1
|
Sheik Ismail Z, Worth R, Mosebi S, Sayed Y. HIV Protease Hinge Region Insertions at Codon 38 Affect Enzyme Kinetics, Conformational Stability and Dynamics. Protein J 2023; 42:490-501. [PMID: 37421557 PMCID: PMC10480237 DOI: 10.1007/s10930-023-10132-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2023] [Indexed: 07/10/2023]
Abstract
HIV-1 protease is essential for the production of mature, infectious virions and is a major target in antiretroviral therapy. We successfully purified a HIV-1 subtype C variant, L38↑N↑L- 4, containing an insertion of asparagine and leucine at position 38 without the four background mutations - K20R, E35D, R57K, V82I using a modified purification protocol. Isothermal titration calorimetry indicated that 50% of the variant protease sample was in the active conformation compared to 62% of the wild type protease. The secondary structure composition of the variant protease was unaffected by the double insertion. The specific activity and kcat values of the variant protease were approximately 50% lower than the wild type protease values. The variant protease also exhibited a 1.6-fold increase in kcat/KM when compared to the wild type protease. Differential scanning calorimetry showed a 5 °C increase in Tm of the variant protease, indicating the variant was more stable than the wild type. Molecular dynamics simulations indicated the variant was more stable and compact than the wild type protease. A 3-4% increase in the flexibility of the hinge regions of the variant protease was observed. In addition, increased flexibility of the flaps, cantilever and fulcrum regions of the variant protease B chain was observed. The variant protease sampled only the closed flap conformation indicating a potential mechanism for drug resistance. The present study highlights the direct impact of a double amino acid insertion in hinge region on enzyme kinetics, conformational stability and dynamics of an HIV-1 subtype C variant protease.
Collapse
Affiliation(s)
- Zaahida Sheik Ismail
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of Witwatersrand, Johannesburg, 2050, South Africa
| | - Roland Worth
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of Witwatersrand, Johannesburg, 2050, South Africa
| | - Salerwe Mosebi
- College of Agriculture & Environmental Sciences, School of Agriculture and Life Sciences, Department of Life and Consumer Sciences, UNISA, Pretoria, South Africa
| | - Yasien Sayed
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of Witwatersrand, Johannesburg, 2050, South Africa.
| |
Collapse
|
2
|
Calixto AR, Ramos MJ, Fernandes PA. Influence of Frozen Residues on the Exploration of the PES of Enzyme Reaction Mechanisms. J Chem Theory Comput 2017; 13:5486-5495. [DOI: 10.1021/acs.jctc.7b00768] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ana R. Calixto
- UCIBIO, REQUIMTE,
Departamento de Química
e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria J. Ramos
- UCIBIO, REQUIMTE,
Departamento de Química
e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro A. Fernandes
- UCIBIO, REQUIMTE,
Departamento de Química
e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
3
|
Katebi AR, Jernigan RL. Aldolases Utilize Different Oligomeric States To Preserve Their Functional Dynamics. Biochemistry 2015; 54:3543-54. [PMID: 25982518 DOI: 10.1021/acs.biochem.5b00042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aldolases are essential enzymes in the glycolysis pathway and catalyze the reaction cleaving fructose/tagatose 1,6-bisphosphate into dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. To determine how the aldolase motions relate to its catalytic process, we studied the dynamics of three different class II aldolase structures through simulations. We employed coarse-grained elastic network normal-mode analyses to investigate the dynamics of Escherichia coli fructose 1,6-bisphosphate aldolase, E. coli tagatose 1,6-bisphosphate aldolase, and Thermus aquaticus fructose 1,6-bisphosphate aldolase and compared their motions in different oligomeric states. The first one is a dimer, and the second and third are tetramers. Our analyses suggest that oligomerization not only stabilizes the aldolase structures, showing fewer fluctuations at the subunit interfaces, but also allows the enzyme to achieve the required dynamics for its functional loops. The essential mobility of these loops in the functional oligomeric states can facilitate the enzymatic mechanism, substrate recruitment in the open state, bringing the catalytic residues into their required configuration in the closed bound state, and moving back to the open state to release the catalytic products and repositioning the enzyme for its next catalytic cycle. These findings suggest that the aldolase global motions are conserved among aldolases having different oligomeric states to preserve its catalytic mechanism. The coarse-grained approaches taken permit an unprecedented view of the changes in the structural dynamics and how these relate to the critical structural stabilities essential for catalysis. The results are supported by experimental findings from many previous studies.
Collapse
Affiliation(s)
- Ataur R Katebi
- L. H. Baker Center for Bioinformatics and Biological Statistics, Department of Biochemistry, Biophysics and Molecular Biology, and Interdepartmental Program for Bioinformatics and Computational Biology, Iowa State University, Ames, Iowa 50011-3020, United States
| | - Robert L Jernigan
- L. H. Baker Center for Bioinformatics and Biological Statistics, Department of Biochemistry, Biophysics and Molecular Biology, and Interdepartmental Program for Bioinformatics and Computational Biology, Iowa State University, Ames, Iowa 50011-3020, United States
| |
Collapse
|
4
|
Özer N, Özen A, Schiffer CA, Haliloğlu T. Drug-resistant HIV-1 protease regains functional dynamics through cleavage site coevolution. Evol Appl 2015; 8:185-98. [PMID: 25685193 PMCID: PMC4319865 DOI: 10.1111/eva.12241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 12/08/2014] [Indexed: 12/20/2022] Open
Abstract
Drug resistance is caused by mutations that change the balance of recognition favoring substrate cleavage over inhibitor binding. Here, a structural dynamics perspective of the regained wild-type functioning in mutant HIV-1 proteases with coevolution of the natural substrates is provided. The collective dynamics of mutant structures of the protease bound to p1-p6 and NC-p1 substrates are assessed using the Anisotropic Network Model (ANM). The drug-induced protease mutations perturb the mechanistically crucial hinge axes that involve key sites for substrate binding and dimerization and mainly coordinate the intrinsic dynamics. Yet with substrate coevolution, while the wild-type dynamic behavior is restored in both p1-p6 ((LP) (1'F)p1-p6D30N/N88D) and NC-p1 ((AP) (2) (V)NC-p1V82A) bound proteases, the dynamic behavior of the NC-p1 bound protease variants (NC-p1V82A and (AP) (2) (V)NC-p1V82A) rather resemble those of the proteases bound to the other substrates, which is consistent with experimental studies. The orientational variations of residue fluctuations along the hinge axes in mutant structures justify the existence of coevolution in p1-p6 and NC-p1 substrates, that is, the dynamic behavior of hinge residues should contribute to the interdependent nature of substrate recognition. Overall, this study aids in the understanding of the structural dynamics basis of drug resistance and evolutionary optimization in the HIV-1 protease system.
Collapse
Affiliation(s)
- Nevra Özer
- Polymer Research Center and Chemical Engineering Department, Bogazici UniversityBebek, Istanbul, Turkey
| | - Ayşegül Özen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical SchoolWorcester, MA, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical SchoolWorcester, MA, USA
| | - Türkan Haliloğlu
- Polymer Research Center and Chemical Engineering Department, Bogazici UniversityBebek, Istanbul, Turkey
| |
Collapse
|
5
|
O'Meara JA, Lemke CT, Godbout C, Kukolj G, Lagacé L, Moreau B, Thibeault D, White PW, Llinàs-Brunet M. Molecular mechanism by which a potent hepatitis C virus NS3-NS4A protease inhibitor overcomes emergence of resistance. J Biol Chem 2012; 288:5673-81. [PMID: 23271737 DOI: 10.1074/jbc.m112.439455] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Although optimizing the resistance profile of an inhibitor can be challenging, it is potentially important for improving the long term effectiveness of antiviral therapy. This work describes our rational approach toward the identification of a macrocyclic acylsulfonamide that is a potent inhibitor of the NS3-NS4A proteases of all hepatitis C virus genotypes and of a panel of genotype 1-resistant variants. The enhanced potency of this compound versus variants D168V and R155K facilitated x-ray determination of the inhibitor-variant complexes. In turn, these structural studies revealed a complex molecular basis of resistance and rationalized how such compounds are able to circumvent these mechanisms.
Collapse
Affiliation(s)
- Jeff A O'Meara
- Boehringer Ingelheim (Canada) Limited, Research and Development, Laval, Quebec H7S 2G5, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Wang Y, Dewdney TG, Liu Z, Reiter SJ, Brunzelle JS, Kovari IA, Kovari LC. Higher Desolvation Energy Reduces Molecular Recognition in Multi-Drug Resistant HIV-1 Protease. BIOLOGY 2012; 1:81-93. [PMID: 24832048 PMCID: PMC4011036 DOI: 10.3390/biology1010081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 05/23/2012] [Accepted: 05/25/2012] [Indexed: 01/07/2023]
Abstract
Designing HIV-1 protease inhibitors that overcome drug-resistance is still a challenging task. In this study, four clinical isolates of multi-drug resistant HIV-1 proteases that exhibit resistance to all the US FDA-approved HIV-1 protease inhibitors and also reduce the substrate recognition ability were examined. A multi-drug resistant HIV-1 protease isolate, MDR 769, was co-crystallized with the p2/NC substrate and the mutated CA/p2 substrate, CA/p2 P1'F. Both substrates display different levels of molecular recognition by the wild-type and multi-drug resistant HIV-1 protease. From the crystal structures, only limited differences can be identified between the wild-type and multi-drug resistant protease. Therefore, a wild-type HIV-1 protease and four multi-drug resistant HIV-1 proteases in complex with the two peptides were modeled based on the crystal structures and examined during a 10 ns-molecular dynamics simulation. The simulation results reveal that the multi-drug resistant HIV-1 proteases require higher desolvation energy to form complexes with the peptides. This result suggests that the desolvation of the HIV-1 protease active site is an important step of protease-ligand complex formation as well as drug resistance. Therefore, desolvation energy could be considered as a parameter in the evaluation of future HIV-1 protease inhibitor candidates.
Collapse
Affiliation(s)
- Yong Wang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Tamaria G Dewdney
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Zhigang Liu
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Samuel J Reiter
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Joseph S Brunzelle
- Department of Molecular Pharmacology and Biochemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Iulia A Kovari
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Ladislau C Kovari
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
7
|
Kuznetsov NA, Kozyr AV, Dronina MA, Smirnov IV, Kaliberda EN, Mikhailova AG, Rumsh LD, Fedorova OS, Gabibov AG, Kolesnikov AV. Pre-steady-state kinetics of interaction of wild-type and multiple drug-resistant HIV protease with first and second generation inhibitory drugs. DOKL BIOCHEM BIOPHYS 2011; 440:239-43. [PMID: 22095129 DOI: 10.1134/s1607672911050139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Indexed: 11/22/2022]
Affiliation(s)
- N A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Novosibirsk, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|