1
|
Clarke RJ. Biophysical Reviews' "Meet the Editors Series": a profile of Ronald Clarke. Biophys Rev 2024; 16:145-148. [PMID: 38737205 PMCID: PMC11078904 DOI: 10.1007/s12551-024-01187-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 05/14/2024] Open
Abstract
This article of the continuing "Biophysical Reviews Meet the Editors Series" introduces Ronald Clarke, biophysical chemist, member of the Biophysical Reviews editorial board and current Secretary-General of the International Union of Pure and Applied Biophysics (IUPAB).
Collapse
Affiliation(s)
- Ronald J. Clarke
- School of Chemistry, University of Sydney, Sydney, NSW 2006 Australia
| |
Collapse
|
2
|
Peluffo RD, Hernández JA. The Na +,K +-ATPase and its stoichiometric ratio: some thermodynamic speculations. Biophys Rev 2023; 15:539-552. [PMID: 37681108 PMCID: PMC10480117 DOI: 10.1007/s12551-023-01082-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/18/2023] [Indexed: 09/09/2023] Open
Abstract
Almost seventy years after its discovery, the sodium-potassium adenosine triphosphatase (the sodium pump) located in the cell plasma membrane remains a source of novel mechanistic and physiologic findings. A noteworthy feature of this enzyme/transporter is its robust stoichiometric ratio under physiological conditions: it sequentially counter-transports three sodium ions and two potassium ions against their electrochemical potential gradients per each hydrolyzed ATP molecule. Here we summarize some present knowledge about the sodium pump and its physiological roles, and speculate whether energetic constraints may have played a role in the evolutionary selection of its characteristic stoichiometric ratio.
Collapse
Affiliation(s)
- R. Daniel Peluffo
- Group of Biophysical Chemistry, Department of Biological Sciences, CENUR Litoral Norte, Universidad de La República, Rivera 1350, CP: 50000 Salto, Uruguay
| | - Julio A. Hernández
- Biophysics and Systems Biology Section, Department of Cell and Molecular Biology, Facultad de Ciencias, Universidad de La República, Iguá 4225, CP: 11400 Montevideo, Uruguay
| |
Collapse
|
3
|
Feng HJ, Chen L, Ding YC, Ma XJ, How SW, Wu D. Mechanism on the microbial salt tolerance enhancement by electrical stimulation. Bioelectrochemistry 2022; 147:108206. [PMID: 35868204 DOI: 10.1016/j.bioelechem.2022.108206] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022]
Abstract
The application of biological methods in industrial saline wastewater treatment is limited, since the activities of microorganisms are strongly inhibited by the highly concentrated salts. Acclimatized halotolerant and halophilic microorganisms are of high importance since they can resist the environmental stresses of high salinity. The acclimation to salinity can be passive or active based on whether external simulation is used. However, there is a need for development of economic, efficient and reliable active biological stimulation technologies to accelerate salinity acclimation. Recent studies have shown that electrical stimulation can effectively enhance microbial salt tolerance and pollutant removal ability. However, there have been no comprehensive reviews of the mechanisms involved. Therefore, this mini-review described the mechanisms of electrical stimulation that can significantly improve microbial bioactivity and biodiversity. These mechanisms include regulation of Na+ and K+ transporters by changing membranepotential and promoting ATP production, as well as regulation of extracellular polymer substances through enhanced release of low molecular weight EPS and quorum sensing molecules. The information provided herein will facilitate the application of biological high-salinity wastewater treatment.
Collapse
Affiliation(s)
- Hua-Jun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China
| | - Long Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China
| | - Yang-Cheng Ding
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China.
| | - Xiang-Juan Ma
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China
| | - Seow-Wah How
- Faculty of Bioengineering, Ghent University, Ghent 9000, Belgium
| | - Di Wu
- Faculty of Bioengineering, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
4
|
Maleckar MM, Martín-Vasallo P, Giles WR, Mobasheri A. Physiological Effects of the Electrogenic Current Generated by the Na +/K + Pump in Mammalian Articular Chondrocytes. Bioelectricity 2020; 2:258-268. [PMID: 34471850 PMCID: PMC8370340 DOI: 10.1089/bioe.2020.0036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Although the chondrocyte is a nonexcitable cell, there is strong interest in gaining detailed knowledge of its ion pumps, channels, exchangers, and transporters. In combination, these transport mechanisms set the resting potential, regulate cell volume, and strongly modulate responses of the chondrocyte to endocrine agents and physicochemical alterations in the surrounding extracellular microenvironment. Materials and Methods: Mathematical modeling was used to assess the functional roles of energy-requiring active transport, the Na+/K+ pump, in chondrocytes. Results: Our findings illustrate plausible physiological roles for the Na+/K+ pump in regulating the resting membrane potential and suggest ways in which specific molecular components of pump can respond to the unique electrochemical environment of the chondrocyte. Conclusion: This analysis provides a basis for linking chondrocyte electrophysiology to metabolism and yields insights into novel ways of manipulating or regulating responsiveness to external stimuli both under baseline conditions and in chronic diseases such as osteoarthritis.
Collapse
Affiliation(s)
| | - Pablo Martín-Vasallo
- UD of Biochemistry and Molecular Biology, Universidad de La Laguna, San Cristóbal de La Laguna, Spain.,Instituto de Tecnologías Biomédicas de Canarias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Wayne R Giles
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.,Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.,Department of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
5
|
External Ion Access in the Na/K Pump: Kinetics of Na +, K +, and Quaternary Amine Interaction. Biophys J 2019; 115:361-374. [PMID: 30021111 DOI: 10.1016/j.bpj.2018.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/18/2018] [Accepted: 06/06/2018] [Indexed: 11/23/2022] Open
Abstract
Na/K pumps build essential ion gradients across the plasmalemma of animal cells by coupling the extrusion of three Na+, with the import of two K+ and the hydrolysis of one ATP molecule. The mechanisms of selectivity and competition between Na+, K+, and inhibitory amines remain unclear. We measured the effects of external tetrapropylammonium (TPA+) and ethylenediamine (EDA2+) on three different Na/K pump transport modes in voltage-clamped Xenopus oocytes: 1) outward pump current (IP), 2) passive inward H+ current at negative voltages without Na+ or K+ (IH), and 3) transient charge movement reporting the voltage-dependent extracellular binding/release of Na+ (QNa). Both amines competed with K+ to inhibit IP. TPA+ inhibited IH without competing with H+, whereas EDA2+ did not alter IH at pH 7.6. TPA+ competed with Na+ in QNa measurements, reducing Na+-apparent affinity, evidenced by a ∼-75 mV shift in the charge-voltage curve (at 20 mM TPA+) without reduction of the total charge moved (Qtot). In contrast, EDA2+ and K+ did not compete with Na+ to inhibit QNa; both reduced Qtot without decreasing Na+-apparent affinity. EDA2+ (15 mM) right-shifted the charge-voltage curve by ∼+50 mV. Simultaneous occlusion of EDA2+ and Na+ by an E2P conformation unable to reach E1P was demonstrated by voltage-clamp fluorometry. Trypsinolysis experiments showed that EDA2+-bound pumps are much more proteolysis-resistant than Na+-, K+-, or TPA+-bound pumps, therefore uncovering unique EDA2+-bound conformations. K+ effects on QNa and IH were also evaluated in pumps inhibited with beryllium fluoride, a phosphate mimic. K+ reduced Qtot without shifting the charge-voltage curve, indicating noncompetitive effects, and partially inhibited IH to the same extent as TPA+ in non-beryllium-fluorinated pumps. These results demonstrate that K+ interacts with beryllium-fluorinated pumps inducing conformational changes that alter QNa and IH, suggesting that there are two external access pathways for proton transport by IH.
Collapse
|
6
|
Garcia A, Zou H, Hossain KR, Xu QH, Buda A, Clarke RJ. Polar Interactions Play an Important Role in the Energetics of the Main Phase Transition of Phosphatidylcholine Membranes. ACS OMEGA 2019; 4:518-527. [PMID: 31459346 PMCID: PMC6648055 DOI: 10.1021/acsomega.8b03102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
Conformational changes of membrane proteins are accompanied by deformation in the surrounding lipid bilayer. To gain insight into the energetics of membrane deformation, the phase behavior of dimyristoylphosphatidylcholine (DMPC) membranes in the presence of the dipole potential, ψd, modifiers was investigated by differential scanning calorimetry. 7-Ketocholesterol, which weakens ψd and reduces membrane-perpendicular dipole-dipole repulsion, causes a discrete second peak on the high-temperature side of the main transition, whereas 6-ketocholestanol, which strengthens ψd and increases membrane-perpendicular dipole-dipole repulsion, merely produces a shoulder. Measurements on pure DMPC vesicles showed that the observed temperature profile could not be explained by a single endothermic process, that is, breaking of van der Waals forces between hydrocarbon chains alone. Removal of NaCl from the buffer caused an increase in the main transition temperature and the appearance of an obvious shoulder, implicating polar interactions. Consideration of the phosphatidylcholine (PC) head group dipole moment indicates direct interactions between PC dipoles that are unlikely to account for the additional process. It seems more likely that the breaking of an in-plane hydrogen-bonded network consisting of hydrating water dipoles together with zwitterionic lipid head groups is responsible. The evidence presented supports the idea that the breaking of van der Waals forces between lipid tails required for the main phase transition of PC membranes is coupled to partial breaking of a hydrogen-bonded network at the membrane surface.
Collapse
Affiliation(s)
- Alvaro Garcia
- School
of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Haipei Zou
- School
of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Khondker R. Hossain
- School
of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
- The
University of Sydney Nano Institute, Sydney, New South Wales 2006, Australia
| | - Qikui Henry Xu
- School
of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Annabelle Buda
- School
of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Ronald J. Clarke
- School
of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
- The
University of Sydney Nano Institute, Sydney, New South Wales 2006, Australia
| |
Collapse
|
7
|
Effect of Cholesterol on the Dipole Potential of Lipid Membranes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1115:135-154. [DOI: 10.1007/978-3-030-04278-3_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Sherman HG, Jovanovic C, Stolnik S, Baronian K, Downard AJ, Rawson FJ. New Perspectives on Iron Uptake in Eukaryotes. Front Mol Biosci 2018; 5:97. [PMID: 30510932 PMCID: PMC6254016 DOI: 10.3389/fmolb.2018.00097] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022] Open
Abstract
All eukaryotic organisms require iron to function. Malfunctions within iron homeostasis have a range of physiological consequences, and can lead to the development of pathological conditions that can result in an excess of non-transferrin bound iron (NTBI). Despite extensive understanding of iron homeostasis, the links between the “macroscopic” transport of iron across biological barriers (cellular membranes) and the chemistry of redox changes that drive these processes still needs elucidating. This review draws conclusions from the current literature, and describes some of the underlying biophysical and biochemical processes that occur in iron homeostasis. By first taking a broad view of iron uptake within the gut and subsequent delivery to tissues, in addition to describing the transferrin and non-transferrin mediated components of these processes, we provide a base of knowledge from which we further explore NTBI uptake. We provide concise up-to-date information of the transplasma electron transport systems (tPMETSs) involved within NTBI uptake, and highlight how these systems are not only involved within NTBI uptake for detoxification but also may play a role within the reduction of metabolic stress through regeneration of intracellular NAD(P)H/NAD(P)+ levels. Furthermore, we illuminate the thermodynamics that governs iron transport, namely the redox potential cascade and electrochemical behavior of key components of the electron transport systems that facilitate the movement of electrons across the plasma membrane to the extracellular compartment. We also take account of kinetic changes that occur to transport iron into the cell, namely membrane dipole change and their consequent effects within membrane structure that act to facilitate transport of ions.
Collapse
Affiliation(s)
- Harry G Sherman
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | | | - Snow Stolnik
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Kim Baronian
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Alison J Downard
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Frankie J Rawson
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
9
|
Protein–phospholipid interplay revealed with crystals of a calcium pump. Nature 2017; 545:193-198. [DOI: 10.1038/nature22357] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 04/12/2017] [Indexed: 11/08/2022]
|
10
|
Garcia A, Pratap PR, Lüpfert C, Cornelius F, Jacquemin D, Lev B, Allen TW, Clarke RJ. The voltage-sensitive dye RH421 detects a Na + ,K + -ATPase conformational change at the membrane surface. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:813-823. [DOI: 10.1016/j.bbamem.2017.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/09/2017] [Accepted: 01/19/2017] [Indexed: 10/20/2022]
|
11
|
Activation of respiratory Complex I from Escherichia coli studied by fluorescent probes. Heliyon 2017; 3:e00224. [PMID: 28070565 PMCID: PMC5219619 DOI: 10.1016/j.heliyon.2016.e00224] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/25/2016] [Accepted: 12/20/2016] [Indexed: 02/01/2023] Open
Abstract
Respiratory Complex I from E. coli may exist in two interconverting forms: resting (R) and active (A). The R/A transition of purified, solubilized Complex I occurring upon turnover was studied employing two different fluorescent probes, Annine 6+, and NDB-acetogenin. NADH-induced fluorescent changes of both dyes bound to solubilized Complex I from E. coli were characterized as a function of the protein:dye ratio, temperature, ubiquinone redox state and the enzyme activity. Analysis of this data combined with time-resolved optical measurements of Complex I activity and spectral changes indicated two ubiquinone-binding sites; a possibility of reduction of the tightly-bound quinone in the resting state and reduction of the loosely-bound quinone in the active state is discussed. The results also indicate that upon the activation Complex I undergoes conformational changes which can be mapped to the junction of the hydrophilic and membrane domains in the region of the assumed acetogenin-binding site.
Collapse
|
12
|
Dipole-Potential-Mediated Effects on Ion Pump Kinetics. Biophys J 2016; 109:1513-20. [PMID: 26488640 DOI: 10.1016/j.bpj.2015.08.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 08/11/2015] [Accepted: 08/21/2015] [Indexed: 12/30/2022] Open
Abstract
The kinetics of conformational changes of P-type ATPases necessary for the occlusion or deocclusion of transported ions are known to be sensitive to the composition of the surrounding membrane, e.g., phospholipid content, mole percentage of cholesterol, and the presence of lipid-bound anions. Research has shown that many membrane components modify the dipole potential of the lipid head-group region. Based on the observation that occlusion/deocclusion reactions of ion pumps perturb the membrane surrounding the protein, a mechanism is suggested whereby dipole potential modifiers induce preferential stabilization or destabilization of occluded or nonoccluded states of the protein, leading to changes in the forward and backward rate constants for the transition. The mechanism relies on the assumption that conformational changes of the protein are associated with changes in its hydrophobic thickness that requires a change in local lipid packing density to allow hydrophobic matching with the membrane. The changes in lipid packing density cause changes in local lipid dipole potential that are responsible for the dependence of conformational kinetics on dipole potential modifiers. The proposed mechanism has the potential to explain effects of lipid composition on the kinetics of any membrane protein undergoing significant changes in its membrane cross-sectional area during its activity.
Collapse
|
13
|
Tadini-Buoninsegni F, Moncelli MR, Peruzzi N, Ninham BW, Dei L, Nostro PL. Hofmeister effect of anions on calcium translocation by sarcoplasmic reticulum Ca(2+)-ATPase. Sci Rep 2015; 5:14282. [PMID: 26435197 PMCID: PMC4593048 DOI: 10.1038/srep14282] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/24/2015] [Indexed: 11/18/2022] Open
Abstract
The occurrence of Hofmeister (specific ion) effects in various membrane-related physiological processes is well documented. For example the effect of anions on the transport activity of the ion pump Na+, K+-ATPase has been investigated. Here we report on specific anion effects on the ATP-dependent Ca2+ translocation by the sarcoplasmic reticulum Ca2+-ATPase (SERCA). Current measurements following ATP concentration jumps on SERCA-containing vesicles adsorbed on solid supported membranes were carried out in the presence of different potassium salts. We found that monovalent anions strongly interfere with ATP-induced Ca2+ translocation by SERCA, according to their increasing chaotropicity in the Hofmeister series. On the contrary, a significant increase in Ca2+ translocation was observed in the presence of sulphate. We suggest that the anions can affect the conformational transition between the phosphorylated intermediates E1P and E2P of the SERCA cycle. In particular, the stabilization of the E1P conformation by chaotropic anions seems to be related to their adsorption at the enzyme/water and/or at the membrane/water interface, while the more kosmotropic species affect SERCA conformation and functionality by modifying the hydration layers of the enzyme.
Collapse
Affiliation(s)
| | - Maria Rosa Moncelli
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino (Firenze), Italy
| | - Niccolò Peruzzi
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino (Firenze), Italy.,CSGI, University of Florence, 50019 Sesto Fiorentino (Firenze), Italy
| | - Barry W Ninham
- Research School of Physical Sciences and Engineering, Australian National University, Canberra, Australia 0200
| | - Luigi Dei
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino (Firenze), Italy.,CSGI, University of Florence, 50019 Sesto Fiorentino (Firenze), Italy
| | - Pierandrea Lo Nostro
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino (Firenze), Italy.,CSGI, University of Florence, 50019 Sesto Fiorentino (Firenze), Italy
| |
Collapse
|
14
|
Richens JL, Lane JS, Bramble JP, O'Shea P. The electrical interplay between proteins and lipids in membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1828-36. [DOI: 10.1016/j.bbamem.2015.03.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 11/17/2022]
|
15
|
Garcia A, Eljack ND, Sani MA, Separovic F, Rasmussen HH, Kopec W, Khandelia H, Cornelius F, Clarke RJ. Membrane accessibility of glutathione. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2430-6. [PMID: 26232559 DOI: 10.1016/j.bbamem.2015.07.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/23/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
Abstract
Regulation of the ion pumping activity of the Na+,K+-ATPase is crucial to the survival of animal cells. Recent evidence has suggested that the activity of the enzyme could be controlled by glutathionylation of cysteine residue 45 of the β-subunit. Crystal structures so far available indicate that this cysteine is in a transmembrane domain of the protein. Here we have analysed via fluorescence and NMR spectroscopy as well as molecular dynamics simulations whether glutathione is able to penetrate into the interior of a lipid membrane. No evidence for any penetration of glutathione into the membrane was found. Therefore, the most likely mechanism whereby the cysteine residue could become glutathionylated is via a loosening of the α-β subunit association, creating a hydrophilic passageway between them to allow access of glutathione to the cysteine residue. By such a mechanism, glutathionylation of the protein would be expected to anchor the modified cysteine residue in a hydrophilic environment, inhibiting further motion of the β-subunit during the enzyme's catalytic cycle and suppressing enzymatic activity, as has been experimentally observed. The results obtained, therefore, suggest a possible structural mechanism of how the Na+,K+-ATPase could be regulated by glutathione.
Collapse
Affiliation(s)
- Alvaro Garcia
- School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Nasma D Eljack
- School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Marc-Antoine Sani
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Frances Separovic
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Helge H Rasmussen
- Department of Cardiology, Royal North Shore Hospital, Sydney, New South Wales 2065, Australia; Kolling Institute, University of Sydney, Sydney, New South Wales 2065, Australia
| | - Wojciech Kopec
- Center for BioMembrane Physics, University of Southern Denmark, Odense M5230, Denmark
| | - Himanshu Khandelia
- Center for BioMembrane Physics, University of Southern Denmark, Odense M5230, Denmark
| | - Flemming Cornelius
- Department of Biomedicine, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Ronald J Clarke
- School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
16
|
Abstract
When the Na,K-ATPase pumps at each turnover two K(+) ions into the cytoplasm, this translocation consists of several reaction steps. First, the ions diffuse consecutively from the extracellular phase through an access pathway to the binding sites where they are coordinated. In the next step, the enzyme is dephosphorylated and the ions are occluded inside the membrane domain. The subsequent transition to the E1 conformation produces a deocclusion of the binding sites to the cytoplasmic side of the membrane and allows in the last steps ion dissociation and diffusion to the aqueous phase. The interaction and competition of K(+) with various quaternary organic ammonium ions have been used to gain insight into the molecular mechanism of the ion binding process from the extracellular side in the P-E2 conformation of the enzyme. Using the electrochromic styryl dye RH421, evidence has been obtained that the access pathway consists of a wide and water-filled funnel-like part that is accessible also for bulky cations such as the benzyltriethylammonium ion, and a narrow part that permits passage only of small cations such as K(+) and NH4(+) in a distinct electrogenic way. Benzyltriethylammonium ions inhibit K(+) binding in a competitive manner that can be explained by a stopper-like function at the interface between the wide and narrow parts of the access pathway. In contrast to other quaternary organic ammonium ions, benzyltriethylammonium ions show a specific binding to the ion pump in a position inside the access pathway where it blocks effectively the access to the binding sites.
Collapse
Affiliation(s)
| | - Hans-Jürgen Apell
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
17
|
Occult physiology: electrical cross-talk between membrane lipid, occluded ions, and the Na-K ATPase. Biophys J 2015; 107:1257-8. [PMID: 25229131 DOI: 10.1016/j.bpj.2014.07.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 06/27/2014] [Accepted: 07/01/2014] [Indexed: 11/24/2022] Open
|