1
|
Krysiak S, Gotić M, Madej E, Moreno Maldonado AC, Goya GF, Spiridis N, Burda K. The effect of ultrafine WO 3 nanoparticles on the organization of thylakoids enriched in photosystem II and energy transfer in photosystem II complexes. Microsc Res Tech 2023; 86:1583-1598. [PMID: 37534550 DOI: 10.1002/jemt.24394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023]
Abstract
In this work, a new approach to construct self-assembled hybrid systems based on natural PSII-enriched thylakoid membranes (PSII BBY) is demonstrated. Superfine m-WO3 NPs (≈1-2 nm) are introduced into PSII BBY. Transmission electron microscopy (TEM) measurements showed that even the highest concentrations of NPs used did not degrade the PSII BBY membranes. Using atomic force microscopy (AFM), it is shown that the organization of PSII BBY depends strongly on the concentration of NPs applied. This proved that the superfine NPs can easily penetrate the thylakoid membrane and interact with its components. These changes are also related to the modified energy transfer between the external light-harvesting antennas and the PSII reaction center, shown by absorption and fluorescence experiments. The biohybrid system shows stability at pH 6.5, the native operating environment of PSII, so a high rate of O2 evolution is expected. In addition, the light-induced water-splitting process can be further stimulated by the direct interaction of superfine WO3 NPs with the donor and acceptor sides of PSII. The water-splitting activity and stability of this colloidal system are under investigation. RESEARCH HIGHLIGHTS: The phenomenon of the self-organization of a biohybrid system composed of thylakoid membranes enriched in photosystem II and superfine WO3 nanoparticles is studied using AFM and TEM. A strong dependence of the organization of PSII complexes within PSII BBY membranes on the concentration of NPs applied is observed. This observation turns out to be crucial to understand the complexity of the mechanism of the action of WO3 NPs on modifications of energy transfer from external antenna complexes to the PSII reaction center.
Collapse
Affiliation(s)
- S Krysiak
- Faculty of Physics and Applied Computer Science, AGH - University of Krakow, Krakow, Poland
| | - M Gotić
- Division of Materials Physics, Ruđer Bošković Institute, Zagreb, Croatia
| | - E Madej
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland
| | - A C Moreno Maldonado
- Condensed Matter Physics Department and Instituto de Nanociencia y Materiales de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - G F Goya
- Condensed Matter Physics Department and Instituto de Nanociencia y Materiales de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - N Spiridis
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland
| | - K Burda
- Faculty of Physics and Applied Computer Science, AGH - University of Krakow, Krakow, Poland
| |
Collapse
|
2
|
Tokano T, Kato Y, Sugiyama S, Uchihashi T, Noguchi T. Structural Dynamics of a Protein Domain Relevant to the Water-Oxidizing Complex in Photosystem II as Visualized by High-Speed Atomic Force Microscopy. J Phys Chem B 2020; 124:5847-5857. [PMID: 32551630 DOI: 10.1021/acs.jpcb.0c03892] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Photosystem II (PSII) is a multiprotein complex that has a function of light-driven water oxidation. The catalytic site of water oxidation is the Mn4CaO5 cluster, which is bound to the lumenal side of PSII through amino acid residues from the D1 and CP43 proteins and is further surrounded by the extrinsic proteins. In this study, we have for the first time visualized the structural dynamics of the lumenal region of a PSII core complex using high-speed atomic force microscopy (HS-AFM). The HS-AFM images of a PSII membrane fragment showed stepwise dissociation of the PsbP and PsbO extrinsic proteins. Upon subsequent destruction of the Mn4CaO5 cluster, the lumenal domain of CP43 was found to undergo a conformational fluctuation. The observed structural flexibility and conformational fluctuation of the CP43 lumenal domain are suggested to play important roles in the biogenesis of PSII and the photoassembly of the Mn4CaO5 cluster.
Collapse
Affiliation(s)
- Takaya Tokano
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yuki Kato
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Shogo Sugiyama
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takayuki Uchihashi
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takumi Noguchi
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
3
|
Onoa B, Fukuda S, Iwai M, Bustamante C, Niyogi KK. Atomic Force Microscopy Visualizes Mobility of Photosynthetic Proteins in Grana Thylakoid Membranes. Biophys J 2020; 118:1876-1886. [PMID: 32224302 PMCID: PMC7175462 DOI: 10.1016/j.bpj.2020.02.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/10/2020] [Accepted: 02/28/2020] [Indexed: 12/19/2022] Open
Abstract
Thylakoid membranes in chloroplasts contain photosynthetic protein complexes that convert light energy into chemical energy. Photosynthetic protein complexes are considered to undergo structural reorganization to maintain the efficiency of photochemical reactions. A detailed description of the mobility of photosynthetic complexes in real time is necessary to understand how macromolecular organization of the membrane is altered by environmental fluctuations. Here, we used high-speed atomic force microscopy to visualize and characterize the in situ mobility of individual protein complexes in grana thylakoid membranes isolated from Spinacia oleracea. Our observations reveal that these membranes can harbor complexes with at least two distinctive classes of mobility. A large fraction of grana membranes contained proteins with quasistatic mobility exhibiting molecular displacements smaller than 10 nm2. In the remaining fraction, the protein mobility is variable with molecular displacements of up to 100 nm2. This visualization at high spatiotemporal resolution enabled us to estimate an average diffusion coefficient of ∼1 nm2 s-1. Interestingly, both confined and Brownian diffusion models could describe the protein mobility of the second group of membranes. We also provide the first direct evidence, to our knowledge, of rotational diffusion of photosynthetic complexes. The rotational diffusion of photosynthetic complexes could be an adaptive response to the high protein density in the membrane to guarantee the efficiency of electron transfer reactions. This characterization of the mobility of individual photosynthetic complexes in grana membranes establishes a foundation that could be adapted to study the dynamics of the complexes inside intact and photosynthetically functional thylakoid membranes to be able to understand its structural responses to diverse environmental fluctuations.
Collapse
Affiliation(s)
- Bibiana Onoa
- Howard Hughes Medical Institute, University of California, Berkeley, California.
| | - Shingo Fukuda
- Howard Hughes Medical Institute, University of California, Berkeley, California
| | - Masakazu Iwai
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California; Department of Plant and Microbial Biology, University of California, Berkeley, California
| | - Carlos Bustamante
- Howard Hughes Medical Institute, University of California, Berkeley, California; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California; Jason L. Choy Laboratory of Single Molecule Biophysics, University of California, Berkeley, California; Department of Molecular and Cell Biology, University of California, Berkeley, California; Department of Physics, University of California, Berkeley, California; Kavli Energy NanoScience Institute, Lawrence Berkeley National Laboratory, University of California, Berkeley, California
| | - Krishna K Niyogi
- Howard Hughes Medical Institute, University of California, Berkeley, California; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California; Department of Plant and Microbial Biology, University of California, Berkeley, California.
| |
Collapse
|
4
|
Johnson MP, Wientjes E. The relevance of dynamic thylakoid organisation to photosynthetic regulation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1861:148039. [PMID: 31228404 DOI: 10.1016/j.bbabio.2019.06.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/14/2019] [Accepted: 06/15/2019] [Indexed: 12/11/2022]
Abstract
The higher plant chloroplast thylakoid membrane system performs the light-dependent reactions of photosynthesis. These provide the ATP and NADPH required for the fixation of CO2 into biomass by the Calvin-Benson cycle and a range of other metabolic reactions in the stroma. Land plants are frequently challenged by fluctuations in their environment, such as light, nutrient and water availability, which can create a mismatch between the amounts of ATP and NADPH produced and the amounts required by the downstream metabolism. Left unchecked, such imbalances can lead to the production of reactive oxygen species that damage the plant and harm productivity. Fortunately, plants have evolved a complex range of regulatory processes to avoid or minimize such deleterious effects by controlling the efficiency of light harvesting and electron transfer in the thylakoid membrane. Generally the regulation of the light reactions has been studied and conceptualised at the microscopic level of protein-protein and protein-ligand interactions, however in recent years dynamic changes in the thylakoid macrostructure itself have been recognised to play a significant role in regulating light harvesting and electron transfer. Here we review the evidence for the involvement of macrostructural changes in photosynthetic regulation and review the techniques that brought this evidence to light.
Collapse
Affiliation(s)
- Matthew P Johnson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom.
| | - Emilie Wientjes
- Laboratory of Biophysics, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| |
Collapse
|
5
|
Petrova N, Todinova S, Paunov M, Kovács L, Taneva S, Krumova S. Thylakoid membrane unstacking increases LHCII thermal stability and lipid phase fluidity. J Bioenerg Biomembr 2018; 50:425-435. [PMID: 30607760 DOI: 10.1007/s10863-018-9783-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/20/2018] [Indexed: 11/26/2022]
Abstract
Thylakoids are highly protein-enriched membranes that harbor a number of multicomponent photosynthetic complexes. Similarly to other biological membranes the protein constituents are heterogeneously distributed laterally in the plane of the membrane, however the specific segregation into stacked (grana patches) and unstacked (stroma lamellae) membrane layers is a unique feature of the thylakoid. Both the lateral and the vertical arrangements of the integral membrane proteins within the three-dimensional thylakoid ultrastructure are thought to have important physiological function. In this work we explore the role of membrane stacking for the thermal stability of the photosynthetic complexes in thylakoid membranes. By means of circular dichroism and differential scanning calorimetry we demonstrate that the thermal stability of the monomeric and trimeric forms of the major light harvesting complex of photosystem II (LHCII) increases upon unstacking. This effect was suggested to be due to the detachment of LHCII from photosystem II and consequent attachment to photosystem I subunits and/or the fluidization of the lipid matrix upon unstacking. The changes in the physical properties of the protein and lipid membrane components upon unstacking result in strongly reduced photosystem II excitation energy utilization.
Collapse
Affiliation(s)
- Nia Petrova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Svetla Todinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Momchil Paunov
- Department of Biophysics and Radiobiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", Sofia, Bulgaria
| | - Lászlo Kovács
- Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
| | - Stefka Taneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Sashka Krumova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| |
Collapse
|
6
|
Lipid polymorphism in chloroplast thylakoid membranes - as revealed by 31P-NMR and time-resolved merocyanine fluorescence spectroscopy. Sci Rep 2017; 7:13343. [PMID: 29042649 PMCID: PMC5645462 DOI: 10.1038/s41598-017-13574-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/25/2017] [Indexed: 01/22/2023] Open
Abstract
Chloroplast thylakoid membranes contain virtually all components of the energy-converting photosynthetic machinery. Their energized state, driving ATP synthesis, is enabled by the bilayer organization of the membrane. However, their most abundant lipid species is a non-bilayer-forming lipid, monogalactosyl-diacylglycerol; the role of lipid polymorphism in these membranes is poorly understood. Earlier 31P-NMR experiments revealed the coexistence of a bilayer and a non-bilayer, isotropic lipid phase in spinach thylakoids. Packing of lipid molecules, tested by fluorescence spectroscopy of the lipophilic dye, merocyanine-540 (MC540), also displayed heterogeneity. Now, our 31P-NMR experiments on spinach thylakoids uncover the presence of a bilayer and three non-bilayer lipid phases; time-resolved fluorescence spectroscopy of MC540 also reveals the presence of multiple lipidic environments. It is also shown by 31P-NMR that: (i) some lipid phases are sensitive to the osmolarity and ionic strength of the medium, (ii) a lipid phase can be modulated by catalytic hydrogenation of fatty acids and (iii) a marked increase of one of the non-bilayer phases upon lowering the pH of the medium is observed. These data provide additional experimental evidence for the polymorphism of lipid phases in thylakoids and suggest that non-bilayer phases play an active role in the structural dynamics of thylakoid membranes.
Collapse
|
7
|
Su X, Ma J, Wei X, Cao P, Zhu D, Chang W, Liu Z, Zhang X, Li M. Structure and assembly mechanism of plant C 2S 2M 2-type PSII-LHCII supercomplex. Science 2017; 357:815-820. [PMID: 28839073 DOI: 10.1126/science.aan0327] [Citation(s) in RCA: 249] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/21/2017] [Indexed: 01/24/2023]
Abstract
In plants, the photosynthetic machinery photosystem II (PSII) consists of a core complex associated with variable numbers of light-harvesting complexes II (LHCIIs). The supercomplex, comprising a dimeric core and two strongly bound and two moderately bound LHCIIs (C2S2M2), is the dominant form in plants acclimated to limited light. Here we report cryo-electron microscopy structures of two forms of C2S2M2 (termed stacked and unstacked) from Pisum sativum at 2.7- and 3.2-angstrom resolution, respectively. In each C2S2M2, the moderately bound LHCII assembles specifically with a peripheral antenna complex CP24-CP29 heterodimer and the strongly bound LHCII, to establish a pigment network that facilitates light harvesting at the periphery and energy transfer into the core. The high mobility of peripheral antennae, including the moderately bound LHCII and CP24, provides insights into functional regulation of plant PSII.
Collapse
Affiliation(s)
- Xiaodong Su
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing 100101, P.R. China
| | - Jun Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing 100101, P.R. China
| | - Xuepeng Wei
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing 100101, P.R. China
| | - Peng Cao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing 100101, P.R. China
| | - Dongjie Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing 100101, P.R. China
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Wenrui Chang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing 100101, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhenfeng Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing 100101, P.R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing 100101, P.R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- Center for Biological Imaging, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing 100101, P.R. China.
| |
Collapse
|
8
|
Live-cell visualization of excitation energy dynamics in chloroplast thylakoid structures. Sci Rep 2016; 6:29940. [PMID: 27416900 PMCID: PMC4945916 DOI: 10.1038/srep29940] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/27/2016] [Indexed: 11/09/2022] Open
Abstract
The intricate molecular processes underlying photosynthesis have long been studied using various analytic approaches. However, the three-dimensional (3D) dynamics of such photosynthetic processes remain unexplored due to technological limitations related to investigating intraorganellar mechanisms in vivo. By developing a system for high-speed 3D laser scanning confocal microscopy combined with high-sensitivity multiple-channel detection, we visualized excitation energy dynamics in thylakoid structures within chloroplasts of live Physcomitrella patens cells. Two distinct thylakoid structures in the chloroplast, namely the grana and stroma lamellae, were visualized three-dimensionally in live cells. The simultaneous detection of the shorter (than ~670 nm) and longer (than ~680 nm) wavelength regions of chlorophyll (Chl) fluorescence reveals different spatial characteristics-irregular and vertical structures, respectively. Spectroscopic analyses showed that the shorter and longer wavelength regions of Chl fluorescence are affected more by free light-harvesting antenna proteins and photosystem II supercomplexes, respectively. The high-speed 3D time-lapse imaging of the shorter and longer wavelength regions also reveals different structural dynamics-rapid and slow movements within 1.5 seconds, respectively. Such structural dynamics of the two wavelength regions of Chl fluorescence would indicate excitation energy dynamics between light-harvesting antenna proteins and photosystems, reflecting the energetically active nature of photosynthetic proteins in thylakoid membranes.
Collapse
|
9
|
Andreeva TD, Castano S, Krumova S, Lecomte S, Taneva SG. Effect of Protonation on the Secondary Structure and Orientation of Plant Light-Harvesting Complex II Studied by PM-IRRAS. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:11583-11590. [PMID: 26473578 DOI: 10.1021/acs.langmuir.5b02653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The major light-harvesting pigment-protein complex of photosystem II, LHCII, has a crucial role in the distribution of the light energy between the two photosystems, the efficient light capturing and protection of the reaction centers and antennae from overexcitation. In this work direct structural information on the effect of LHCII protonation, which mimics the switch from light-harvesting to photoprotective state of the protein, was revealed by polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS). PM-IRRAS on LHCII monolayers verified that the native helical structure of the protein is preserved in both partly deprotonated (pH 7.8, LHCII) and protonated (pH 5.2, p-LHCII) states. At low surface pressure, 10 mN/m, the orientation of the α-helices in these two LHCII states is different-tilted (θ ≈ 40°) in LHCII and nearly vertical (θ ≈ 90°) in p-LHCII monolayers; the partly deprotonated complex is more hydrophilic than the protonated one and exhibits stronger intertrimer interactions. At higher surface pressure, 30 mN/m, which is typical for biological membranes, the protonation affects neither the secondary structure nor the orientation of the transmembrane α-helices (tilted ∼45° relative to the membrane surface in both LHCII states) but weakens the intermolecular interactions within and/or between the trimers.
Collapse
Affiliation(s)
- Tonya D Andreeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences , Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria
| | - Sabine Castano
- CBMN-Univ. Bordeaux, UMR 5248 , Allée Geoffroy Saint Hilaire, 33600 Pessac, France
| | - Sashka Krumova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences , Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria
| | - Sophie Lecomte
- CBMN-Univ. Bordeaux, UMR 5248 , Allée Geoffroy Saint Hilaire, 33600 Pessac, France
| | - Stefka G Taneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences , Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria
| |
Collapse
|
10
|
Phuthong W, Huang Z, Wittkopp TM, Sznee K, Heinnickel ML, Dekker JP, Frese RN, Prinz FB, Grossman AR. The Use of Contact Mode Atomic Force Microscopy in Aqueous Medium for Structural Analysis of Spinach Photosynthetic Complexes. PLANT PHYSIOLOGY 2015; 169:1318-32. [PMID: 26220954 PMCID: PMC4587457 DOI: 10.1104/pp.15.00706] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 07/24/2015] [Indexed: 05/02/2023]
Abstract
To investigate the dynamics of photosynthetic pigment-protein complexes in vascular plants at high resolution in an aqueous environment, membrane-protruding oxygen-evolving complexes (OECs) associated with photosystem II (PSII) on spinach (Spinacia oleracea) grana membranes were examined using contact mode atomic force microscopy. This study represents, to our knowledge, the first use of atomic force microscopy to distinguish the putative large extrinsic loop of Photosystem II CP47 reaction center protein (CP47) from the putative oxygen-evolving enhancer proteins 1, 2, and 3 (PsbO, PsbP, and PsbQ) and large extrinsic loop of Photosystem II CP43 reaction center protein (CP43) in the PSII-OEC extrinsic domains of grana membranes under conditions resulting in the disordered arrangement of PSII-OEC particles. Moreover, we observed uncharacterized membrane particles that, based on their physical characteristics and electrophoretic analysis of the polypeptides associated with the grana samples, are hypothesized to be a domain of photosystem I that protrudes from the stromal face of single thylakoid bilayers. Our results are interpreted in the context of the results of others that were obtained using cryo-electron microscopy (and single particle analysis), negative staining and freeze-fracture electron microscopy, as well as previous atomic force microscopy studies.
Collapse
Affiliation(s)
- Witchukorn Phuthong
- Department of Materials Science and Engineering (W.P., F.B.P.), Department of Mechanical Engineering (Z.H., F.B.P.), and Department of Biology (T.M.W.), Stanford University, Stanford, California 94305;Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (T.M.W., M.L.H., A.R.G.); andDepartment of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands (K.S., J.P.D., R.N.F.)
| | - Zubin Huang
- Department of Materials Science and Engineering (W.P., F.B.P.), Department of Mechanical Engineering (Z.H., F.B.P.), and Department of Biology (T.M.W.), Stanford University, Stanford, California 94305;Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (T.M.W., M.L.H., A.R.G.); andDepartment of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands (K.S., J.P.D., R.N.F.)
| | - Tyler M Wittkopp
- Department of Materials Science and Engineering (W.P., F.B.P.), Department of Mechanical Engineering (Z.H., F.B.P.), and Department of Biology (T.M.W.), Stanford University, Stanford, California 94305;Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (T.M.W., M.L.H., A.R.G.); andDepartment of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands (K.S., J.P.D., R.N.F.)
| | - Kinga Sznee
- Department of Materials Science and Engineering (W.P., F.B.P.), Department of Mechanical Engineering (Z.H., F.B.P.), and Department of Biology (T.M.W.), Stanford University, Stanford, California 94305;Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (T.M.W., M.L.H., A.R.G.); andDepartment of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands (K.S., J.P.D., R.N.F.)
| | - Mark L Heinnickel
- Department of Materials Science and Engineering (W.P., F.B.P.), Department of Mechanical Engineering (Z.H., F.B.P.), and Department of Biology (T.M.W.), Stanford University, Stanford, California 94305;Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (T.M.W., M.L.H., A.R.G.); andDepartment of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands (K.S., J.P.D., R.N.F.)
| | - Jan P Dekker
- Department of Materials Science and Engineering (W.P., F.B.P.), Department of Mechanical Engineering (Z.H., F.B.P.), and Department of Biology (T.M.W.), Stanford University, Stanford, California 94305;Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (T.M.W., M.L.H., A.R.G.); andDepartment of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands (K.S., J.P.D., R.N.F.)
| | - Raoul N Frese
- Department of Materials Science and Engineering (W.P., F.B.P.), Department of Mechanical Engineering (Z.H., F.B.P.), and Department of Biology (T.M.W.), Stanford University, Stanford, California 94305;Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (T.M.W., M.L.H., A.R.G.); andDepartment of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands (K.S., J.P.D., R.N.F.)
| | - Fritz B Prinz
- Department of Materials Science and Engineering (W.P., F.B.P.), Department of Mechanical Engineering (Z.H., F.B.P.), and Department of Biology (T.M.W.), Stanford University, Stanford, California 94305;Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (T.M.W., M.L.H., A.R.G.); andDepartment of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands (K.S., J.P.D., R.N.F.)
| | - Arthur R Grossman
- Department of Materials Science and Engineering (W.P., F.B.P.), Department of Mechanical Engineering (Z.H., F.B.P.), and Department of Biology (T.M.W.), Stanford University, Stanford, California 94305;Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (T.M.W., M.L.H., A.R.G.); andDepartment of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands (K.S., J.P.D., R.N.F.)
| |
Collapse
|