1
|
Li Y, Yi J, Liu W, Liu Y, Liu J. Gaining insight into cellular cardiac physiology using single particle tracking. J Mol Cell Cardiol 2020; 148:63-77. [PMID: 32871158 DOI: 10.1016/j.yjmcc.2020.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 11/29/2022]
Abstract
Single particle tracking (SPT) is a robust technique to monitor single-molecule behaviors in living cells directly. By this approach, we can uncover the potential biological significance of particle dynamics by statistically characterizing individual molecular behaviors. SPT provides valuable information at the single-molecule level, that could be obscured by simple averaging that is inherent to conventional ensemble measurements. Here, we give a brief introduction to SPT including the commonly used optical implementations, fluorescence labeling strategies, and data analysis methods. We then focus on how SPT has been harnessed to decipher myocardial function. In this context, SPT has provided novel insight into the lateral diffusion of signal receptors and ion channels, the dynamic organization of cardiac nanodomains, subunit composition and stoichiometry of cardiac ion channels, myosin movement along actin filaments, the kinetic features of transcription factors involved in cardiac remodeling, and the intercellular communication by nanotubes. Finally, we speculate on the prospects and challenges of applying SPT to future questions regarding cellular cardiac physiology using SPT.
Collapse
Affiliation(s)
- Ying Li
- School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, 518060, China.
| | - Jing Yi
- School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, 518060, China.
| | - Wenjuan Liu
- School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, 518060, China.
| | - Yun Liu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Guangdong Province, China.
| | - Jie Liu
- School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, 518060, China.
| |
Collapse
|
2
|
Oláh VJ, Lukacsovich D, Winterer J, Arszovszki A, Lőrincz A, Nusser Z, Földy C, Szabadics J. Functional specification of CCK+ interneurons by alternative isoforms of Kv4.3 auxiliary subunits. eLife 2020; 9:58515. [PMID: 32490811 PMCID: PMC7269670 DOI: 10.7554/elife.58515] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 05/20/2020] [Indexed: 01/18/2023] Open
Abstract
CCK-expressing interneurons (CCK+INs) are crucial for controlling hippocampal activity. We found two firing phenotypes of CCK+INs in rat hippocampal CA3 area; either possessing a previously undetected membrane potential-dependent firing or regular firing phenotype, due to different low-voltage-activated potassium currents. These different excitability properties destine the two types for distinct functions, because the former is essentially silenced during realistic 8–15 Hz oscillations. By contrast, the general intrinsic excitability, morphology and gene-profiles of the two types were surprisingly similar. Even the expression of Kv4.3 channels were comparable, despite evidences showing that Kv4.3-mediated currents underlie the distinct firing properties. Instead, the firing phenotypes were correlated with the presence of distinct isoforms of Kv4 auxiliary subunits (KChIP1 vs. KChIP4e and DPP6S). Our results reveal the underlying mechanisms of two previously unknown types of CCK+INs and demonstrate that alternative splicing of few genes, which may be viewed as a minor change in the cells’ whole transcriptome, can determine cell-type identity.
Collapse
Affiliation(s)
- Viktor János Oláh
- Laboratory of Cellular Neuropharmacology, Institute of Experimental Medicine, Budapest, Hungary.,János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - David Lukacsovich
- Laboratory of Neural Connectivity, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Jochen Winterer
- Laboratory of Neural Connectivity, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Antónia Arszovszki
- Laboratory of Cellular Neuropharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - Andrea Lőrincz
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Zoltan Nusser
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Csaba Földy
- Laboratory of Neural Connectivity, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - János Szabadics
- Laboratory of Cellular Neuropharmacology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
3
|
Jenkins CA, Kalmar L, Matiasek K, Mari L, Kyöstilä K, Lohi H, Schofield EC, Mellersh CS, De Risio L, Ricketts SL. Characterisation of canine KCNIP4: A novel gene for cerebellar ataxia identified by whole-genome sequencing two affected Norwegian Buhund dogs. PLoS Genet 2020; 16:e1008527. [PMID: 31999692 PMCID: PMC7012447 DOI: 10.1371/journal.pgen.1008527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/11/2020] [Accepted: 11/15/2019] [Indexed: 12/14/2022] Open
Abstract
A form of hereditary cerebellar ataxia has recently been described in the Norwegian Buhund dog breed. This study aimed to identify the genetic cause of the disease. Whole-genome sequencing of two Norwegian Buhund siblings diagnosed with progressive cerebellar ataxia was carried out, and sequences compared with 405 whole genome sequences of dogs of other breeds to filter benign common variants. Nine variants predicted to be deleterious segregated among the genomes in concordance with an autosomal recessive mode of inheritance, only one of which segregated within the breed when genotyped in additional Norwegian Buhunds. In total this variant was assessed in 802 whole genome sequences, and genotyped in an additional 505 unaffected dogs (including 146 Buhunds), and only four affected Norwegian Buhunds were homozygous for the variant. The variant identified, a T to C single nucleotide polymorphism (SNP) (NC_006585.3:g.88890674T>C), is predicted to cause a tryptophan to arginine substitution in a highly conserved region of the potassium voltage-gated channel interacting protein KCNIP4. This gene has not been implicated previously in hereditary ataxia in any species. Evaluation of KCNIP4 protein expression through western blot and immunohistochemical analysis using cerebellum tissue of affected and control dogs demonstrated that the mutation causes a dramatic reduction of KCNIP4 protein expression. The expression of alternative KCNIP4 transcripts within the canine cerebellum, and regional differences in KCNIP4 protein expression, were characterised through RT-PCR and immunohistochemistry respectively. The voltage-gated potassium channel protein KCND3 has previously been implicated in spinocerebellar ataxia, and our findings suggest that the Kv4 channel complex KCNIP accessory subunits also have an essential role in voltage-gated potassium channel function in the cerebellum and should be investigated as potential candidate genes for cerebellar ataxia in future studies in other species.
Collapse
Affiliation(s)
| | - Lajos Kalmar
- Department of Veterinary Medicine, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom
| | - Kaspar Matiasek
- Section of Clinical & Comparative Neuropathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität Munich, München, Germany
| | - Lorenzo Mari
- Neurology/Neurosurgery Service, Centre for Small Animal Studies, Animal Health Trust, Newmarket, Suffolk, United Kingdom
| | - Kaisa Kyöstilä
- Department of Veterinary Biosciences, and Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Hannes Lohi
- Department of Veterinary Biosciences, and Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Ellen C. Schofield
- Kennel Club Genetics Centre, Animal Health Trust, Newmarket, Suffolk, United Kingdom
| | - Cathryn S. Mellersh
- Kennel Club Genetics Centre, Animal Health Trust, Newmarket, Suffolk, United Kingdom
| | - Luisa De Risio
- Neurology/Neurosurgery Service, Centre for Small Animal Studies, Animal Health Trust, Newmarket, Suffolk, United Kingdom
| | - Sally L. Ricketts
- Kennel Club Genetics Centre, Animal Health Trust, Newmarket, Suffolk, United Kingdom
| |
Collapse
|
4
|
Inhibition of Hsp70 Suppresses Neuronal Hyperexcitability and Attenuates Epilepsy by Enhancing A-Type Potassium Current. Cell Rep 2019; 26:168-181.e4. [DOI: 10.1016/j.celrep.2018.12.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 10/06/2018] [Accepted: 12/06/2018] [Indexed: 01/03/2023] Open
|
5
|
Hilton JK, Salehpour T, Sisco NJ, Rath P, Van Horn WD. Phosphoinositide-interacting regulator of TRP (PIRT) has opposing effects on human and mouse TRPM8 ion channels. J Biol Chem 2018; 293:9423-9434. [PMID: 29724821 DOI: 10.1074/jbc.ra118.003563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 04/25/2018] [Indexed: 12/24/2022] Open
Abstract
Transient receptor potential melastatin 8 (TRPM8) is a cold-sensitive ion channel with diverse physiological roles. TRPM8 activity is modulated by many mechanisms, including an interaction with the small membrane protein phosphoinositide-interacting regulator of TRP (PIRT). Here, using comparative electrophysiology experiments, we identified species-dependent differences between the human and mouse TRPM8-PIRT complexes. We found that human PIRT attenuated human TPRM8 conductance, unlike mouse PIRT, which enhanced mouse TRPM8 conductance. Quantitative Western blot analysis demonstrates that this effect does not arise from decreased trafficking of TRPM8 to the plasma membrane. Chimeric human/mouse TRPM8 channels were generated to probe the molecular basis of the PIRT modulation, and the effect was recapitulated in a pore domain chimera, demonstrating the importance of this region for PIRT-mediated regulation of TRPM8. Moreover, recombinantly expressed and purified human TRPM8 S1-S4 domain (comprising transmembrane helices S1-S4, also known as the sensing domain, ligand-sensing domain, or voltage sensing-like domain) and full-length human PIRT were used to investigate binding between the proteins. NMR experiments, supported by a pulldown assay, indicated that PIRT binds directly and specifically to the TRPM8 S1-S4 domain. Binding became saturated as the S1-S4:PIRT mole ratio approached 1. Our results have uncovered species-specific TRPM8 modulation by PIRT. They provide evidence for a direct interaction between PIRT and the TRPM8 S1-S4 domain with a 1:1 binding stoichiometry, suggesting that a functional tetrameric TRPM8 channel has four PIRT-binding sites.
Collapse
Affiliation(s)
- Jacob K Hilton
- From the School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287.,the Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85281, and.,The Magnetic Resonance Research Center, Arizona State University, Tempe, Arizona 85287
| | - Taraneh Salehpour
- From the School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287.,the Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85281, and.,The Magnetic Resonance Research Center, Arizona State University, Tempe, Arizona 85287
| | - Nicholas J Sisco
- From the School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287.,the Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85281, and.,The Magnetic Resonance Research Center, Arizona State University, Tempe, Arizona 85287
| | - Parthasarathi Rath
- From the School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287.,the Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85281, and.,The Magnetic Resonance Research Center, Arizona State University, Tempe, Arizona 85287
| | - Wade D Van Horn
- From the School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, .,the Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85281, and.,The Magnetic Resonance Research Center, Arizona State University, Tempe, Arizona 85287
| |
Collapse
|
6
|
Kitazawa M, Kubo Y, Nakajo K. Kv4.2 and accessory dipeptidyl peptidase-like protein 10 (DPP10) subunit preferentially form a 4:2 (Kv4.2:DPP10) channel complex. J Biol Chem 2015. [PMID: 26209633 DOI: 10.1074/jbc.m115.646794] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kv4 is a member of the voltage-gated K(+) channel family and forms a complex with various accessory subunits. Dipeptidyl aminopeptidase-like protein (DPP) is one of the auxiliary subunits for the Kv4 channel. Although DPP has been well characterized and is known to increase the current amplitude and accelerate the inactivation and recovery from inactivation of Kv4 current, it remains to be determined how many DPPs bind to one Kv4 channel. To examine whether the expression level of DPP changes the biophysical properties of Kv4, we expressed Kv4.2 and DPP10 in different ratios in Xenopus oocytes and analyzed the currents under two-electrode voltage clamp. The current amplitude and the speed of recovery from inactivation of Kv4.2 changed depending on the co-expression level of DPP10. This raised the possibility that the stoichiometry of the Kv4.2-DPP10 complex is variable and affects the biophysical properties of Kv4.2. We next determined the stoichiometry of DPP10 alone by subunit counting using single-molecule imaging. Approximately 70% of the DPP10 formed dimers in the plasma membrane, and the rest existed as monomers in the absence of Kv4.2. We next determined the stoichiometry of the Kv4.2-DPP10 complex; Kv4.2-mCherry and mEGFP-DPP10 were co-expressed in different ratios and the stoichiometries of Kv4.2-DPP10 complexes were evaluated by the subunit counting method. The stoichiometry of the Kv4.2-DPP10 complex was variable depending on the relative expression level of each subunit, with a preference for 4:2 stoichiometry. This preference may come from the bulky dimeric structure of the extracellular domain of DPP10.
Collapse
Affiliation(s)
- Masahiro Kitazawa
- From the Division of Biophysics and Neurobiology, Department of Molecular Physiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan and the Department of Physiological Sciences, Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa 240-0155, Japan
| | - Yoshihiro Kubo
- From the Division of Biophysics and Neurobiology, Department of Molecular Physiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan and the Department of Physiological Sciences, Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa 240-0155, Japan
| | - Koichi Nakajo
- From the Division of Biophysics and Neurobiology, Department of Molecular Physiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan and the Department of Physiological Sciences, Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa 240-0155, Japan
| |
Collapse
|