1
|
Watkins EB, Dennison AJC, Majewski J. Binding of Cholera Toxin B-Subunit to a Ganglioside GM1-Functionalized PEG-Tethered Lipid Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6959-6966. [PMID: 35604017 PMCID: PMC9179658 DOI: 10.1021/acs.langmuir.2c00499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/10/2022] [Indexed: 05/25/2023]
Abstract
We report neutron reflectometry (NR) studies of polyethylene glycol (PEG)-tethered model lipid membranes at the solid-liquid interface and of cholera toxin's B-subunit (CTxB) binding to tethered membranes containing ganglioside GM1 receptors. First, tethered polymer brushes were formed by grafting silane-functionalized PEG lipopolymers to quartz from solution. Subsequent deposition of lipids by Langmuir-Blodgett/Langmuir-Schaefer (LB/LS) resulted in a tethered bilayer structure separated from the solid support by a hydrated PEG layer. NR revealed that the tethers formed a highly hydrated polymer brush, uniformly separating the bilayer from the underlying solid substrate. Further, the lipid bilayer did not significantly perturb the brush's conformation relative to a free brush. Biological functionality of the tethered bilayers was verified by interacting CTxB, with ganglioside GM1 receptors incorporated into the bilayer. The surface coverage of CTxB bound to the lipid membrane, θCTB= 0.58 ± 0.08, was consistent with the coverage predicted for random sequential absorption, and toxin binding did not impact the membrane conformation.
Collapse
Affiliation(s)
- Erik B. Watkins
- MPA-11:
Materials Synthesis and Integrated Devices, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Institut
Laue-Langevin, BP 156, 38042 Grenoble, France
| | - Andrew J. C. Dennison
- Dept.
Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield S3 7HG, U.K.
| | - Jaroslaw Majewski
- Division
of Molecular and Cellular Biosciences, National
Science Foundation, Alexandria 22303, Virginia, United States
- Theoretical
Biology and Biophysics at Los Alamos National Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Department
of Chemical and Biological Engineering and Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
2
|
Socrier L, Bail C, Ackermann E, Beresowski AK, Ahadi S, Werz DB, Steinem C. The Interaction of Gb 3 Glycosphingolipids with ld and lo Phase Lipids in Lipid Monolayers Is a Function of Their Fatty Acids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5874-5882. [PMID: 35439015 DOI: 10.1021/acs.langmuir.2c00497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The glycosphingolipid Gb3 is a specific receptor of the bacterial Shiga toxin (STx). Binding of STx to Gb3 is a prerequisite for its internalization into the host cells, and the ceramide's fatty acid of Gb3 has been shown to influence STx binding. In in vitro studies on liquid ordered (lo)/liquid disordered (ld) coexisting artificial membranes, Shiga toxin B (STxB) binds solely to lo domains, thus harboring Gb3 concomitant with an observed lipid redistribution process. These findings raise the question of how the molecular structure of the fatty acid of Gb3 influences the interaction of Gb3 with the different lipids preferentially either found in the lo phase, namely, sphingomyelin and cholesterol, or in the ld phase. We addressed this question by using a series of synthetically available and unlabeled Gb3 glycosphingolipids carrying different long chain C24 fatty acids (saturated, monounsaturated, and α-hydroxylated). In conjunction with surface tension experiments on Langmuir monolayers, we quantified the excess of free energy of mixing of the different Gb3 species in monolayers composed of either sphingomyelin or cholesterol or composed of a fluid phase lipid (DOPC). From a calculation of the total free energy of mixing, we conclude that mixing of the saturated Gb3 species with the ld lipid DOPC is energetically less favorable than all other combinations, while the unsaturated species mix equally well with the lo phase lipids sphingomyelin and cholesterol and the ld phase lipid DOPC. Furthermore, we found that STxB partially penetrates in mixed lipid monolayers (DOPC/sphingomyelin/cholesterol) containing the Gb3 sphingolipid with a saturated or a monounsaturated C24 fatty acid. The maximum insertion pressure, as a measure for protein insertion, is >30 mN/m for both Gb3 molecules and is not significantly different for the two Gb3 species.
Collapse
Affiliation(s)
- Larissa Socrier
- Max-Planck-Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany
- Institute of Organic and Biomolecular Chemistry, Georg-August-Universität, Tammannstraße 2, 37077 Göttingen, Germany
| | - Céline Bail
- Institute of Organic and Biomolecular Chemistry, Georg-August-Universität, Tammannstraße 2, 37077 Göttingen, Germany
| | - Elena Ackermann
- Institute of Organic and Biomolecular Chemistry, Georg-August-Universität, Tammannstraße 2, 37077 Göttingen, Germany
| | - Ann-Kathrin Beresowski
- Institute of Organic and Biomolecular Chemistry, Georg-August-Universität, Tammannstraße 2, 37077 Göttingen, Germany
| | - Somayeh Ahadi
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Daniel B Werz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Claudia Steinem
- Max-Planck-Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany
- Institute of Organic and Biomolecular Chemistry, Georg-August-Universität, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
3
|
Budani M, Auray-Blais C, Lingwood C. ATP-binding cassette transporters mediate differential biosynthesis of glycosphingolipid species. J Lipid Res 2021; 62:100128. [PMID: 34597626 PMCID: PMC8569594 DOI: 10.1016/j.jlr.2021.100128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/18/2021] [Accepted: 09/03/2021] [Indexed: 01/13/2023] Open
Abstract
The cytosolic-oriented glucosylceramide (GlcCer) synthase is enigmatic, requiring nascent GlcCer translocation to the luminal Golgi membrane to access glycosphingolipid (GSL) anabolic glycosyltransferases. The mechanism by which GlcCer is flipped remains unclear. To investigate the role of GlcCer-binding partners in this process, we previously made cleavable, biotinylated, photoreactive GlcCer analogs in which the reactive nitrene was closely apposed to the GlcCer head group, while maintaining a C16-acyl chain. GlcCer-binding protein specificity was validated for both photoprobes. Using one probe, XLB, here we identified ATP-binding cassette (ABC) transporters ABCA3, ABCB4, and ABCB10 as unfractionated microsomal GlcCer-binding proteins in DU-145 prostate tumor cells. siRNA knockdown (KD) of these transporters differentially blocked GSL synthesis assessed in toto and via metabolic labeling. KD of ABCA3 reduced acid/neutral GSL levels, but increased those of LacCer, while KD of ABCB4 preferentially reduced neutral GSL levels, and KD of ABCB10 reduced levels of both neutral and acidic GSLs. Depletion of ABCA12, implicated in GlcCer transport, preferentially decreased neutral GSL levels, while ABCB1 KD preferentially reduced gangliosides, but increased neutral GSL Gb3. These results imply that multiple ABC transporters may provide distinct but overlapping GlcCer and LacCer pools within the Golgi lumen for anabolism of different GSL series by metabolic channeling. Differential ABC family member usage may fine-tune GSL biosynthesis depending on cell/tissue type. We conclude that ABC transporters provide a new tool for the regulation of GSL biosynthesis and serve as potential targets to reduce selected GSL species/subsets in diseases in which GSLs are dysregulated.
Collapse
Affiliation(s)
- Monique Budani
- Division of Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Christiane Auray-Blais
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Québec, Canada
| | - Clifford Lingwood
- Division of Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Sibold J, Ahadi S, Werz DB, Steinem C. Chemically synthesized Gb 3 glycosphingolipids: tools to access their function in lipid membranes. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:109-126. [PMID: 32948883 PMCID: PMC8071800 DOI: 10.1007/s00249-020-01461-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022]
Abstract
Gb3 glycosphingolipids are the specific receptors for bacterial Shiga toxin. Whereas the trisaccharidic head group of Gb3 defines the specificity of Shiga toxin binding, the lipophilic part composed of sphingosine and different fatty acids is suggested to determine its localization within membranes impacting membrane organisation and protein binding eventually leading to protein internalisation. While most studies use Gb3 extracts, chemical synthesis provides a unique tool to access different tailor-made Gb3 glycosphingolipids. In this review, strategies to synthesize these complex glycosphingolipids are presented. Special emphasis is put on the preparation of Gb3 molecules differing only in their fatty acid part (saturated, unsaturated, α-hydroxylated and both, unsaturated and α-hydroxylated). With these molecules in hand, it became possible to investigate the phase behaviour of liquid ordered/liquid disordered supported membranes doped with the Gb3 species by means of fluorescence and atomic force microscopy. The results clearly highlight the influence of the different fatty acids of the Gb3 sphingolipids on the phase behaviour and the binding properties of Shiga toxin B subunits, even though the membranes were only doped with 5 mol% of the receptor lipid. To obtain fluorescent Gb3 derivatives, either fatty acid labelled Gb3 molecules or head group labelled ones were synthesized. These molecules enabled us to address the question, where the Gb3 sphingolipids are localized prior protein binding by means of fluorescence microscopy on giant unilamellar vesicles. The results again demonstrate that the fatty acid of Gb3 plays a pivotal role for the overall membrane organisation.
Collapse
Affiliation(s)
- Jeremias Sibold
- Georg-August-Universität Göttingen, Institute of Organic and Biomolecular Chemistry, Tammannstr. 2, 37077, Göttingen, Germany
| | - Somayeh Ahadi
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106, Braunschweig, Germany
| | - Daniel B Werz
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106, Braunschweig, Germany.
| | - Claudia Steinem
- Georg-August-Universität Göttingen, Institute of Organic and Biomolecular Chemistry, Tammannstr. 2, 37077, Göttingen, Germany.
- Max Planck Institute for Dynamics and Self Organization, Am Faßberg 17, 37077, Göttingen, Germany.
| |
Collapse
|
5
|
The roles of the diversity of amphipathic lipids in shaping membranes by membrane-shaping proteins. Biochem Soc Trans 2020; 48:837-851. [PMID: 32597479 DOI: 10.1042/bst20190376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/23/2022]
Abstract
Lipid compositions of cells differ according to cell types and intracellular organelles. Phospholipids are major cell membrane lipids and have hydrophilic head groups and hydrophobic fatty acid tails. The cellular lipid membrane without any protein adapts to spherical shapes, and protein binding to the membrane is thought to be required for shaping the membrane for various cellular events. Until recently, modulation of cellular lipid membranes was initially shown to be mediated by proteins recognizing lipid head groups, including the negatively charged ones of phosphatidylserine and phosphoinositides. Recent studies have shown that the abilities of membrane-deforming proteins are also regulated by the composition of fatty acid tails, which cause different degrees of packing defects. The binding of proteins to cellular lipid membranes is affected by the packing defects, presumably through modulation of their interactions with hydrophobic amino acid residues. Therefore, lipid composition can be characterized by both packing defects and charge density. The lipid composition regarding fatty acid tails affects membrane bending via the proteins with amphipathic helices, including those with the ArfGAP1 lipid packing sensor (ALPS) motif and via membrane-deforming proteins with structural folding, including those with the Bin-Amphiphysin-Rvs167 (BAR) domains. This review focuses on how the fatty acid tails, in combination with the head groups of phospholipids, affect protein-mediated membrane deformation.
Collapse
|
6
|
Sibold J, Kettelhoit K, Vuong L, Liu F, Werz DB, Steinem C. Synthesis of Gb 3 Glycosphingolipids with Labeled Head Groups: Distribution in Phase-Separated Giant Unilamellar Vesicles. Angew Chem Int Ed Engl 2019; 58:17805-17813. [PMID: 31529754 PMCID: PMC6899692 DOI: 10.1002/anie.201910148] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/09/2019] [Indexed: 11/22/2022]
Abstract
The receptor lipid Gb3 is responsible for the specific internalization of Shiga toxin (STx) into cells. The head group of Gb3 defines the specificity of STx binding, and the backbone with different fatty acids is expected to influence its localization within membranes impacting membrane organization and protein internalization. To investigate this influence, a set of Gb3 glycosphingolipids labeled with a BODIPY fluorophore attached to the head group was synthesized. C24 fatty acids, saturated, unsaturated, α-hydroxylated derivatives, and a combination thereof, were attached to the sphingosine backbone. The synthetic Gb3 glycosphingolipids were reconstituted into coexisting liquid-ordered (lo )/liquid-disordered (ld ) giant unilamellar vesicles (GUVs), and STx binding was verified by fluorescence microscopy. Gb3 with the C24:0 fatty acid partitioned mostly in the lo phase, while the unsaturated C24:1 fatty acid distributes more into the ld phase. The α-hydroxylation does not influence its partitioning.
Collapse
Affiliation(s)
- Jeremias Sibold
- Georg-August-Universität GöttingenInstitute of Organic and Biomolecular ChemistryTammannstr. 237077GöttingenGermany
| | - Katharina Kettelhoit
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Loan Vuong
- Georg-August-Universität GöttingenInstitute of Organic and Biomolecular ChemistryTammannstr. 237077GöttingenGermany
| | - Fangyuan Liu
- Georg-August-Universität GöttingenInstitute of Organic and Biomolecular ChemistryTammannstr. 237077GöttingenGermany
| | - Daniel B. Werz
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Claudia Steinem
- Georg-August-Universität GöttingenInstitute of Organic and Biomolecular ChemistryTammannstr. 237077GöttingenGermany
- Max Planck Institute for Dynamics and Self OrganizationAm Faßberg 1737077GöttingenGermany
| |
Collapse
|
7
|
Sibold J, Kettelhoit K, Vuong L, Liu F, Werz DB, Steinem C. Synthesis of Gb
3
Glycosphingolipids with Labeled Head Groups: Distribution in Phase‐Separated Giant Unilamellar Vesicles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jeremias Sibold
- Georg-August-Universität GöttingenInstitute of Organic and Biomolecular Chemistry Tammannstr. 2 37077 Göttingen Germany
| | - Katharina Kettelhoit
- Technische Universität BraunschweigInstitute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Loan Vuong
- Georg-August-Universität GöttingenInstitute of Organic and Biomolecular Chemistry Tammannstr. 2 37077 Göttingen Germany
| | - Fangyuan Liu
- Georg-August-Universität GöttingenInstitute of Organic and Biomolecular Chemistry Tammannstr. 2 37077 Göttingen Germany
| | - Daniel B. Werz
- Technische Universität BraunschweigInstitute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Claudia Steinem
- Georg-August-Universität GöttingenInstitute of Organic and Biomolecular Chemistry Tammannstr. 2 37077 Göttingen Germany
- Max Planck Institute for Dynamics and Self Organization Am Faßberg 17 37077 Göttingen Germany
| |
Collapse
|
8
|
Watkins EB, Majewski J, Chi EY, Gao H, Florent JC, Johannes L. Shiga Toxin Induces Lipid Compression: A Mechanism for Generating Membrane Curvature. NANO LETTERS 2019; 19:7365-7369. [PMID: 31538793 DOI: 10.1021/acs.nanolett.9b03001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biomembranes are hard to compress laterally, and membrane area compressibility has not been associated with biological processes. Using X-ray surface scattering, we observed that bacterial Shiga toxin compresses lipid packing in a gel phase monolayer upon binding to its cellular receptor, the glycolipid Gb3. This toxin-induced reorganization of lipid packing reached beyond the immediate membrane patch that the protein was bound to, and linkers separating the Gb3 carbohydrate and ceramide moieties modulated the toxin's capacity to compress the membrane. Within a natural membrane, asymmetric compression of the toxin-bound leaflet could provide a mechanism to initiate narrow membrane bending, as observed upon toxin entry into cells. Such lipid compression and long-range membrane reorganization by glycolipid-binding proteins represent novel concepts in membrane biology that have direct implications for the construction of endocytic pits in clathrin-independent endocytosis.
Collapse
Affiliation(s)
- Erik B Watkins
- MPA-11: Materials Synthesis and Integrated Devices , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Jaroslaw Majewski
- Theoretical Biology and Biophysics , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
- Division of Molecular and Cellular Biosciences , National Science Foundation , Alexandria , Virginia 22314 , United States
- Department of Chemical and Biological Engineering and the Center for Biomedical Engineering , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Eva Y Chi
- Department of Chemical and Biological Engineering and the Center for Biomedical Engineering , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Haifei Gao
- Cellular and Chemical Biology Unit , Institut Curie, PSL Research University , U1143 INSERM, UMR3666 CNRS , 26 rue d'Ulm , 75248 Paris Cedex 05, France
| | - Jean-Claude Florent
- Cellular and Chemical Biology Unit , Institut Curie, PSL Research University , U1143 INSERM, UMR3666 CNRS , 26 rue d'Ulm , 75248 Paris Cedex 05, France
| | - Ludger Johannes
- Cellular and Chemical Biology Unit , Institut Curie, PSL Research University , U1143 INSERM, UMR3666 CNRS , 26 rue d'Ulm , 75248 Paris Cedex 05, France
| |
Collapse
|
9
|
Bosse M, Sibold J, Scheidt HA, Patalag LJ, Kettelhoit K, Ries A, Werz DB, Steinem C, Huster D. Shiga toxin binding alters lipid packing and the domain structure of Gb 3-containing membranes: a solid-state NMR study. Phys Chem Chem Phys 2019; 21:15630-15638. [PMID: 31268447 DOI: 10.1039/c9cp02501d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We studied the influence of globotriaosylceramide (Gb3) lipid molecules on the properties of phospholipid membranes composed of a liquid ordered (lo)/liquid disordered (ld) phase separated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/N-palmitoyl-d-erythro-sphingosylphosphorylcholine (PSM)/cholesterol mixture (40/35/20, mol/mol/mol) supplemented with 5 mol% of either short acyl chain palmitoyl-Gb3 or long acyl chain lignoceryl-Gb3 using 2H solid-state NMR spectroscopy. To this end, both globotriaosylceramides were chemically synthesized featuring a perdeuterated lipid acyl chain. The solid-state 2H NMR spectra support the phase separation into a POPC-rich ld phase and a PSM/cholesterol-rich lo phase. The long chain lignoceryl-Gb3 showed a rather unusual order parameter profile of the acyl chain, which flattens out for the last ∼6 methylene segments. Such an odd chain conformation can be explained by partial chain interdigitation and/or a very fluid midplane region of the membrane. Possibly, the Gb3 molecules may thus preferentially be localized at the lo/ld phase boundary. In contrast, the short chain palmitoyl-Gb3 was well associated with the PSM/cholesterol-rich lo phase. Gb3 molecules act as membrane receptors for the Shiga toxin (STx) produced by Shigella dysenteriae and by enterohemorrhagic strains of Escherichia coli (EHEC). The B-subunits of STx (STxB) forming a pentameric structure were produced recombinantly and incubated with the membrane mixtures leading to alterations in the lipid packing properties and lateral organization of the membranes. Typically, STxB binding led to a decrease in lipid chain order in agreement with partial immersion of protein segments into the lipid-water interface of the membrane. In the presence of STxB, Gb3 preferentially partitioned into the lo membrane phase. In particular the short acyl chain palmitoyl-Gb3 showed very similar chain order parameters to PSM. In the presence of STxB, all lipid species showed isotropic contributions to the 2H NMR powder spectra; this was most pronounced for the Gb3 molecules. Such isotropic contributions are caused by highly curved membrane structures, which have previously been detected as membrane invaginations in fluorescence microscopy. Our analysis estimated that STxB induced highly curved membrane structures with a curvature radius of less than ∼10 nm likely related to the insertion of STxB segments into the lipid-water interface of the membrane.
Collapse
Affiliation(s)
- Mathias Bosse
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, D-04107 Leipzig, Germany.
| | - Jeremias Sibold
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Tammannstr. 2, D-37077 Göttingen, Germany
| | - Holger A Scheidt
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, D-04107 Leipzig, Germany.
| | - Lukas J Patalag
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, D-38106 Braunschweig, Germany
| | - Katharina Kettelhoit
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, D-38106 Braunschweig, Germany
| | - Annika Ries
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, D-38106 Braunschweig, Germany
| | - Daniel B Werz
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, D-38106 Braunschweig, Germany
| | - Claudia Steinem
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Tammannstr. 2, D-37077 Göttingen, Germany and Max-Planck-Institute for Dynamics and Self-Organization, Am Fassberg 11, 37077 Göttingen, Germany
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, D-04107 Leipzig, Germany.
| |
Collapse
|
10
|
Lee MS, Tesh VL. Roles of Shiga Toxins in Immunopathology. Toxins (Basel) 2019; 11:E212. [PMID: 30970547 PMCID: PMC6521259 DOI: 10.3390/toxins11040212] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/20/2022] Open
Abstract
Shigella species and Shiga toxin-producing Escherichia coli (STEC) are agents of bloody diarrhea that may progress to potentially lethal complications such as diarrhea-associated hemolytic uremic syndrome (D+HUS) and neurological disorders. The bacteria share the ability to produce virulence factors called Shiga toxins (Stxs). Research over the past two decades has identified Stxs as multifunctional toxins capable of inducing cell stress responses in addition to their canonical ribotoxic function inhibiting protein synthesis. Notably, Stxs are not only potent inducers of cell death, but also activate innate immune responses that may lead to inflammation, and these effects may increase the severity of organ injury in patients infected with Stx-producing bacteria. In the intestines, kidneys, and central nervous system, excessive or uncontrolled host innate and cellular immune responses triggered by Stxs may result in sensitization of cells to toxin mediated damage, leading to immunopathology and increased morbidity and mortality in animal models (including primates) and human patients. Here, we review studies describing Stx-induced innate immune responses that may be associated with tissue damage, inflammation, and complement activation. We speculate on how these processes may contribute to immunopathological responses to the toxins.
Collapse
Affiliation(s)
- Moo-Seung Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Daejeon 34141, Korea.
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 127 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea.
| | - Vernon L Tesh
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
11
|
Enhanced Ordering in Monolayers Containing Glycosphingolipids: Impact of Carbohydrate Structure. Biophys J 2019. [PMID: 29539397 DOI: 10.1016/j.bpj.2017.12.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The influence of carbohydrate structure on the ordering of glycosphingolipids (GSLs) and surrounding phospholipids was investigated in monolayers at the air-water interface. Binary mixtures composed of GSLs, chosen to span a range of carbohydrate complexity, and zwitterionic dipalmitoylphosphatidylcholine phospholipid, were studied. X-ray reflectivity was used to measure the out-of-plane structure of the monolayers and characterize the extension and conformation of the GSL carbohydrates. Using synchrotron grazing incidence x-ray diffraction, the in-plane packing of the lipid acyl chains and the area per molecule within ordered domains were characterized at different mole ratios of the two components. Our findings indicate that GSL-containing mixtures, regardless of the carbohydrate size, enhance the ordering of the surrounding lipids, resulting in a larger fraction of ordered phase of the monolayer and greater dimensions of the ordered domains. Reduction of the averaged area per molecule within the ordered domains was also observed but only in the cases where there was a size mismatch between the phospholipid headgroups and GSL components, suggesting that the condensation mechanism involves the relief of steric interactions between headgroups in mixtures.
Collapse
|
12
|
Legros N, Pohlentz G, Steil D, Kouzel IU, Liashkovich I, Mellmann A, Karch H, Müthing J. Membrane assembly of Shiga toxin glycosphingolipid receptors and toxin refractiveness of MDCK II epithelial cells. J Lipid Res 2018; 59:1383-1401. [PMID: 29866658 DOI: 10.1194/jlr.m083048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 05/22/2018] [Indexed: 12/16/2022] Open
Abstract
Shiga toxins (Stxs) are the major virulence factors of Stx-producing Escherichia coli (STEC), which cause hemorrhagic colitis and severe extraintestinal complications due to injury of renal endothelial cells, resulting in kidney failure. Since kidney epithelial cells are suggested additional targets for Stxs, we analyzed Madin-Darby canine kidney (MDCK) II epithelial cells for presence of Stx-binding glycosphingolipids (GSLs), determined their distribution to detergent-resistant membranes (DRMs), and ascertained the lipid composition of DRM and non-DRM preparations. Globotriaosylceramide and globotetraosylceramide, known as receptors for Stx1a, Stx2a, and Stx2e, and Forssman GSL as a specific receptor for Stx2e, were found to cooccur with SM and cholesterol in DRMs of MDCK II cells, which was shown using TLC overlay assay detection combined with mass spectrometry. The various lipoforms of GSLs were found to mainly harbor ceramide moieties composed of sphingosine (d18:1) and C24:1/C24:0 or C16:0 FA. The cells were highly refractory toward Stx1a, Stx2a, and Stx2e, most likely due to the absence of Stx-binding GSLs in the apical plasma membrane determined by immunofluorescence confocal laser scanning microscopy. The results suggest that the cellular content of Stx receptor GSLs and their biochemical detection in DRM preparations alone are inadequate to predict cellular sensitivity toward Stxs.
Collapse
Affiliation(s)
- Nadine Legros
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | | | - Daniel Steil
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | - Ivan U Kouzel
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany.,Interdisciplinary Center for Clinical Research, University of Münster, D-48149 Münster, Germany
| | - Ivan Liashkovich
- Institute of Physiology II, University of Münster, D-48149 Münster, Germany
| | - Alexander Mellmann
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany.,Interdisciplinary Center for Clinical Research, University of Münster, D-48149 Münster, Germany
| | - Helge Karch
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany.,Interdisciplinary Center for Clinical Research, University of Münster, D-48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany .,Interdisciplinary Center for Clinical Research, University of Münster, D-48149 Münster, Germany
| |
Collapse
|
13
|
Barrientos RC, Vu N, Zhang Q. Structural Analysis of Unsaturated Glycosphingolipids Using Shotgun Ozone-Induced Dissociation Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2330-2343. [PMID: 28831744 PMCID: PMC5647240 DOI: 10.1007/s13361-017-1772-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 05/09/2023]
Abstract
Glycosphingolipids are essential biomolecules widely distributed across biological kingdoms yet remain relatively underexplored owing to both compositional and structural complexity. While the glycan head group has been the subject of most studies, there is paucity of reports on the lipid moiety, particularly the location of unsaturation. In this paper, ozone-induced dissociation mass spectrometry (OzID-MS) implemented in a traveling wave-based quadrupole time-of-flight (Q-ToF) mass spectrometer was applied to study unsaturated glycosphingolipids using shotgun approach. Resulting high resolution mass spectra facilitated the unambiguous identification of diagnostic OzID product ions. Using [M+Na]+ adducts of authentic standards, we observed that the long chain base and fatty acyl unsaturation had distinct reactivity with ozone. The reactivity of unsaturation in the fatty acyl chain was about 8-fold higher than that in the long chain base, which enables their straightforward differentiation. Influence of the head group, fatty acyl hydroxylation, and length of fatty acyl chain on the oxidative cleavage of double bonds was also observed. Application of this technique to bovine brain galactocerebrosides revealed co-isolated isobaric and regioisomeric species, which otherwise would be incompletely identified using contemporary collision-induced dissociation (CID) alone. These results highlight the potential of OzID-MS in glycosphingolipids research, which not only provides complementary structural information to existing CID technique but also facilitates de novo structural determination of these complex biomolecules. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Rodell C Barrientos
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, 27412, USA
| | - Ngoc Vu
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, 27412, USA
| | - Qibin Zhang
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, 27412, USA.
- UNCG Center for Translational Biomedical Research, North Carolina Research Campus, Kannapolis, NC, 28081, USA.
| |
Collapse
|
14
|
Shiga Toxin Glycosphingolipid Receptors in Human Caco-2 and HCT-8 Colon Epithelial Cell Lines. Toxins (Basel) 2017; 9:toxins9110338. [PMID: 29068380 PMCID: PMC5705953 DOI: 10.3390/toxins9110338] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/11/2017] [Accepted: 10/19/2017] [Indexed: 12/21/2022] Open
Abstract
Shiga toxins (Stxs) released by enterohemorrhagic Escherichia coli (EHEC) into the human colon are the causative agents for fatal outcome of EHEC infections. Colon epithelial Caco-2 and HCT-8 cells are widely used for investigating Stx-mediated intestinal cytotoxicity. Only limited data are available regarding precise structures of their Stx receptor glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer), and lipid raft association. In this study we identified Gb3Cer and Gb4Cer lipoforms of serum-free cultivated Caco-2 and HCT-8 cells, chiefly harboring ceramide moieties composed of sphingosine (d18:1) and C16:0, C22:0 or C24:0/C24:1 fatty acid. The most significant difference between the two cell lines was the prevalence of Gb3Cer with C16 fatty acid in HCT-8 and Gb4Cer with C22–C24 fatty acids in Caco-2 cells. Lipid compositional analysis of detergent-resistant membranes (DRMs), which were used as lipid raft-equivalents, indicated slightly higher relative content of Stx receptor Gb3Cer in DRMs of HCT-8 cells when compared to Caco-2 cells. Cytotoxicity assays revealed substantial sensitivity towards Stx2a for both cell lines, evidencing little higher susceptibility of Caco-2 cells versus HCT-8 cells. Collectively, Caco-2 and HCT-8 cells express a plethora of different receptor lipoforms and are susceptible towards Stx2a exhibiting somewhat lower sensitivity when compared to Vero cells.
Collapse
|
15
|
Volynsky P, Efremov R, Mikhalev I, Dobrochaeva K, Tuzikov A, Korchagina E, Obukhova P, Rapoport E, Bovin N. Why human anti-Galα1-4Galβ1-4Glc natural antibodies do not recognize the trisaccharide on erythrocyte membrane? Molecular dynamics and immunochemical investigation. Mol Immunol 2017; 90:87-97. [PMID: 28708979 DOI: 10.1016/j.molimm.2017.06.247] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/14/2017] [Accepted: 06/21/2017] [Indexed: 11/24/2022]
Abstract
BACKGROUND Human blood contains a big variety of natural antibodies, circulating throughout life at constant concentration. Previously, we have found natural antibodies capable of binding to trisaccharide Galα1-4Galβ1-4Glc (Pk) practically in all humans. Intriguingly, the same trisaccharide is a key fragment of glycosphingolipid globotriaosylceramide (Gb3Cer) - normal component of erythrocyte and endothelial cell membrane, i.e. the antibodies and their cognate antigen coexist without any immunological reaction. AIM To explain the inertness of human anti-Pk antibodies towards own cells. MATERIALS AND METHODS We used a combination of immunochemical and molecular dynamics (MD) experiments. Antibodies were isolated using affinity media with Pk trisaccharide, their epitope specificity was characterized using ELISA (enzyme-linked immunosorbent assay) with a set of synthetic glycans related to Pk synthetic glycans and FACS (Fluorescence-Activated Cell Sorting) analysis of cells with inserted natural Gb3Cer and its synthetic analogue. Conformations and clustering of glycolipids immersed into a lipid bilayer were studied using MD simulations. RESULTS Isolated specific antibodies were completely unable to bind natural Gb3Cer both inserted into cells and in artificial membrane, whereas strong interaction took place with synthetic analogue differing by the presence of a spacer between trisaccharide and lipid part. MD simulations revealed: i) although membrane-bound glycans do not form stable long-living aggregates, their transient packing is more compact in natural Gb3 as compared with the synthetic analog, ii) similar conformation of Pk glycan in composition of the glycolipids, iii) no effect on the mentioned above results when cholesterol was inserted into membrane, and iv) better accessibility of the synthetic version for interaction with proteins. CONCLUSIONS Both immunochemical and molecular dynamics data argue that the reason of the "tolerance" of natural anti-Pk antibodies towards cell-bound Gb3Cer is the spatial inaccessibility of Pk glycotope for interaction. We can conclude that the antibodies are not related to the blood group P system.
Collapse
Affiliation(s)
- Pavel Volynsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Roman Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation; Higher School of Economics, Myasnitskaya ul. 20, Moscow, 101000, Russian Federation.
| | - Ilya Mikhalev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Kira Dobrochaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Alexander Tuzikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Elena Korchagina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Polina Obukhova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Evgenia Rapoport
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Nicolai Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation.
| |
Collapse
|
16
|
Connan C, Voillequin M, Chavez CV, Mazuet C, Leveque C, Vitry S, Vandewalle A, Popoff MR. Botulinum neurotoxin type B uses a distinct entry pathway mediated by CDC42 into intestinal cells versus neuronal cells. Cell Microbiol 2017; 19. [PMID: 28296078 DOI: 10.1111/cmi.12738] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 12/15/2022]
Abstract
Botulinum neurotoxins (BoNTs) are responsible for severe flaccid paralysis by inhibiting the release of acetylcholine at the neuromuscular junctions. BoNT type B (BoNT/B) most often induces mild forms of botulism with predominant dysautonomic symptoms. In food borne botulism and botulism by intestinal colonisation such as infant botulism, which are the most frequent naturally acquired forms of botulism, the digestive tract is the main entry route of BoNTs into the organism. We previously showed that BoNT/B translocates through mouse intestinal barrier by an endocytosis-dependent mechanism and subsequently targets neuronal cells, mainly cholinergic neurons, in the intestinal mucosa and musculosa. Here, we investigated the entry pathway of BoNT/B using fluorescent C-terminal domain of the heavy chain (HcB), which is involved in the binding to specific receptor(s) and entry process into target cells. While the combination of gangliosides GD1a /GD1b /GT1b and synaptotagmin I and to a greater extent synaptotagmin II constitutes the functional HcB receptor on NG108-15 neuronal cells, HcB only uses the gangliosides GD1a /GD1b /GT1b to efficiently bind to m-ICcl2 intestinal cells. HcB enters both cell types by a dynamin-dependent endocytosis, which is efficiently prevented by Dynasore, a dynamin inhibitor, and reaches a common early endosomal compartment labeled by early endosome antigen (EEA1). In contrast to neuronal cells, HcB uses a Cdc42-dependent pathway to enter intestinal cells. Then, HcB is transported to late endosomes in neuronal cells, whereas it exploits a nonacidified pathway from apical to basal lateral side of m-ICcl2 cells supporting a transcytotic route in epithelial intestinal cells.
Collapse
Affiliation(s)
- Chloé Connan
- Bactéries anaérobies et Toxines, Institut Pasteur, Paris, France
| | - Marie Voillequin
- Bactéries anaérobies et Toxines, Institut Pasteur, Paris, France
| | | | | | - Christian Leveque
- INSERM, UMR_S 1072 (UNIS), Faculté de Médecine -Secteur Nord, Aix Marseille Université, Marseille, France
| | - Sandrine Vitry
- Neuro-Immunologie Virale, Institut Pasteur, Paris, France
| | | | - Michel R Popoff
- Bactéries anaérobies et Toxines, Institut Pasteur, Paris, France
| |
Collapse
|
17
|
Manna M, Javanainen M, Monne HMS, Gabius HJ, Rog T, Vattulainen I. Long-chain GM1 gangliosides alter transmembrane domain registration through interdigitation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:870-878. [PMID: 28143757 DOI: 10.1016/j.bbamem.2017.01.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/02/2017] [Accepted: 01/27/2017] [Indexed: 12/25/2022]
Abstract
Extracellular and cytosolic leaflets in cellular membranes are distinctly different in lipid composition, yet they contribute together to signaling across the membranes. Here we consider a mechanism based on long-chain gangliosides for coupling the extracellular and cytosolic membrane leaflets together. Based on atomistic molecular dynamics simulations, we find that long-chain GM1 in the extracellular leaflet exhibits a strong tendency to protrude into the opposing bilayer leaflet. This interdigitation modulates the order in the cytosolic monolayer and thereby strengthens the interaction and coupling across a membrane. Coarse-grained simulations probing longer time scales in large membrane systems indicate that GM1 in the extracellular leaflet modulates the phase behavior in the cytosolic monolayer. While short-chain GM1 maintains phase-symmetric bilayers with a strong membrane registration effect, the situation is altered with long-chain GM1. Here, the significant interdigitation induced by long-chain GM1 modulates the behavior in the cytosolic GM1-free leaflet, weakening and slowing down the membrane registration process. The observed physical interaction mechanism provides a possible means to mediate or foster transmembrane communication associated with signal transduction.
Collapse
Affiliation(s)
- Moutusi Manna
- Department of Physics, Tampere University of Technology, P. O. Box 692, FI- 33101 Tampere, Finland
| | - Matti Javanainen
- Department of Physics, Tampere University of Technology, P. O. Box 692, FI- 33101 Tampere, Finland; Department of Physics, POB 64, FI-00014 University of Helsinki, Finland
| | - Hector Martinez-Seara Monne
- Department of Physics, Tampere University of Technology, P. O. Box 692, FI- 33101 Tampere, Finland; Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, CZ-16610, Prague, Czech Republic
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig Maximilian University, D-80539 Munchen, Germany
| | - Tomasz Rog
- Department of Physics, Tampere University of Technology, P. O. Box 692, FI- 33101 Tampere, Finland; Department of Physics, POB 64, FI-00014 University of Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology, P. O. Box 692, FI- 33101 Tampere, Finland; Department of Physics, POB 64, FI-00014 University of Helsinki, Finland; MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
18
|
Budani M, Mylvaganam M, Binnington B, Lingwood C. Synthesis of a novel photoactivatable glucosylceramide cross-linker. J Lipid Res 2016; 57:1728-36. [PMID: 27412675 DOI: 10.1194/jlr.d069609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Indexed: 01/08/2023] Open
Abstract
The biosynthesis of glucosylceramide (GlcCer) is a key rate-limiting step in complex glycosphingolipid (GSL) biosynthesis. To further define interacting partners of GlcCer, we have made a cleavable, biotinylated, photoreactive GlcCer analog in which the reactive nitrene is closely apposed to the GlcCer head group, by substituting the native fatty acid with d, l-2-aminohexadecanoic acid. Two amino-GlcCer diastereomer cross-linkers (XLA and XLB) were generated. XLB proved an effective lactosylceramide (LacCer) synthase substrate while XLA was inhibitory. Both probes specifically bound and cross-linked the GlcCer binding protein, glycolipid transfer protein (GLTP), but not other GSL binding proteins (Shiga toxin and cholera toxin). GlcCer inhibited GLTP cross-linking. Both GlcCer cross-linkers competed with microsomal nitrobenzoxadiazole (NBD)-GlcCer anabolism to NBD-LacCer. GLTP showed marked, ATP-dependent enhancement of cell-free intact microsomal LacCer synthesis from endogenous or exogenous liposomal GlcCer, supporting a role in the transport/membrane translocation of cytosolic and extra-Golgi GlcCer. GLTP was specifically labeled by either XLA or XLB GlcCer cross-linker during this process, together with a (the same) small subset of microsomal proteins. These cross-linkers will serve to probe physiologically relevant GlcCer-interacting cellular proteins.
Collapse
Affiliation(s)
- Monique Budani
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada Division of Molecular Structure and Function, Peter Gilgan Centre for Research and Learning, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Murugesapillai Mylvaganam
- Division of Molecular Structure and Function, Peter Gilgan Centre for Research and Learning, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Beth Binnington
- Division of Molecular Structure and Function, Peter Gilgan Centre for Research and Learning, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Clifford Lingwood
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada Division of Molecular Structure and Function, Peter Gilgan Centre for Research and Learning, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
19
|
Abstract
Post-infectious hemolytic uremic syndrome (HUS) is caused by specific pathogens in patients with no identifiable HUS-associated genetic mutation or autoantibody. The majority of episodes is due to infections by Shiga toxin (Stx) producing Escherichia coli (STEC). This chapter reviews the epidemiology and pathogenesis of STEC-HUS, including bacterial-derived factors and host responses. STEC disease is characterized by hematological (microangiopathic hemolytic anemia), renal (acute kidney injury) and extrarenal organ involvement. Clinicians should always strive for an etiological diagnosis through the microbiological or molecular identification of Stx-producing bacteria and Stx or, if negative, serological assays. Treatment of STEC-HUS is supportive; more investigations are needed to evaluate the efficacy of putative preventive and therapeutic measures, such as non-phage-inducing antibiotics, volume expansion and anti-complement agents. The outcome of STEC-HUS is generally favorable, but chronic kidney disease, permanent extrarenal, mainly cerebral complication and death (in less than 5 %) occur and long-term follow-up is recommended. The remainder of this chapter highlights rarer forms of (post-infectious) HUS due to S. dysenteriae, S. pneumoniae, influenza A and HIV and discusses potential interactions between these pathogens and the complement system.
Collapse
Affiliation(s)
- Denis F. Geary
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario Canada
| | - Franz Schaefer
- Division of Pediatric Nephrology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
20
|
Schütte OM, Patalag LJ, Weber LMC, Ries A, Römer W, Werz DB, Steinem C. 2-Hydroxy Fatty Acid Enantiomers of Gb3 Impact Shiga Toxin Binding and Membrane Organization. Biophys J 2016; 108:2775-8. [PMID: 26083916 DOI: 10.1016/j.bpj.2015.05.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/04/2015] [Accepted: 05/12/2015] [Indexed: 11/29/2022] Open
Abstract
Shiga toxin subunit B (STxB) binding to its cellular receptor Gb3 leads to the formation of protein-lipid clusters and bending of the membrane. A newly developed synthetic route allowed synthesizing the biologically most relevant Gb3-C24:1 2OH species with both, the natural (Gb3-R) as well as the unnatural (Gb3-S) configuration of the 2OH group. The derivatives bind STxB with identical nanomolar affinity, while the propensity to induce membrane tubules in giant unilamellar vesicles is more pronounced for Gb3-S. Fluorescence and atomic force microscopy images of phase-separated supported membranes revealed differences in the lateral organization of the protein on the membrane. Gb3-R favorably induces large and tightly packed protein clusters, while a lower protein density is found on Gb3-S doped membranes.
Collapse
Affiliation(s)
- Ole M Schütte
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany
| | - Lukas J Patalag
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany; Institute of Organic Chemistry, Technical University Braunschweig, Braunschweig, Germany
| | - Lucas M C Weber
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany
| | - Annika Ries
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany
| | - Winfried Römer
- Faculty of Biology and BIOSS-Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Daniel B Werz
- Institute of Organic Chemistry, Technical University Braunschweig, Braunschweig, Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
21
|
The Dramatic Modulatory Role of the 2'N Substitution of the Terminal Amino Hexose of Globotetraosylceramide in Determining Binding by Members of the Verotoxin Family. CHROMATOGRAPHY 2015. [DOI: 10.3390/chromatography2030529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Renard HF, Garcia-Castillo MD, Chambon V, Lamaze C, Johannes L. Shiga toxin stimulates clathrin-independent endocytosis of the VAMP2, VAMP3 and VAMP8 SNARE proteins. J Cell Sci 2015; 128:2891-902. [PMID: 26071526 DOI: 10.1242/jcs.171116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/08/2015] [Indexed: 01/08/2023] Open
Abstract
Endocytosis is an essential cellular process that is often hijacked by pathogens and pathogenic products. Endocytic processes can be classified into two broad categories, those that are dependent on clathrin and those that are not. The SNARE proteins VAMP2, VAMP3 and VAMP8 are internalized in a clathrin-dependent manner. However, the full scope of their endocytic behavior has not yet been elucidated. Here, we found that VAMP2, VAMP3 and VAMP8 are localized on plasma membrane invaginations and very early uptake structures that are induced by the bacterial Shiga toxin, which enters cells by clathrin-independent endocytosis. We show that toxin trafficking into cells and cell intoxication rely on these SNARE proteins. Of note, the cellular uptake of VAMP3 is increased in the presence of Shiga toxin, even when clathrin-dependent endocytosis is blocked. We therefore conclude that VAMP2, VAMP3 and VAMP8 are removed from the plasma membrane by non-clathrin-mediated pathways, in addition to by clathrin-dependent uptake. Moreover, our study identifies these SNARE proteins as the first transmembrane trafficking factors that functionally associate at the plasma membrane with the toxin-driven clathrin-independent invaginations during the uptake process.
Collapse
Affiliation(s)
- Henri-François Renard
- Institut Curie - Centre de Recherche, Endocytic Trafficking and Therapeutic Delivery Group, 26 rue d'Ulm, Paris 75248, Cedex 05, France CNRS UMR3666, Paris 75005, France INSERM U1143, Paris 75005, France
| | - Maria Daniela Garcia-Castillo
- Institut Curie - Centre de Recherche, Endocytic Trafficking and Therapeutic Delivery Group, 26 rue d'Ulm, Paris 75248, Cedex 05, France CNRS UMR3666, Paris 75005, France INSERM U1143, Paris 75005, France
| | - Valérie Chambon
- Institut Curie - Centre de Recherche, Endocytic Trafficking and Therapeutic Delivery Group, 26 rue d'Ulm, Paris 75248, Cedex 05, France CNRS UMR3666, Paris 75005, France INSERM U1143, Paris 75005, France
| | - Christophe Lamaze
- CNRS UMR3666, Paris 75005, France INSERM U1143, Paris 75005, France Institut Curie - Centre de Recherche, Membrane Dynamics and Mechanics of Intracellular Signaling Group, 26 rue d'Ulm, Paris 75248, Cedex 05, France
| | - Ludger Johannes
- Institut Curie - Centre de Recherche, Endocytic Trafficking and Therapeutic Delivery Group, 26 rue d'Ulm, Paris 75248, Cedex 05, France CNRS UMR3666, Paris 75005, France INSERM U1143, Paris 75005, France
| |
Collapse
|
23
|
Pezeshkian W, Chaban VV, Johannes L, Shillcock J, Ipsen JH, Khandelia H. The effects of globotriaosylceramide tail saturation level on bilayer phases. SOFT MATTER 2015; 11:1352-1361. [PMID: 25575293 DOI: 10.1039/c4sm02456g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Globotriaosylceramide (Gb3) is a glycosphingolipid present in the plasma membrane that is the natural receptor of the bacterial Shiga toxin. The unsaturation level of Gb3 acyl chains has a drastic impact on lipid bilayer properties and phase behaviour, and on many Gb3-related cellular processes. For example: the Shiga toxin B subunit forms tubular invaginations in the presence of Gb3 with an unsaturated acyl chain (U-Gb3), while in the presence of Gb3 with a saturated acyl chain (S-Gb3) such invagination does not occur. We have used all-atom molecular dynamics simulations to investigate the effects of the Gb3 concentration and its acyl chain saturation on the phase behaviour of a mixed bilayer of dioleoylphosphatidylcholine and Gb3. The simulation results show that: (1) the Gb3 acyl chains (longer tails) from one leaflet interdigitate into the opposing leaflet and lead to significant bilayer rigidification and immobilisation of the lipid tails. S-Gb3 can form a highly ordered, relatively immobile phase which is resistant to bending while these changes for U-Gb3 are not significant. (2) At low concentrations of Gb3, U-Gb3 and S-Gb3 have a similar impact on the bilayer reminiscent of the effect of sphingomyelin lipids and (3) At higher Gb3 concentrations, U-Gb3 mixes better with dioleoylphosphatidylcholine than S-Gb3. Our simulations also provide the first molecular level structural model of Gb3 in membranes.
Collapse
Affiliation(s)
- Weria Pezeshkian
- Center for Biomembrane Physics (MEMPHYS), Department of Physics, Chemistry and Pharmacy (FKF), University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | | | | | | | | | | |
Collapse
|
24
|
Solovyeva V, Johannes L, Simonsen AC. Shiga toxin induces membrane reorganization and formation of long range lipid order. SOFT MATTER 2015; 11:186-192. [PMID: 25376469 DOI: 10.1039/c4sm01673d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Lateral variation of the in-plane orientation of lipids in a bilayer is referred to as texture. The influence of the protein Shiga toxin on orientational membrane texture was studied in phosphatidylcholine lipid bilayers using polarization two-photon fluorescence microscopy and atomic force microscopy. A content of 1% of glycosphingolipid globotriaosylceramide (Gb3) receptor lipids in a bilayer was used to bind the Shiga toxin B-subunit to the surface of gel domains. Binding of the Shiga toxin B-subunit to lipids led to the modulation of orientational membrane texture in gel domains and induced membrane reordering. When Shiga toxin was added above the lipid chain melting temperature, the toxin interaction with the membrane induced rearrangement and clustering of Gb3 lipids that resulted in the long range order and alignment of lipids in gel domains. The toxin induced redistribution of Gb3 lipids inside gel domains is governed by the temperature at which Shiga toxin was added to the membrane: above or below the phase transition. The temperature is thus one of the critical factors controlling lipid organization and texture in the presence of Shiga toxin. Lipid chain ordering imposed by Shiga toxin binding can be another factor driving the reconstruction of lipid organization and crystallization of lipids inside gel domains.
Collapse
Affiliation(s)
- Vita Solovyeva
- Memphys, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| | | | | |
Collapse
|