Collapse
|
3
|
Abstract
Three-dimensional (3D) cell culture systems have gained increasing interest not only for 3D migration studies but also for their use in drug screening, tissue engineering, and ex vivo modeling of metastatic behavior in the field of cancer biology and morphogenesis in the field of developmental biology. The goal of studying cells in a 3D context is to attempt to more faithfully recapitulate the physiological microenvironment of tissues, including mechanical and structural parameters that we envision will reveal more predictive data for development programs and disease states. In this review, we discuss the pros and cons of several well-characterized 3D cell culture systems for performing 3D migration studies. We discuss the intracellular and extracellular signaling mechanisms that govern cell migration. We also describe the mathematical models and relevant assumptions that can be used to describe 3D cell movement.
Collapse
Affiliation(s)
- Pei-Hsun Wu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences in Oncology Center, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, USA;, ,
| | - Daniele M. Gilkes
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences in Oncology Center, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, USA;, ,
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences in Oncology Center, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, USA;, ,
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
4
|
Lee A, Tsekouras K, Calderon C, Bustamante C, Pressé S. Unraveling the Thousand Word Picture: An Introduction to Super-Resolution Data Analysis. Chem Rev 2017; 117:7276-7330. [PMID: 28414216 PMCID: PMC5487374 DOI: 10.1021/acs.chemrev.6b00729] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Super-resolution microscopy provides direct insight into fundamental biological processes occurring at length scales smaller than light's diffraction limit. The analysis of data at such scales has brought statistical and machine learning methods into the mainstream. Here we provide a survey of data analysis methods starting from an overview of basic statistical techniques underlying the analysis of super-resolution and, more broadly, imaging data. We subsequently break down the analysis of super-resolution data into four problems: the localization problem, the counting problem, the linking problem, and what we've termed the interpretation problem.
Collapse
Affiliation(s)
- Antony Lee
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California at Berkeley, Berkeley, California 94720, United States
| | - Konstantinos Tsekouras
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | | | - Carlos Bustamante
- Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California at Berkeley, Berkeley, California 94720, United States
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California 94720, United States
- Institute for Quantitative Biosciences-QB3, University of California at Berkeley, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, California 94720, United States
- Kavli Energy Nanosciences Institute, University of California at Berkeley, Berkeley, California 94720, United States
| | - Steve Pressé
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Department of Chemistry and Chemical Biology, Indiana University–Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
- Department of Cell and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
5
|
Lin CY, Huang JY, Lo LW. Depicting Binding-Mediated Translocation of HIV-1 Tat Peptides in Living Cells with Nanoscale Pens of Tat-Conjugated Quantum Dots. SENSORS 2017; 17:s17020315. [PMID: 28208588 PMCID: PMC5335923 DOI: 10.3390/s17020315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 01/24/2017] [Accepted: 01/30/2017] [Indexed: 12/16/2022]
Abstract
Cell-penetrating peptides (CPPs) can translocate across cell membranes, and thus have great potential for the cellular delivery of macromolecular cargoes. However, the mechanism of this cellular uptake process is not yet fully understood. In this study, a time-lapse single-particle light-sheet microscopy technique was implemented to obtain a parallel visualization of the translocating process of individual human immunodeficiency virus 1 (HIV-1) transactivator of transcription (Tat) peptide conjugated quantum dots (TatP-QDs) in complex cellular terrains. Here, TatP-QDs served as nanoscale dynamic pens, which depict remarkable trajectory aggregates of TatP-QDs on the cell surface. Spectral-embedding analysis of the trajectory aggregates revealed a manifold formed by isotropic diffusion and a fraction of directed movement, possibly caused by interaction between the Tat peptides and heparan sulfate groups on the plasma membrane. Further analysis indicated that the membrane deformation induced by Tat-peptide attachment increased with the disruption of the actin framework in cytochalasin D (cyto D)-treated cells, yielding higher interactions on the TatP-QDs. In native cells, the Tat peptides can remodel the actin framework to reduce their interaction with the local membrane environment. Characteristic hot spots for interaction were detected on the membrane, suggesting that a funnel passage may have formed for the Tat-coated particles. This finding offers valuable insight into the cellular delivery of nanoscale cargo, suggesting an avenue for direct therapeutic delivery.
Collapse
Affiliation(s)
- Chien Y Lin
- The T.K.P. Research Center for Photonics, Chiao Tung University, Hsinchu 300, Taiwan.
| | - Jung Y Huang
- The T.K.P. Research Center for Photonics, Chiao Tung University, Hsinchu 300, Taiwan.
| | - Leu-Wei Lo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 350, Taiwan.
| |
Collapse
|
6
|
Waigh TA. Advances in the microrheology of complex fluids. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:074601. [PMID: 27245584 DOI: 10.1088/0034-4885/79/7/074601] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
New developments in the microrheology of complex fluids are considered. Firstly the requirements for a simple modern particle tracking microrheology experiment are introduced, the error analysis methods associated with it and the mathematical techniques required to calculate the linear viscoelasticity. Progress in microrheology instrumentation is then described with respect to detectors, light sources, colloidal probes, magnetic tweezers, optical tweezers, diffusing wave spectroscopy, optical coherence tomography, fluorescence correlation spectroscopy, elastic- and quasi-elastic scattering techniques, 3D tracking, single molecule methods, modern microscopy methods and microfluidics. New theoretical techniques are also reviewed such as Bayesian analysis, oversampling, inversion techniques, alternative statistical tools for tracks (angular correlations, first passage probabilities, the kurtosis, motor protein step segmentation etc), issues in micro/macro rheological agreement and two particle methodologies. Applications where microrheology has begun to make some impact are also considered including semi-flexible polymers, gels, microorganism biofilms, intracellular methods, high frequency viscoelasticity, comb polymers, active motile fluids, blood clots, colloids, granular materials, polymers, liquid crystals and foods. Two large emergent areas of microrheology, non-linear microrheology and surface microrheology are also discussed.
Collapse
Affiliation(s)
- Thomas Andrew Waigh
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Rd., Manchester, M13 9PL, UK. Photon Science Institute, University of Manchester, Oxford Rd., Manchester, M13 9PL, UK
| |
Collapse
|
7
|
Elsayed M, El-Sherry TM, Abdelgawad M. Development of computer-assisted sperm analysis plugin for analyzing sperm motion in microfluidic environments using Image-J. Theriogenology 2015; 84:1367-77. [DOI: 10.1016/j.theriogenology.2015.07.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 07/10/2015] [Accepted: 07/12/2015] [Indexed: 11/16/2022]
|
8
|
Yüce MY, Jonás A, Erdoğan AT. Video-based tracking of single molecules exhibiting directed in-frame motion. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2012; 18:781-792. [PMID: 22846783 DOI: 10.1017/s1431927612000451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Trajectories of individual molecules moving within complex environments such as cell cytoplasm and membranes or semiflexible polymer networks provide invaluable information on the organization and dynamics of these systems. However, when such trajectories are obtained from a sequence of microscopy images, they can be distorted due to the fact that the tracked molecule exhibits appreciable directed motion during the single-frame acquisition. We propose a new model of image formation for mobile molecules that takes the linear in-frame motion into account and develop an algorithm based on the maximum likelihood approach for retrieving the position and velocity of the molecules from single-frame data. The position and velocity information obtained from individual frames are further fed into a Kalman filter for interframe tracking of molecules that allows prediction of the trajectory of the molecule and further improves the precision of the position and velocity estimates. We evaluate the performance of our algorithm by calculations of the Cramer-Rao Lower Bound, simulations, and model experiments with a piezo-stage. We demonstrate tracking of molecules moving as fast as 7 pixels/frame (12.6 μm/s) within a mean error of 0.42 pixel (37.43 nm).
Collapse
Affiliation(s)
- M Yavuz Yüce
- Department of Physics, Koç University, Istanbul, Turkey.
| | | | | |
Collapse
|
9
|
Baumgärtel V, Müller B, Lamb DC. Quantitative live-cell imaging of human immunodeficiency virus (HIV-1) assembly. Viruses 2012; 4:777-99. [PMID: 22754649 PMCID: PMC3386619 DOI: 10.3390/v4050777] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 04/24/2012] [Indexed: 11/16/2022] Open
Abstract
Advances in fluorescence methodologies make it possible to investigate biological systems in unprecedented detail. Over the last few years, quantitative live-cell imaging has increasingly been used to study the dynamic interactions of viruses with cells and is expected to become even more indispensable in the future. Here, we describe different fluorescence labeling strategies that have been used to label HIV-1 for live cell imaging and the fluorescence based methods used to visualize individual aspects of virus-cell interactions. This review presents an overview of experimental methods and recent experiments that have employed quantitative microscopy in order to elucidate the dynamics of late stages in the HIV-1 replication cycle. This includes cytosolic interactions of the main structural protein, Gag, with itself and the viral RNA genome, the recruitment of Gag and RNA to the plasma membrane, virion assembly at the membrane and the recruitment of cellular proteins involved in HIV-1 release to the nascent budding site.
Collapse
Affiliation(s)
- Viola Baumgärtel
- Department of Chemistry, Center for NanoScience (CeNS) and Center for Integrated Protein Science, Munich (CIPSM), Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, D-81377 München, Germany;
| | - Barbara Müller
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
- Authors to whom correspondence should be addressed; (B.M.); (D.C.L.); Tel.: +49-6221-56-1325 (B.M.); +49-89-2180-77564 (D.C.L.); Fax: +49-6221-56-5003 (B.M.); +49-89-2180-77560 (D.C.L.)
| | - Don C. Lamb
- Department of Chemistry, Center for NanoScience (CeNS) and Center for Integrated Protein Science, Munich (CIPSM), Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, D-81377 München, Germany;
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
- Authors to whom correspondence should be addressed; (B.M.); (D.C.L.); Tel.: +49-6221-56-1325 (B.M.); +49-89-2180-77564 (D.C.L.); Fax: +49-6221-56-5003 (B.M.); +49-89-2180-77560 (D.C.L.)
| |
Collapse
|
10
|
Smith MB, Karatekin E, Gohlke A, Mizuno H, Watanabe N, Vavylonis D. Interactive, computer-assisted tracking of speckle trajectories in fluorescence microscopy: application to actin polymerization and membrane fusion. Biophys J 2012; 101:1794-804. [PMID: 21961607 DOI: 10.1016/j.bpj.2011.09.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 07/25/2011] [Accepted: 09/06/2011] [Indexed: 12/11/2022] Open
Abstract
Analysis of particle trajectories in images obtained by fluorescence microscopy reveals biophysical properties such as diffusion coefficient or rates of association and dissociation. Particle tracking and lifetime measurement is often limited by noise, large mobilities, image inhomogeneities, and path crossings. We present Speckle TrackerJ, a tool that addresses some of these challenges using computer-assisted techniques for finding positions and tracking particles in different situations. A dynamic user interface assists in the creation, editing, and refining of particle tracks. The following are results from application of this program: 1), Tracking single molecule diffusion in simulated images. The shape of the diffusing marker on the image changes from speckle to cloud, depending on the relationship of the diffusion coefficient to the camera exposure time. We use these images to illustrate the range of diffusion coefficients that can be measured. 2), We used the program to measure the diffusion coefficient of capping proteins in the lamellipodium. We found values ∼0.5 μm(2)/s, suggesting capping protein association with protein complexes or the membrane. 3), We demonstrate efficient measuring of appearance and disappearance of EGFP-actin speckles within the lamellipodium of motile cells that indicate actin monomer incorporation into the actin filament network. 4), We marked appearance and disappearance events of fluorescently labeled vesicles to supported lipid bilayers and tracked single lipids from the fused vesicle on the bilayer. This is the first time, to our knowledge, that vesicle fusion has been detected with single molecule sensitivity and the program allowed us to perform a quantitative analysis. 5), By discriminating between undocking and fusion events, dwell times for vesicle fusion after vesicle docking to membranes can be measured.
Collapse
Affiliation(s)
- Matthew B Smith
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|