1
|
Asante-Asamani E, Dalton M, Brazill D, Strychalski W. Modeling the dynamics of actin and myosin during bleb stabilization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564082. [PMID: 37961169 PMCID: PMC10634845 DOI: 10.1101/2023.10.26.564082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The actin cortex is very dynamic during migration of eukaryotes. In cells that use blebs as leading-edge protrusions, the cortex reforms beneath the cell membrane (bleb cortex) and completely disassembles at the site of bleb initiation. Remnants of the actin cortex at the site of bleb nucleation are referred to as the actin scar. We refer to the combined process of cortex reformation along with the degradation of the actin scar during bleb-based cell migration as bleb stabilization. The molecular factors that regulate the dynamic reorganization of the cortex are not fully understood. Myosin motor protein activity has been shown to be necessary for blebbing, with its major role associated with pressure generation to drive bleb expansion. Here, we examine the role of myosin in regulating cortex dynamics during bleb stabilization. Analysis of microscopy data from protein localization experiments in Dictyostelium discoideum cells reveals a rapid formation of the bleb's cortex with a delay in myosin accumulation. In the degrading actin scar, myosin is observed to accumulate before active degradation of the cortex begins. Through a combination of mathematical modeling and data fitting, we identify that myosin helps regulate the equilibrium concentration of actin in the bleb cortex during its reformation by increasing its dissasembly rate. Our modeling and analysis also suggests that cortex degradation is driven primarily by an exponential decrease in actin assembly rate rather than increased myosin activity. We attribute the decrease in actin assembly to the separation of the cell membrane from the cortex after bleb nucleation.
Collapse
Affiliation(s)
| | - Mackenzie Dalton
- Department of Mathematics, Clarkson University, Clarkson, Potsdam, NY 13699
| | | | - Wanda Strychalski
- Department of Mathematics, Applied Mathematics, and Statistics, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
2
|
Asante-Asamani E, Grange D, Rawal D, Santiago Z, Loustau J, Brazill D. A role for myosin II clusters and membrane energy in cortex rupture for Dictyostelium discoideum. PLoS One 2022; 17:e0265380. [PMID: 35468148 PMCID: PMC9037949 DOI: 10.1371/journal.pone.0265380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/01/2022] [Indexed: 11/18/2022] Open
Abstract
Blebs, pressure driven protrusions of the cell membrane, facilitate the movement of eukaryotic cells such as the soil amoeba Dictyostelium discoideum, white blood cells and cancer cells. Blebs initiate when the cell membrane separates from the underlying cortex. A local rupture of the cortex, has been suggested as a mechanism by which blebs are initiated. However, much clarity is still needed about how cells inherently regulate rupture of the cortex in locations where blebs are expected to form. In this work, we examine the role of membrane energy and the motor protein myosin II (myosin) in facilitating the cell driven rupture of the cortex. We perform under-agarose chemotaxis experiments, using Dictyostelium discoideum cells, to visualize the dynamics of myosin and calculate changes in membrane energy in the blebbing region. To facilitate a rapid detection of blebs and analysis of the energy and myosin distribution at the cell front, we introduce an autonomous bleb detection algorithm that takes in discrete cell boundaries and returns the coordinate location of blebs with its shape characteristics. We are able to identify by microscopy naturally occurring gaps in the cortex prior to membrane detachment at sites of bleb nucleation. These gaps form at positions calculated to have high membrane energy, and are associated with areas of myosin enrichment. Myosin is also shown to accumulate in the cortex prior to bleb initiation and just before the complete disassembly of the cortex. Together our findings provide direct spatial and temporal evidence to support cortex rupture as an intrinsic bleb initiation mechanism and suggests that myosin clusters are associated with regions of high membrane energy where its contractile activity leads to a rupture of the cortex at points of maximal energy.
Collapse
Affiliation(s)
| | - Daniel Grange
- Department of Applied Mathematics, Stony Brook University, New York, New York, United States of America
| | - Devarshi Rawal
- Mathematics and Statistics Department, Hunter College, Manhattan, New York, United States of America
| | - Zully Santiago
- Department of Natural Science, Baruch College, New York, New York, United States of America
| | - John Loustau
- Mathematics and Statistics Department, Hunter College, Manhattan, New York, United States of America
| | - Derrick Brazill
- Biological Science Department, Hunter College, Manhattan, New York, United States of America
- * E-mail:
| |
Collapse
|
3
|
Muñoz-López MJ, Kim H, Mori Y. A Reduced 1D Stochastic Model of Bleb-driven Cell Migration. Biophys J 2022; 121:1881-1896. [PMID: 35450826 PMCID: PMC9199100 DOI: 10.1016/j.bpj.2022.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/01/2021] [Accepted: 04/14/2022] [Indexed: 11/02/2022] Open
Abstract
Blebs are pressure-driven protrusions that have been observed in cells undergoing apoptosis, cytokinesis, or migration, including tumour cells that use blebs to escape their organs of origin. Here, we present a minimal 1D model of bleb-driven cell motion that combines a simple mechanical model with turnover kinetics of the actin cortex and adhesions between the membrane and the cortex. The deterministic version of this model is used to study the properties of individual blebbing events. We further introduce stochastic turnover of the adhesions, which allows for spontaneous initiation of repeated blebbing events, thus leading to sustained cell travel. We explore how the main parameters of the system control the properties of the blebbing events and the speed of cell travel. Finally, we derive a further simplification by deriving a Langevin approximation to this stochastic model.
Collapse
Affiliation(s)
- María Jesús Muñoz-López
- Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hyunjoong Kim
- Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yoichiro Mori
- Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.
| |
Collapse
|
4
|
The Actomyosin Cortex of Cells: A Thin Film of Active Matter. J Indian Inst Sci 2021. [DOI: 10.1007/s41745-020-00220-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
Protein crowding mediates membrane remodeling in upstream ESCRT-induced formation of intraluminal vesicles. Proc Natl Acad Sci U S A 2020; 117:28614-28624. [PMID: 33139578 DOI: 10.1073/pnas.2014228117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
As part of the lysosomal degradation pathway, the endosomal sorting complexes required for transport (ESCRT-0 to -III/VPS4) sequester receptors at the endosome and simultaneously deform the membrane to generate intraluminal vesicles (ILVs). Whereas ESCRT-III/VPS4 have an established function in ILV formation, the role of upstream ESCRTs (0 to II) in membrane shape remodeling is not understood. Combining experimental measurements and electron microscopy analysis of ESCRT-III-depleted cells with a mathematical model, we show that upstream ESCRT-induced alteration of the Gaussian bending rigidity and their crowding in concert with the transmembrane cargo on the membrane induce membrane deformation and facilitate ILV formation: Upstream ESCRT-driven budding does not require ATP consumption as only a small energy barrier needs to be overcome. Our model predicts that ESCRTs do not become part of the ILV, but localize with a high density at the membrane neck, where the steep decline in the Gaussian curvature likely triggers ESCRT-III/VPS4 assembly to enable neck constriction and scission.
Collapse
|
6
|
Lancellotti S, Sacco M, Basso M, De Cristofaro R. Mechanochemistry of von Willebrand factor. Biomol Concepts 2019; 10:194-208. [PMID: 31778361 DOI: 10.1515/bmc-2019-0022] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/25/2019] [Indexed: 12/26/2022] Open
Abstract
Von Willebrand factor (VWF), a blood multimeric protein with a very high molecular weight, plays a crucial role in the primary haemostasis, the physiological process characterized by the adhesion of blood platelets to the injured vessel wall. Hydrodynamic forces are responsible for extensive conformational transitions in the VWF multimers that change their structure from a globular form to a stretched linear conformation. This feature makes this protein particularly prone to be investigated by mechanochemistry, the branch of the biophysical chemistry devoted to investigating the effects of shear forces on protein conformation. This review describes the structural elements of the VWF molecule involved in the biochemical response to shear forces. The stretched VWF conformation favors the interaction with the platelet GpIb and at the same time with ADAMTS-13, the zinc-protease that cleaves VWF in the A2 domain, limiting its prothrombotic capacity. The shear-induced conformational transitions favor also a process of self-aggregation, responsible for the formation of a spider-web like network, particularly efficient in the trapping process of flowing platelets. The investigation of the biophysical effects of shear forces on VWF conformation contributes to unraveling the molecular mechanisms of many types of thrombotic and haemorrhagic syndromes.
Collapse
Affiliation(s)
- Stefano Lancellotti
- Servizio Malattie Emorragiche e Trombotiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Monica Sacco
- Istituto di Medicina Interna e Geriatria, Facoltà di Medicina e Chirurgia "A. Gemelli", Università Cattolica S. Cuore, Roma, Italy
| | - Maria Basso
- Servizio Malattie Emorragiche e Trombotiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Raimondo De Cristofaro
- Servizio Malattie Emorragiche e Trombotiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy.,Istituto di Medicina Interna e Geriatria, Facoltà di Medicina e Chirurgia "A. Gemelli", Università Cattolica S. Cuore, Roma, Italy
| |
Collapse
|
7
|
Liu K, Lowengrub J, Allard J. Efficient simulation of thermally fluctuating biopolymers immersed in fluids on 1-micron, 1-second scales. JOURNAL OF COMPUTATIONAL PHYSICS 2019; 386:248-263. [PMID: 31787778 PMCID: PMC6884323 DOI: 10.1016/j.jcp.2018.12.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The combination of fluid-structure interactions with stochasticity, due to thermal fluctuations, remains a challenging problem in computational fluid dynamics. We develop an efficient scheme based on the stochastic immersed boundary method, Stokeslets, and multiple timestepping. We test our method for spherical particles and filaments under purely thermal and deterministic forces and find good agreement with theoretical predictions for Brownian Motion of a particle and equilibrium thermal undulations of a semi-flexible filament. As an initial application, we simulate bio-filaments with the properties of F-actin. We specifically study the average time for two nearby parallel filaments to bundle together. Interestingly, we find a two-fold acceleration in this time between simulations that account for long-range hydrodynamics compared to those that do not, suggesting that our method will reveal significant hydrodynamic effects in biological phenomena.
Collapse
Affiliation(s)
- Kai Liu
- Department of Mathematics, University of California at Irvine
| | - John Lowengrub
- Department of Mathematics, University of California at Irvine
- Center for Complex Biological Systems, University of California at Irvine
- Department of Biomedical Engineering, University of California at Irvine
| | - Jun Allard
- Department of Mathematics, University of California at Irvine
- Center for Complex Biological Systems, University of California at Irvine
- Department of Physics, University of California at Irvine
| |
Collapse
|
8
|
Liu K, Chu B, Newby J, Read EL, Lowengrub J, Allard J. Hydrodynamics of transient cell-cell contact: The role of membrane permeability and active protrusion length. PLoS Comput Biol 2019; 15:e1006352. [PMID: 31022168 PMCID: PMC6504115 DOI: 10.1371/journal.pcbi.1006352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 05/07/2019] [Accepted: 02/01/2019] [Indexed: 11/19/2022] Open
Abstract
In many biological settings, two or more cells come into physical contact to form a cell-cell interface. In some cases, the cell-cell contact must be transient, forming on timescales of seconds. One example is offered by the T cell, an immune cell which must attach to the surface of other cells in order to decipher information about disease. The aspect ratio of these interfaces (tens of nanometers thick and tens of micrometers in diameter) puts them into the thin-layer limit, or "lubrication limit", of fluid dynamics. A key question is how the receptors and ligands on opposing cells come into contact. What are the relative roles of thermal undulations of the plasma membrane and deterministic forces from active filopodia? We use a computational fluid dynamics algorithm capable of simulating 10-nanometer-scale fluid-structure interactions with thermal fluctuations up to seconds- and microns-scales. We use this to simulate two opposing membranes, variously including thermal fluctuations, active forces, and membrane permeability. In some regimes dominated by thermal fluctuations, proximity is a rare event, which we capture by computing mean first-passage times using a Weighted Ensemble rare-event computational method. Our results demonstrate a parameter regime in which the time it takes for an active force to drive local contact actually increases if the cells are being held closer together (e.g., by nonspecific adhesion), a phenomenon we attribute to the thin-layer effect. This leads to an optimal initial cell-cell separation for fastest receptor-ligand binding, which could have relevance for the role of cellular protrusions like microvilli. We reproduce a previous experimental observation that fluctuation spatial scales are largely unaffected, but timescales are dramatically slowed, by the thin-layer effect. We also find that membrane permeability would need to be above physiological levels to abrogate the thin-layer effect.
Collapse
Affiliation(s)
- Kai Liu
- Department of Mathematics, University of California Irvine, Irvine, California, United States of America
- Center for Mathematical Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Brian Chu
- Department of Chemical Engineering and Materials Science, University of California Irvine, Irvine, California, United States of America
| | - Jay Newby
- Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada
| | - Elizabeth L. Read
- Department of Chemical Engineering and Materials Science, University of California Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California Irvine, Irvine, California, United States of America
| | - John Lowengrub
- Department of Mathematics, University of California Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California Irvine, Irvine, California, United States of America
| | - Jun Allard
- Department of Mathematics, University of California Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California Irvine, Irvine, California, United States of America
- Department of Physics and Astronomy, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
9
|
Othmer HG. Eukaryotic Cell Dynamics from Crawlers to Swimmers. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018; 9. [PMID: 30854030 DOI: 10.1002/wcms.1376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Movement requires force transmission to the environment, and motile cells are robustly, though not elegantly, designed nanomachines that often can cope with a variety of environmental conditions by altering the mode of force transmission used. As with humans, the available modes range from momentary attachment to a substrate when crawling, to shape deformations when swimming, and at the cellular level this involves sensing the mechanical properties of the environment and altering the mode appropriately. While many types of cells can adapt their mode of movement to their microenvironment (ME), our understanding of how they detect, transduce and process information from the ME to determine the optimal mode is still rudimentary. The shape and integrity of a cell is determined by its cytoskeleton (CSK), and thus the shape changes that may be required to move involve controlled remodeling of the CSK. Motion in vivo is often in response to extracellular signals, which requires the ability to detect such signals and transduce them into the shape changes and force generation needed for movement. Thus the nanomachine is complex, and while much is known about individual components involved in movement, an integrated understanding of motility in even simple cells such as bacteria is not at hand. In this review we discuss recent advances in our understanding of cell motility and some of the problems remaining to be solved.
Collapse
Affiliation(s)
- H G Othmer
- School of Mathematics, University of Minnesota
| |
Collapse
|
10
|
Wu Z, Su M, Tong C, Wu M, Liu J. Membrane shape-mediated wave propagation of cortical protein dynamics. Nat Commun 2018; 9:136. [PMID: 29321558 PMCID: PMC5762918 DOI: 10.1038/s41467-017-02469-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 12/01/2017] [Indexed: 11/15/2022] Open
Abstract
Immune cells exhibit stimulation-dependent traveling waves in the cortex, much faster than typical cortical actin waves. These waves reflect rhythmic assembly of both actin machinery and peripheral membrane proteins such as F-BAR domain-containing proteins. Combining theory and experiments, we develop a mechanochemical feedback model involving membrane shape changes and F-BAR proteins that render the cortex an interesting dynamical system. We show that such cortical dynamics manifests itself as ultrafast traveling waves of cortical proteins, in which the curvature sensitivity-driven feedback always constrains protein lateral diffusion in wave propagation. The resulting protein wave propagation mainly reflects the spatial gradient in the timing of local protein recruitment from cytoplasm. We provide evidence that membrane undulations accompany these protein waves and potentiate their propagation. Therefore, membrane shape change and protein curvature sensitivity may have underappreciated roles in setting high-speed cortical signal transduction rhythms. Traveling waves in the cell cortex can propagate much faster than actin waves, and the mechanism is unknown. Here the authors propose a mechanochemical feedback model for traveling waves that incorporates membrane shape changes and recruitment of F-BAR proteins that enables fast wave propagation.
Collapse
Affiliation(s)
- Zhanghan Wu
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maohan Su
- Department of Biological Sciences, Centre for Bioimaging Sciences, Mechanobiology Institute, National University of Singapore, Singapore, 117557, Singapore
| | - Cheesan Tong
- Department of Biological Sciences, Centre for Bioimaging Sciences, Mechanobiology Institute, National University of Singapore, Singapore, 117557, Singapore
| | - Min Wu
- Department of Biological Sciences, Centre for Bioimaging Sciences, Mechanobiology Institute, National University of Singapore, Singapore, 117557, Singapore.
| | - Jian Liu
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
11
|
Okuda S, Eiraku M. Role of molecular turnover in dynamic deformation of a three-dimensional cellular membrane. Biomech Model Mechanobiol 2017; 16:1805-1818. [PMID: 28555369 PMCID: PMC5599494 DOI: 10.1007/s10237-017-0920-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/13/2017] [Indexed: 11/26/2022]
Abstract
In cells, the molecular constituents of membranes are dynamically turned over by transportation from one membrane to another. This molecular turnover causes the membrane to shrink or expand by sensing the stress state within the cell, changing its morphology. At present, little is known as to how this turnover regulates the dynamic deformation of cellular membranes. In this study, we propose a new physical model by which molecular turnover is coupled with three-dimensional membrane deformation to explore mechanosensing roles of turnover in cellular membrane deformations. In particular, as an example of microscopic machinery, based on a coarse-graining description, we suppose that molecular turnover depends on the local membrane strain. Using the proposed model, we demonstrate computational simulations of a single vesicle. The results show that molecular turnover adaptively facilitates vesicle deformation, owing to its stress dependence; while the vesicle drastically expands in the case with low bending rigidity, it shrinks in that with high bending rigidity. Moreover, localized active tension on the membrane causes cellular migration by driving the directional transport of molecules within the cell. These results illustrate the use of the proposed model as well as the role of turnover in the dynamic deformations of cellular membranes.
Collapse
Affiliation(s)
- Satoru Okuda
- Laboratory for in vitro Histogenesis, Center for Developmental Biology (CDB), RIKEN, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
- JST PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Mototsugu Eiraku
- Laboratory for in vitro Histogenesis, Center for Developmental Biology (CDB), RIKEN, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| |
Collapse
|
12
|
Arroyo M, Trepat X. Hydraulic fracturing in cells and tissues: fracking meets cell biology. Curr Opin Cell Biol 2016; 44:1-6. [PMID: 27936415 DOI: 10.1016/j.ceb.2016.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/10/2016] [Indexed: 01/23/2023]
Abstract
The animal body is largely made of water. A small fraction of body water is freely flowing in blood and lymph, but most of it is trapped in hydrogels such as the extracellular matrix (ECM), the cytoskeleton, and chromatin. Besides providing a medium for biological molecules to diffuse, water trapped in hydrogels plays a fundamental mechanical role. This role is well captured by the theory of poroelasticity, which explains how any deformation applied to a hydrogel causes pressure gradients and water flows, much like compressing a sponge squeezes water out of it. Here we review recent evidence that poroelastic pressures and flows can fracture essential biological barriers such as the nuclear envelope, the cellular cortex, and epithelial layers. This type of fracture is known in engineering literature as hydraulic fracturing or 'fracking'.
Collapse
Affiliation(s)
- Marino Arroyo
- Universitat Politècnica de Catalunya-BarcelonaTech, Spain.
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia, Barcelona, Spain; Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain.
| |
Collapse
|