1
|
Peeyatu C, Prompat N, Voravuthikunchai SP, Roongsawang N, Sangkhathat S, Khongkow P, Saetang J, Tipmanee V. Role of Non-Binding T63 Alteration in IL-18 Binding. Int J Mol Sci 2024; 25:12992. [PMID: 39684709 DOI: 10.3390/ijms252312992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Engineered interleukin-18 (IL-18) has attracted interest as a cytokine-based treatment. However, knowledge-based mutagenesis of IL-18 has been reported for only a few regions of the protein structures, including binding sites I and II. When coupled with the binding region mutant (E6K), the non-binding residue of IL-18, Thr63 (T63), has been shown to increase the flexibility of the binding loop. Nevertheless, the function of Thr63 in conformational regulation is still unknown. Using homology modeling, molecular dynamics simulation, and structural analysis, we investigated the effects of Thr63 alteration coupling with E6K on conformational change pattern, binding loop flexibility, and the hydrogen bond network. The results indicate that the 63rd residue was significantly associated with hydrogen-bond relaxation at the core β-barrel binding sites I and II Glu85-Ile100 loop. This result provided conformational and flexible effects to binding sites I and III by switching their binding loops and stabilizing the 63rd residue cavity. These findings may pave the way for the conceptualization of a new design for IL-18 proteins by modifying non-binding residues for structure-based drug development.
Collapse
Affiliation(s)
- Chariya Peeyatu
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Napat Prompat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Supayang Piyawan Voravuthikunchai
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia and Natural Product Research Center of Excellent, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Niran Roongsawang
- Microbial Cell Factory Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Surasak Sangkhathat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Pasarat Khongkow
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Jirakrit Saetang
- EZ-Mol-Design Laboratory, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112, Thailand
| | - Varomyalin Tipmanee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- EZ-Mol-Design Laboratory, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
2
|
Xiong J, Gao M, Zhou J, Liu S, Su Z, Liu Z, Huang Y. The influence of intrinsic folding mechanism of an unfolded protein on the coupled folding-binding process during target recognition. Proteins 2018; 87:265-275. [PMID: 30520528 DOI: 10.1002/prot.25646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 09/28/2018] [Accepted: 11/29/2018] [Indexed: 11/11/2022]
Abstract
Intrinsically disordered proteins (IDPs) are extensively involved in dynamic signaling processes which require a high association rate and a high dissociation rate for rapid binding/unbinding events and at the same time a sufficient high affinity for specific recognition. Although the coupled folding-binding processes of IDPs have been extensively studied, it is still impossible to predict whether an unfolded protein is suitable for molecular signaling via coupled folding-binding. In this work, we studied the interplay between intrinsic folding mechanisms and coupled folding-binding process for unfolded proteins through molecular dynamics simulations. We first studied the folding process of three representative IDPs with different folded structures, that is, c-Myb, AF9, and E3 rRNase. We found the folding free energy landscapes of IDPs are downhill or show low barriers. To further study the influence of intrinsic folding mechanism on the binding process, we modulated the folding mechanism of barnase via circular permutation and simulated the coupled folding-binding process between unfolded barnase permutant and folded barstar. Although folding of barnase was coupled to target binding, the binding kinetics was significantly affected by the intrinsic folding free energy barrier, where reducing the folding free energy barrier enhances binding rate up to two orders of magnitude. This accelerating effect is different from previous results which reflect the effect of structure flexibility on binding kinetics. Our results suggest that coupling the folding of an unfolded protein with no/low folding free energy barrier with its target binding may provide a way to achieve high specificity and rapid binding/unbinding kinetics simultaneously.
Collapse
Affiliation(s)
- Junwen Xiong
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China.,Hubei University of Technology, Institute of Biomedical and Pharmaceutical Sciences, Key Laboratory of Industrial Fermentation (Ministry of Education), Wuhan, China
| | - Meng Gao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China.,Hubei University of Technology, Institute of Biomedical and Pharmaceutical Sciences, Key Laboratory of Industrial Fermentation (Ministry of Education), Wuhan, China
| | - Jingjing Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China.,Hubei University of Technology, Institute of Biomedical and Pharmaceutical Sciences, Key Laboratory of Industrial Fermentation (Ministry of Education), Wuhan, China
| | - Sen Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China.,Hubei University of Technology, Institute of Biomedical and Pharmaceutical Sciences, Key Laboratory of Industrial Fermentation (Ministry of Education), Wuhan, China
| | - Zhengding Su
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China.,Hubei University of Technology, Institute of Biomedical and Pharmaceutical Sciences, Key Laboratory of Industrial Fermentation (Ministry of Education), Wuhan, China
| | - Zhirong Liu
- College of Chemistry and Molecular Engineering, and Beijing National Laboratory for Molecular Sciences (BNLMS), Peking University, Beijing, China
| | - Yongqi Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China.,Hubei University of Technology, Institute of Biomedical and Pharmaceutical Sciences, Key Laboratory of Industrial Fermentation (Ministry of Education), Wuhan, China
| |
Collapse
|
3
|
Burban DJ, Haglund E, Capraro DT, Jennings PA. Heterogeneous side chain conformation highlights a network of interactions implicated in hysteresis of the knotted protein, minimal tied trefoil. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:354108. [PMID: 26291198 PMCID: PMC4681393 DOI: 10.1088/0953-8984/27/35/354108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Hysteresis is a signature for a bistability in the native landscape of a protein with significant transition state barriers for the interconversion of stable species. Large global stability, as in GFP, contributes to the observation of this rare hysteretic phenomenon in folding. The signature for such behavior is non-coincidence in the unfolding and refolding transitions, despite waiting significantly longer than the time necessary for complete denaturation. Our work indicates that hysteresis in the knotted protein, the minimal tied trefoil from Thermotoga maritma (MTTTm), is mediated by a network of side chain interactions within a tightly packed core. These initially identified interactions include proline 62 from a tight β-like turn, phenylalanine 65 at the beginning of the knotting loop, and histidine 114 that initiates the threading element. It is this tightly packed region and the knotting element that we propose is disrupted with prolonged incubation in the denatured state, and is involved in the observed hysteresis. Interestingly, the disruption is not linked to backbone interactions, but rather to the packing of side chains in this critical region.
Collapse
Affiliation(s)
- David J Burban
- Departments of Chemistry and Biochemistry, University of California at San Diego (UCSD), La Jolla, CA USA
| | - Ellinor Haglund
- Center for Theoretical Biological Physics (CTBP) and Department of Physics, University of California at San Diego (UCSD), La Jolla, CA USA
- Center for Theoretical Biological Physics (CTBP) and Departments of Physics and Astronomy, Chemistry and Biochemistry and Cell Biology, Rice University, Houston, TX USA
| | - Dominique T Capraro
- Departments of Chemistry and Biochemistry, University of California at San Diego (UCSD), La Jolla, CA USA
| | - Patricia A Jennings
- Departments of Chemistry and Biochemistry, University of California at San Diego (UCSD), La Jolla, CA USA
| |
Collapse
|
4
|
Giri Rao VVH, Gosavi S. Structural Perturbations Present in the Folding Cores of Interleukin-33 and Interleukin-1β Correlate to Differences in Their Function. J Phys Chem B 2015; 119:11203-14. [DOI: 10.1021/acs.jpcb.5b03111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- V. V. Hemanth Giri Rao
- National Centre for Biological
Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore 560065, India
| | - Shachi Gosavi
- National Centre for Biological
Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore 560065, India
| |
Collapse
|
5
|
Hailey KL, Capraro DT, Barkho S, Jennings PA. Allosteric switching of agonist/antagonist activity by a single point mutation in the interluekin-1 receptor antagonist, IL-1Ra. J Mol Biol 2013; 425:2382-92. [PMID: 23499887 DOI: 10.1016/j.jmb.2013.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/21/2013] [Accepted: 03/07/2013] [Indexed: 12/29/2022]
Abstract
The pleiotropic pro-inflammatory cytokine interleukin (IL)-1β has co-evolved with a competitive inhibitor, IL-1 receptor antagonist (IL-1Ra). IL-1β initiates cell signaling by binding the IL-1 receptor (IL-1R) whereas IL-1Ra acts as an antagonist, blocking receptor signaling. The current paradigm for agonist/antagonist functions for these two proteins is based on the receptor-ligand interaction observed in the crystal structures of the receptor-ligand complexes. While IL-1Ra and IL-1β are structurally homologous, IL-1Ra engages only two of the three extracellular domains of the receptor, whereas IL-1β engages all three. We find that an allosteric functional switch exists within a highly conserved pocket of residues, residues 111-120. This region is maintained across all IL-1 family members and serves as a hydrophobic mini-core for IL-1β folding. A key difference across species is a conserved aromatic residue at position 117 in IL-1β, versus a conserved cysteine in IL-1Ra at the analogous position, 116. We find that the replacement of C116 with a phenylalanine switches the protein from an antagonist to an agonist despite the distant location of C116 relative to receptor interaction sites. These results suggest new ways to develop designer cytokine activity into the β-trefoil fold and may be of general use in regulation of this large family of signaling proteins.
Collapse
Affiliation(s)
- Kendra L Hailey
- Department of Chemistry and Biochemistry, University of California, San Diego, San Diego, CA, USA
| | | | | | | |
Collapse
|