1
|
Raffa RB, Pergolizzi JV. Bispecific Sigma1R-Antagonist/MOR-Agonist Compounds for Pain. Cureus 2024; 16:e59837. [PMID: 38846228 PMCID: PMC11154084 DOI: 10.7759/cureus.59837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/07/2024] [Indexed: 06/09/2024] Open
Abstract
Recent research has significantly advanced an understanding of sigma receptors, which consist of two distinct subtypes designated as S1R and S2R (s1R and s2R gene products, respectively). Both subtypes have recently been cloned and their crystal structures have been published. As a result, highly selective S1R and S2R agonist and antagonist ligands are now available. Unlike the confusion generated from prior use of non-selective 'sigma' compounds, these tool compounds have begun to add clarity about the function of sigma receptors in health and disease. The discovery of compounds with high-affinity (nM range) S1R/S2R or S2R/S1R subtype selectivity (>100-fold), and selectivity over off-target sites (>1,000-fold) has brought the study of sigma receptor pharmacology into the modern era. Computer modeling has contributed to a better understanding of the binding processes, structural requirements for chemical synthesis, and potential therapeutic uses. Several lines of evidence converge on pain as a therapeutic target for S1R-antagonists (as single mechanism or as part of a multi-mechanistic approach). We highlight here some compounds reported over the past few years that have promise for use as analgesics, specifically some mono-mechanistic S1R-antagonists, and some that are 'bispecific', i.e., have more than one mechanism of action, for example, complementary action of the mu-opioid receptor (MOR). We concentrate on some compounds that are further along in development, in particular, some of the bispecific S1R-antagonist/MOR-agonist compounds.
Collapse
|
2
|
Rafique S, Idrees M, Bokhari H, Bhatti AS. Ellipsometric-based novel DNA biosensor for label-free, real-time detection of Bordetella parapertussis. J Biol Phys 2019; 45:275-291. [PMID: 31375953 PMCID: PMC6706519 DOI: 10.1007/s10867-019-09528-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 06/24/2019] [Indexed: 10/26/2022] Open
Abstract
Pertussis (or whooping cough) is a contagious disease mainly affecting infants and children and predominantly caused by Bordetella pertussis followed by Bordetella parapertussis. B. parapertussis causes a milder cough but usually symptomatically appears like B. pertussis infection. Thus the epidemiology of illness caused by B. parapertussis is not well understood. In this study, a sensitive and specific method for the rapid diagnosis of B. parapertussis is presented. The covalent immobilization of thiol-terminated DNA oligonucleotides (ss DNA SAM) on a silicon surface by disulfide bond formation is investigated with atomic force microscopy (AFM) and ellipsometry. The measurements indicated an average layer thickness of 5 ± 0.84 nm for 2 μg/μl concentration and 24 h incubation time. This thickness changed to 8.4 ± 0.92 nm for the same concentration (2 μg/μl) by altering the incubation time to 48 h. Ellipsometric data recorded before and after hybridization of B. parapertussis revealed an increase in mean grain area from 91 nm2 to 227 nm2 and a change in the refractive index from 1.489 to 1.648 for 2 μg/μl B. parapertussis, respectively. This change in the refractive index was used to evaluate the amount of adsorbed molecules and their density. The results showed that the density of adsorbed molecules increased from 0.2 to 0.97 g/cm3 after B. parapertussis attachment, respectively. To confirm the hybridization of B. parapertussis to ss DNA SAM, the ds DNA SAM was denatured and the ss DNA SAM surface was reproduced with an average height variation of 6.42 ± 0.75 nm. This showed the stability of the DNA film that can be tuned by varying the concentration and incubation time, thus providing a robust method for the label-free detection of B. parapertussis other than routinely used PCR detection.
Collapse
Affiliation(s)
- S Rafique
- Department of Physics, Air University, PAF Complex, E-9, Islamabad, 44000, Pakistan.
| | - M Idrees
- Department of Microbiology, COMSATS Institute of Information Technology, Islamabad, 44000, Pakistan
| | - H Bokhari
- Department of Microbiology, COMSATS Institute of Information Technology, Islamabad, 44000, Pakistan
| | - A S Bhatti
- Centre for Micro & Nano Devices, Department of Physics, Faculty of Science, COMSATS Institute of Information Technology, Park Road Campus, Islamabad, 44000, Pakistan
| |
Collapse
|
3
|
Smith RAS, Nabok A, Blakeman BJF, Xue WF, Abell B, Smith DP. Analysis of Toxic Amyloid Fibril Interactions at Natively Derived Membranes by Ellipsometry. PLoS One 2015; 10:e0132309. [PMID: 26172440 PMCID: PMC4501548 DOI: 10.1371/journal.pone.0132309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/11/2015] [Indexed: 12/26/2022] Open
Abstract
There is an ongoing debate regarding the culprits of cytotoxicity associated with amyloid disorders. Although small pre-fibrillar amyloid oligomers have been implicated as the primary toxic species, the fibrillar amyloid material itself can also induce cytotoxicity. To investigate membrane disruption and cytotoxic effects associated with intact and fragmented fibrils, the novel in situ spectroscopic technique of Total Internal Reflection Ellipsometry (TIRE) was used. Fibril lipid interactions were monitored using natively derived whole cell membranes as a model of the in vivo environment. We show that fragmented fibrils have an increased ability to disrupt these natively derived membranes by causing a loss of material from the deposited surface when compared with unfragmented fibrils. This effect was corroborated by observations of membrane disruption in live cells, and by dye release assay using synthetic liposomes. Through these studies we demonstrate the use of TIRE for the analysis of protein-lipid interactions on natively derived lipid surfaces, and provide an explanation on how amyloid fibrils can cause a toxic gain of function, while entangled amyloid plaques exert minimal biological activity.
Collapse
Affiliation(s)
- Rachel A. S. Smith
- Biomedical Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Aleksey Nabok
- Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield, United Kingdom
| | - Ben J. F. Blakeman
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Wei-Feng Xue
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Benjamin Abell
- Biomedical Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - David P. Smith
- Biomedical Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
4
|
Schweiger R, Soll J, Jung K, Heermann R, Schwenkert S. Quantification of interaction strengths between chaperones and tetratricopeptide repeat domain-containing membrane proteins. J Biol Chem 2013; 288:30614-30625. [PMID: 24036116 DOI: 10.1074/jbc.m113.493015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The three tetratricopeptide repeat domain-containing docking proteins Toc64, OM64, and AtTPR7 reside in the chloroplast, mitochondrion, and endoplasmic reticulum of Arabidopsis thaliana, respectively. They are suggested to act during post-translational protein import by association with chaperone-bound preprotein complexes. Here, we performed a detailed biochemical, biophysical, and computational analysis of the interaction between Toc64, OM64, and AtTPR7 and the five cytosolic chaperones HSP70.1, HSP90.1, HSP90.2, HSP90.3, and HSP90.4. We used surface plasmon resonance spectroscopy in combination with Interaction Map® analysis to distinguish between chaperone oligomerization and docking protein-chaperone interactions and to calculate binding affinities for all tested interactions. Complementary to this, we applied pulldown assays as well as microscale thermophoresis as surface immobilization independent techniques. The data revealed that OM64 prefers HSP70 over HSP90, whereas Toc64 binds all chaperones with comparable affinities. We could further show that AtTPR7 is able to bind HSP90 in addition to HSP70. Moreover, differences between the HSP90 isoforms were detected and revealed a weaker binding for HSP90.1 to AtTPR7 and OM64, showing that slight differences in the amino acid composition or structure of the chaperones influence binding to the tetratricopeptide repeat domain. The combinatory approach of several methods provided a powerful toolkit to determine binding affinities of similar interaction partners in a highly quantitative manner.
Collapse
Affiliation(s)
| | - Jürgen Soll
- From the Departments of Biology I, Botany, and
| | - Kirsten Jung
- Biology I, Microbiology, Munich Center for Integrated Protein Science, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2-4, D-82152 Planegg-Martinsried, Germany
| | - Ralf Heermann
- Biology I, Microbiology, Munich Center for Integrated Protein Science, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2-4, D-82152 Planegg-Martinsried, Germany.
| | | |
Collapse
|
5
|
Schweiger R, Müller NC, Schmitt MJ, Soll J, Schwenkert S. AtTPR7 is a chaperone-docking protein of the Sec translocon in Arabidopsis. J Cell Sci 2012; 125:5196-207. [PMID: 22899711 DOI: 10.1242/jcs.111054] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Chaperone-assisted sorting of post-translationally imported proteins is a general mechanism among all eukaryotic organisms. Interaction of some preproteins with the organellar membranes is mediated by chaperones, which are recognised by membrane-bound tetratricopeptide repeat (TPR) domain containing proteins. We have characterised AtTPR7 as an endoplasmic reticulum protein in plants and propose a potential function for AtTPR7 in post-translational protein import. Our data demonstrate that AtTPR7 interacts with the heat shock proteins HSP90 and HSP70 via a cytosol-exposed TPR domain. We further show by in vitro and in vivo experiments that AtTPR7 is associated with the Arabidopsis Sec63 homologue, AtERdj2. Interestingly, AtTPR7 can functionally complement a Δsec71 yeast mutant that is impaired in post-translational protein transport. These data strongly suggest that AtTPR7 not only has a role in chaperone binding but also in post-translational protein import into the endoplasmic reticulum, pointing to a general mechanism of chaperone-mediated post-translational sorting between the endoplasmic reticulum, mitochondria and chloroplasts in plant cells.
Collapse
Affiliation(s)
- Regina Schweiger
- Department of Biology I, Botany, Ludwig-Maximilians-Universität München, Großhaderner Strasse 2-4, D-82152 Planegg-Martinsried, Germany
| | | | | | | | | |
Collapse
|
6
|
Baleviciute I, Balevicius Z, Makaraviciute A, Ramanaviciene A, Ramanavicius A. Study of antibody/antigen binding kinetics by total internal reflection ellipsometry. Biosens Bioelectron 2012; 39:170-6. [PMID: 22938839 DOI: 10.1016/j.bios.2012.07.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 07/08/2012] [Accepted: 07/13/2012] [Indexed: 10/28/2022]
Abstract
Total internal reflection ellipsometry (TIRE) has been applied for the investigation of (i) kinetics of biosensing layer formation, which was based on the immobilization of fragmented and intact antibodies, and (ii) kinetics of antigen interaction with the immobilized antibodies. It has been demonstrated that ellipsometric parameter Δ(t) showed much higher sensitivity at the initial phase of Au-protein and protein-protein interaction, while the parameter Ψ(t) was more sensitive when the steady-state conditions were established. A new method, which taking into consideration this feature and nonlinear change of Δ(t) and Ψ(t) parameters during various stages of biological layer formation process, was used for the calculation of antibody and antigen adsorption/interaction kinetics. The obtained results were analyzed using a model, which took into account partial reversibility during the formation of both antibody and antigen based monolayers. It was shown that the immobilization rate of antibody during the preparation of the sensing layer was similar for the formation of both intact and fragmented antibody based layers; however, the residence time was 25 times longer for intact antibody based layer formation in comparison to that of fragmented antibody based layer formation. On the contrary, residence time of antigen interaction with immobilized antibodies was about 8 times longer for the sensor based on fragmented antibodies. Moreover, it has been determined that the structural differences of immobilized antibodies (fragmented or intact) significantly influence antibody-antigen interaction rate, the major difference being in the residence time of antigen interaction with both types of immobilized antibodies.
Collapse
Affiliation(s)
- Ieva Baleviciute
- Department of Physical Chemistry, Faculty of Chemistry, Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania.
| | | | | | | | | |
Collapse
|
7
|
Flores-Pérez Ú, Jarvis P. Molecular chaperone involvement in chloroplast protein import. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:332-40. [PMID: 22521451 DOI: 10.1016/j.bbamcr.2012.03.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/16/2012] [Accepted: 03/31/2012] [Indexed: 11/19/2022]
Abstract
Chloroplasts are organelles of endosymbiotic origin that perform essential functions in plants. They contain about 3000 different proteins, the vast majority of which are nucleus-encoded, synthesized in precursor form in the cytosol, and transported into the chloroplasts post-translationally. These preproteins are generally imported via envelope complexes termed TOC and TIC (Translocon at the Outer/Inner envelope membrane of Chloroplasts). They must navigate different cellular and organellar compartments (e.g., the cytosol, the outer and inner envelope membranes, the intermembrane space, and the stroma) before arriving at their final destination. It is generally considered that preproteins are imported in a largely unfolded state, and the whole process is energy-dependent. Several chaperones and cochaperones have been found to mediate different stages of chloroplast import, in similar fashion to chaperone involvement in mitochondrial import. Cytosolic factors such as Hsp90, Hsp70 and 14-3-3 may assist preproteins to reach the TOC complex at the chloroplast surface, preventing their aggregation or degradation. Chaperone involvement in the intermembrane space has also been proposed, but remains uncertain. Preprotein translocation is completed at the trans side of the inner membrane by ATP-driven motor complexes. A stromal Hsp100-type chaperone, Hsp93, cooperates with Tic110 and Tic40 in one such motor complex, while stromal Hsp70 is proposed to act in a second, parallel complex. Upon arrival in the stroma, chaperones (e.g., Hsp70, Cpn60, cpSRP43) also contribute to the folding, assembly or onward intraorganellar guidance of the proteins. In this review, we focus on chaperone involvement during preprotein translocation at the chloroplast envelope. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
|
8
|
Kriechbaumer V, Nabok A, Mustafa MK, Al-Ammar R, Tsargorodskaya A, Smith DP, Abell BM. Analysis of protein interactions at native chloroplast membranes by ellipsometry. PLoS One 2012; 7:e34455. [PMID: 22479632 PMCID: PMC3315527 DOI: 10.1371/journal.pone.0034455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 02/28/2012] [Indexed: 11/25/2022] Open
Abstract
Membrane bound receptors play vital roles in cell signaling, and are the target for many drugs, yet their interactions with ligands are difficult to study by conventional techniques due to the technical difficulty of monitoring these interactions in lipid environments. In particular, the ability to analyse the behaviour of membrane proteins in their native membrane environment is limited. Here, we have developed a quantitative approach to detect specific interactions between low-abundance chaperone receptors within native chloroplast membranes and their soluble chaperone partners. Langmuir-Schaefer film deposition was used to deposit native chloroplasts onto gold-coated glass slides, and interactions between the molecular chaperones Hsp70 and Hsp90 and their receptors in the chloroplast membranes were detected and quantified by total internal reflection ellipsometry (TIRE). We show that native chloroplast membranes deposited on gold-coated glass slides using Langmuir-Schaefer films retain functional receptors capable of binding chaperones with high specificity and affinity. Taking into account the low chaperone receptor abundance in native membranes, these binding properties are consistent with data generated using soluble forms of the chloroplast chaperone receptors, OEP61 and Toc64. Therefore, we conclude that chloroplasts have the capacity to selectively bind chaperones, consistent with the notion that chaperones play an important role in protein targeting to chloroplasts. Importantly, this method of monitoring by TIRE does not require any protein labelling. This novel combination of techniques should be applicable to a wide variety of membranes and membrane protein receptors, thus presenting the opportunity to quantify protein interactions involved in fundamental cellular processes, and to screen for drugs that target membrane proteins.
Collapse
Affiliation(s)
- Verena Kriechbaumer
- Biomedical Research Centre, Sheffield Hallam University, Sheffield, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
9
|
Toccafondi C, Prato M, Barborini E, Vinati S, Maidecchi G, Penco A, Cavalleri O, Bisio F, Canepa M. Yeast Cytochrome c Monolayer on Flat and Nanostructured Gold Films Studied by UV–Vis Spectroscopic Ellipsometry. BIONANOSCIENCE 2011. [DOI: 10.1007/s12668-011-0024-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|