1
|
Ma J, Yan L, Yang J, He Y, Wu L. Effect of Modification Strategies on the Biological Activity of Peptides/Proteins. Chembiochem 2024; 25:e202300481. [PMID: 38009768 DOI: 10.1002/cbic.202300481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 11/29/2023]
Abstract
Covalent attachment of biologically active peptides/proteins with functional moieties is an effective strategy to control their biodistribution, pharmacokinetics, enzymatic digestion, and toxicity. This review focuses on the characteristics of different modification strategies and their effects on the biological activity of peptides/proteins and illustrates their relevant applications and potential.
Collapse
Affiliation(s)
- Jian Ma
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Yan
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingkui Yang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujian He
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Li Wu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
2
|
Raskar T, Niebling S, Devos JM, Yorke BA, Härtlein M, Huse N, Forsyth VT, Seydel T, Pearson AR. Structure and diffusive dynamics of aspartate α-decarboxylase (ADC) liganded with D-serine in aqueous solution. Phys Chem Chem Phys 2022; 24:20336-20347. [PMID: 35980136 PMCID: PMC9429672 DOI: 10.1039/d2cp02063g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Incoherent neutron spectroscopy, in combination with dynamic light scattering, was used to investigate the effect of ligand binding on the center-of-mass self-diffusion and internal diffusive dynamics of Escherichia coli aspartate α-decarboxylase (ADC). The X-ray crystal structure of ADC in complex with the d-serine inhibitor was also determined, and molecular dynamics simulations were used to further probe the structural rearrangements that occur as a result of ligand binding. These experiments reveal that d-serine forms hydrogen bonds with some of the active site residues, that higher order oligomers of the ADC tetramer exist on ns–ms time-scales, and also show that ligand binding both affects the ADC internal diffusive dynamics and appears to further increase the size of the higher order oligomers. Neutron spectroscopy, dynamic light scattering, X-ray diffraction, and MD-simulations were used to investigate the effect of ligand binding on the structure and diffusive dynamics of Escherichia coli aspartate alpha-decarboxylase.![]()
Collapse
Affiliation(s)
- Tushar Raskar
- Institut Max von Laue - Paul Langevin, 71 Avenue des Martyrs, Grenoble 38000, France. .,Partnership for Structural Biology, 71 Avenue des Martyrs, Grenoble 38000, France.,Institute for Nanostructure and Solid State Physics, Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, Hamburg, 22761, Germany.
| | - Stephan Niebling
- Institute for Nanostructure and Solid State Physics, Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, Hamburg, 22761, Germany. .,European Molecular Biology Laboratory, Hamburg, Notkestr. 85, 22607 Hamburg, Germany
| | - Juliette M Devos
- Institut Max von Laue - Paul Langevin, 71 Avenue des Martyrs, Grenoble 38000, France. .,Partnership for Structural Biology, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Briony A Yorke
- School of Chemistry and Bioscience, University of Bradford, Bradford, BD7 1DP, UK
| | - Michael Härtlein
- Institut Max von Laue - Paul Langevin, 71 Avenue des Martyrs, Grenoble 38000, France. .,Partnership for Structural Biology, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Nils Huse
- Institute for Nanostructure and Solid State Physics, Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, Hamburg, 22761, Germany.
| | - V Trevor Forsyth
- Institut Max von Laue - Paul Langevin, 71 Avenue des Martyrs, Grenoble 38000, France. .,Partnership for Structural Biology, 71 Avenue des Martyrs, Grenoble 38000, France.,Faculty of Natural Sciences, Keele University, Staffordshire, ST5 5BG, UK
| | - Tilo Seydel
- Institut Max von Laue - Paul Langevin, 71 Avenue des Martyrs, Grenoble 38000, France.
| | - Arwen R Pearson
- Institute for Nanostructure and Solid State Physics, Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, Hamburg, 22761, Germany.
| |
Collapse
|
3
|
How multisite phosphorylation impacts the conformations of intrinsically disordered proteins. PLoS Comput Biol 2021; 17:e1008939. [PMID: 33945530 PMCID: PMC8148376 DOI: 10.1371/journal.pcbi.1008939] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 05/25/2021] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
Phosphorylation of intrinsically disordered proteins (IDPs) can produce changes in structural and dynamical properties and thereby mediate critical biological functions. How phosphorylation effects intrinsically disordered proteins has been studied for an increasing number of IDPs, but a systematic understanding is still lacking. Here, we compare the collapse propensity of four disordered proteins, Ash1, the C-terminal domain of RNA polymerase (CTD2’), the cytosolic domain of E-Cadherin, and a fragment of the p130Cas, in unphosphorylated and phosphorylated forms using extensive all-atom molecular dynamics (MD) simulations. We find all proteins to show V-shape changes in their collapse propensity upon multi-site phosphorylation according to their initial net charge: phosphorylation expands neutral or overall negatively charged IDPs and shrinks positively charged IDPs. However, force fields including those tailored towards and commonly used for IDPs overestimate these changes. We find quantitative agreement of MD results with SAXS and NMR data for Ash1 and CTD2’ only when attenuating protein electrostatic interactions by using a higher salt concentration (e.g. 350 mM), highlighting the overstabilization of salt bridges in current force fields. We show that phosphorylation of IDPs also has a strong impact on the solvation of the protein, a factor that in addition to the actual collapse or expansion of the IDP should be considered when analyzing SAXS data. Compared to the overall mild change in global IDP dimension, the exposure of active sites can change significantly upon phosphorylation, underlining the large susceptibility of IDP ensembles to regulation through post-translational modifications. Intrinsically disordered proteins (IDPs) are a class of proteins that lack secondary and tertiary structures and instead explore a broad conformational ensemble. Their functions, from transcriptional regulation to signal transmission, are tightly regulated. IDPs are subject of extensive reversible post-translational modifications (PTMs), such as phosphorylation, methylation and glycosylation. Among these PTMs, phosphorylation is one of the most common and important PTMs. However, the mechanism of how phosphorylation affects the conformations and functions of IDPs remains unclear. To answer this question, we have performed extensive all-atom molecular dynamics simulations for four representative IDPs: Ash1, E-Cadherin, CTD2’ and p130Cas in their unphosphorylated and phosphorylated forms. Our results showed that all IDPs undergo a mild change upon multi-site phosphorylation, which is V-shaped: phosphorylation moderately expands neutral or overall negatively charged IDPs and shrinks positively charged IDPs. More importantly, in two of these IDPs, only two biologically relevant phosphorylation sites suffice to render the adjacent negatively charged active site significantly more exposed to the environment, which implies a higher probability to interact with other binding partners.
Collapse
|
4
|
Mateos B, Holzinger J, Conrad-Billroth C, Platzer G, Żerko S, Sealey-Cardona M, Anrather D, Koźmiński W, Konrat R. Hyperphosphorylation of Human Osteopontin and Its Impact on Structural Dynamics and Molecular Recognition. Biochemistry 2021; 60:1347-1355. [PMID: 33876640 PMCID: PMC8154273 DOI: 10.1021/acs.biochem.1c00050] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/13/2021] [Indexed: 12/26/2022]
Abstract
Protein phosphorylation is an abundant post-translational modification (PTM) and an essential modulator of protein functionality in living cells. Intrinsically disordered proteins (IDPs) are particular targets of PTM protein kinases due to their involvement in fundamental protein interaction networks. Despite their dynamic nature, IDPs are far from having random-coil conformations but exhibit significant structural heterogeneity. Changes in the molecular environment, most prominently in the form of PTM via phosphorylation, can modulate these structural features. Therefore, how phosphorylation events can alter conformational ensembles of IDPs and their interactions with binding partners is of great interest. Here we study the effects of hyperphosphorylation on the IDP osteopontin (OPN), an extracellular target of the Fam20C kinase. We report a full characterization of the phosphorylation sites of OPN using a combined nuclear magnetic resonance/mass spectrometry approach and provide evidence for an increase in the local flexibility of highly phosphorylated regions and the ensuing overall structural elongation. Our study emphasizes the simultaneous importance of electrostatic and hydrophobic interactions in the formation of compact substates in IDPs and their relevance for molecular recognition events.
Collapse
Affiliation(s)
- Borja Mateos
- Department
of Structural and Computational Biology, University of Vienna, Max Perutz Labs, Vienna BioCenter Campus 5, 1030 Vienna, Austria
| | - Julian Holzinger
- Department
of Structural and Computational Biology, University of Vienna, Max Perutz Labs, Vienna BioCenter Campus 5, 1030 Vienna, Austria
| | - Clara Conrad-Billroth
- Department
of Structural and Computational Biology, University of Vienna, Max Perutz Labs, Vienna BioCenter Campus 5, 1030 Vienna, Austria
| | - Gerald Platzer
- Department
of Structural and Computational Biology, University of Vienna, Max Perutz Labs, Vienna BioCenter Campus 5, 1030 Vienna, Austria
| | - Szymon Żerko
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02093 Warsaw, Poland
| | | | - Dorothea Anrather
- Mass
Spectrometry Facility, Max Perutz Laboratories, Vienna BioCenter Campus 5, Dr. Bohr
Gasse 3, 1030 Vienna, Austria
| | - Wiktor Koźmiński
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02093 Warsaw, Poland
| | - Robert Konrat
- Department
of Structural and Computational Biology, University of Vienna, Max Perutz Labs, Vienna BioCenter Campus 5, 1030 Vienna, Austria
| |
Collapse
|
5
|
Argudo PG, Giner-Casares JJ. Folding and self-assembly of short intrinsically disordered peptides and protein regions. NANOSCALE ADVANCES 2021; 3:1789-1812. [PMID: 36133101 PMCID: PMC9417027 DOI: 10.1039/d0na00941e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/17/2021] [Indexed: 05/15/2023]
Abstract
Proteins and peptide fragments are highly relevant building blocks in self-assembly for nanostructures with plenty of applications. Intrinsically disordered proteins (IDPs) and protein regions (IDRs) are defined by the absence of a well-defined secondary structure, yet IDPs/IDRs show a significant biological activity. Experimental techniques and computational modelling procedures for the characterization of IDPs/IDRs are discussed. Directed self-assembly of IDPs/IDRs allows reaching a large variety of nanostructures. Hybrid materials based on the derivatives of IDPs/IDRs show a promising performance as alternative biocides and nanodrugs. Cell mimicking, in vivo compartmentalization, and bone regeneration are demonstrated for IDPs/IDRs in biotechnological applications. The exciting possibilities of IDPs/IDRs in nanotechnology with relevant biological applications are shown.
Collapse
Affiliation(s)
- Pablo G Argudo
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO 16 Avenue Pey-Berland 33600 Pessac France
| | - Juan J Giner-Casares
- Departamento de Química Física y T. Aplicada, Instituto Universitario de Nanoquímica IUNAN, Facultad de Ciencias, Universidad de Córdoba (UCO) Campus de Rabanales, Ed. Marie Curie E-14071 Córdoba Spain
| |
Collapse
|
6
|
Iline-Vul T, Nanda R, Mateos B, Hazan S, Matlahov I, Perelshtein I, Keinan-Adamsky K, Althoff-Ospelt G, Konrat R, Goobes G. Osteopontin regulates biomimetic calcium phosphate crystallization from disordered mineral layers covering apatite crystallites. Sci Rep 2020; 10:15722. [PMID: 32973201 PMCID: PMC7518277 DOI: 10.1038/s41598-020-72786-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023] Open
Abstract
Details of apatite formation and development in bone below the nanometer scale remain enigmatic. Regulation of mineralization was shown to be governed by the activity of non-collagenous proteins with many bone diseases stemming from improper activity of these proteins. Apatite crystal growth inhibition or enhancement is thought to involve direct interaction of these proteins with exposed faces of apatite crystals. However, experimental evidence of the molecular binding events that occur and that allow these proteins to exert their functions are lacking. Moreover, recent high-resolution measurements of apatite crystallites in bone have shown that individual crystallites are covered by a persistent layer of amorphous calcium phosphate. It is therefore unclear whether non-collagenous proteins can interact with the faces of the mineral crystallites directly and what are the consequences of the presence of a disordered mineral layer to their functionality. In this work, the regulatory effect of recombinant osteopontin on biomimetic apatite is shown to produce platelet-shaped apatite crystallites with disordered layers coating them. The protein is also shown to regulate the content and properties of the disordered mineral phase (and sublayers within it). Through solid-state NMR atomic carbon-phosphorous distance measurements, the protein is shown to be located in the disordered phases, reaching out to interact with the surfaces of the crystals only through very few sidechains. These observations suggest that non-phosphorylated osteopontin acts as regulator of the coating mineral layers and exerts its effect on apatite crystal growth processes mostly from afar with a limited number of contact points with the crystal.
Collapse
Affiliation(s)
- Taly Iline-Vul
- Department of Chemistry, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Raju Nanda
- Department of Chemistry, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Borja Mateos
- Max F. Perutz Laboratories, Department of Computational and Structural Biology, University of Vienna, 1030, Vienna, Austria
| | - Shani Hazan
- Department of Chemistry, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Irina Matlahov
- Department of Chemistry, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Ilana Perelshtein
- Department of Chemistry, Bar Ilan University, 5290002, Ramat Gan, Israel
| | | | | | - Robert Konrat
- Max F. Perutz Laboratories, Department of Computational and Structural Biology, University of Vienna, 1030, Vienna, Austria
| | - Gil Goobes
- Department of Chemistry, Bar Ilan University, 5290002, Ramat Gan, Israel.
| |
Collapse
|
7
|
Structural Biology of Calcium Phosphate Nanoclusters Sequestered by Phosphoproteins. CRYSTALS 2020. [DOI: 10.3390/cryst10090755] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biofluids that contain stable calcium phosphate nanoclusters sequestered by phosphopeptides make it possible for soft and hard tissues to co-exist in the same organism with relative ease. The stability diagram of a solution of nanocluster complexes shows how the minimum concentration of phosphopeptide needed for stability increases with pH. In the stable region, amorphous calcium phosphate cannot precipitate. Nevertheless, if the solution is brought into contact with hydroxyapatite, the crystalline phase will grow at the expense of the nanocluster complexes. The physico-chemical principles governing the formation, composition, size, structure, and stability of the complexes are described. Examples are given of complexes formed by casein, osteopontin, and recombinant phosphopeptides. Application of these principles and properties to blood serum, milk, urine, and resting saliva is described to show that under physiological conditions they are in the stable region of their stability diagram and so cannot cause soft tissue calcification. Stimulated saliva, however, is in the metastable region, consistent with its role in tooth remineralization. Destabilization of biofluids, with consequential ill-effects, can occur when there is a failure of homeostasis, such as an increase in pH without a balancing increase in the concentration of sequestering phosphopeptides.
Collapse
|
8
|
Zhou S, Hu M, Huang X, Zhou N, Zhang Z, Wang M, Liu Y, He L. Electrospun zirconium oxide embedded in graphene-like nanofiber for aptamer-based impedimetric bioassay toward osteopontin determination. Mikrochim Acta 2020; 187:219. [PMID: 32166466 DOI: 10.1007/s00604-020-4187-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/24/2020] [Indexed: 12/28/2022]
Abstract
An impedimetric bioassay was constructed based on a nanohybrid of zirconium oxide nanoparticles and graphene-like nanofiber (denoted by ZrO2@GNF) for the determination of osteopontin (OPN). A series of ZrO2@GNF nanohybrids with different morphologies and nanostructures were derived from zirconium-based metal-organic frameworks (UiO-66) entrapped within the electric spun polyacrylonitrile (PAN) fiber (represented by UiO-66@PAN) by calcination at different temperatures. The basic characterizations revealed that the UiO-66@PAN nanofibers were collapsed into short nanorods. As such, homogeneously distributed ZrO2 nanoparticles were found to be embedded within the GNF nanostructure. This transition in the chemical structure and nanostructure not only can greatly enhance the electrochemical conductivity of the nanohybrid but also can strengthen the adsorbed bioaffinity toward OPN aptamer strands. As compared with bioassays based on ZrO2@GNF calcined at 500 °C and 900 °C, the ZrO2@GNF nanohybrid obtained at 700 °C (ZrO2@GNF700) demonstrated superior sensing performance, showing a determination limit of 4.76 fg mL-1 within a OPN concentration ranging 0.01 pg mL-1 to 2.0 ng mL-1. It also displayed high selectivity, accompanied by good reproducibility and stability, acceptable applicability, and excellent repeatability. Graphical abstractSchematic representation of an impedimetric aptasensor based on nanohybrids of zirconium oxide nanoparticles and graphene-like nanofiber (ZrO2@CNF) was constructed for osteopontin detection. The ZrO2@CNF700 nanohybrid-based aptasensor demonstrated superior sensing performances, providing a promising tool for detecting cancer markers in biomedical diagnosis.
Collapse
Affiliation(s)
- Sijie Zhou
- The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, People's Republic of China
| | - Mengyao Hu
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Xiaoyu Huang
- The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, People's Republic of China
| | - Nan Zhou
- The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, People's Republic of China.
| | - Zhihong Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China.
| | - Minghua Wang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Yang Liu
- The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, People's Republic of China
| | - Linghao He
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
9
|
Rieloff E, Skepö M. Phosphorylation of a Disordered Peptide-Structural Effects and Force Field Inconsistencies. J Chem Theory Comput 2020; 16:1924-1935. [PMID: 32050065 DOI: 10.1021/acs.jctc.9b01190] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Phosphorylation is one of the most abundant types of post-translational modifications of intrinsically disordered proteins (IDPs). This study examines the conformational changes in the 15-residue-long N-terminal fragment of the IDP statherin upon phosphorylation, using computer simulations with two different force fields: AMBER ff99SB-ILDN and CHARMM36m. The results from the simulations are compared with experimental small-angle X-ray scattering (SAXS) and circular dichroism data. In the unphosphorylated state, the two force fields are in excellent agreement regarding global structural properties such as size and shape. However, they exhibit some differences in the extent and type of the secondary structure. In the phosphorylated state, neither of the force fields performs well compared to the experimental data. Both force fields show a compaction of the peptide upon phosphorylation, greater than what is seen in SAXS experiments, although they differ in the local structure. While the CHARMM force field increases the fraction of bends in the peptide as a response to strong interactions between the phosphorylated residues and arginines, the AMBER force field shows an increase of the helical content in the N-terminal part of the peptide, where the phosphorylated residues reside, in better agreement with circular dichroism results.
Collapse
Affiliation(s)
- Ellen Rieloff
- Division of Theoretical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Marie Skepö
- Division of Theoretical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.,LINXS-Lund Institute of Advanced Neutron and X-ray Science, Scheelevägen 19, SE-223 70 Lund, Sweden
| |
Collapse
|
10
|
Mukama O, Wu W, Wu J, Lu X, Liu Y, Liu Y, Liu J, Zeng L. A highly sensitive and specific lateral flow aptasensor for the detection of human osteopontin. Talanta 2019; 210:120624. [PMID: 31987218 DOI: 10.1016/j.talanta.2019.120624] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/02/2019] [Accepted: 12/07/2019] [Indexed: 10/25/2022]
Abstract
The rapid determination of human osteopontin (OPN) protein, a potential cancer biomarker, holds substantial promise for point-of-care diagnostics and biomedical applications. To date, most reported platforms for OPN detection are apparatus-dependent, time-consuming, and expensive. Herein, we established a lateral flow biosensor (LFB) for OPN detection. A biotinylated aptamer was used for OPN pre-capture from samples, an antibody for OPN was immobilized on the test line for a second specific target identification, and streptavidin-modified gold nanoparticles were sprayed on the conjugation pad for color detection. This LFB achieved as low as 0.1 ng mL-1 OPN sensitivity with a good dynamic detection between 10 and 500 ng mL-1 within 5 min. Intriguingly, the LFB allowed a qualitative and semi-quantitative detection of OPN in serum at clinically cut-off levels as in cancer patients, and can discriminate OPN from interfering proteins with high specificity. Thus, it is a promising alterative approach for point-of-care OPN screening and detection.
Collapse
Affiliation(s)
- Omar Mukama
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Department of Applied Biology, College of Science and Technology, University of Rwanda, Avenue de l'armée, P.O. Box: 3900, Kigali, Rwanda; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Wei Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jinghua Wu
- School of Food Science and Engineering, Foshan University, Foshan, 528231, China
| | - Xuewen Lu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yumei Liu
- School of Food Science and Engineering, Foshan University, Foshan, 528231, China
| | - Yujie Liu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jiaxin Liu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Lingwen Zeng
- School of Food Science and Engineering, Foshan University, Foshan, 528231, China.
| |
Collapse
|
11
|
Fagerberg E, Lenton S, Skepö M. Evaluating Models of Varying Complexity of Crowded Intrinsically Disordered Protein Solutions Against SAXS. J Chem Theory Comput 2019; 15:6968-6983. [DOI: 10.1021/acs.jctc.9b00723] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Eric Fagerberg
- Theoretical Chemistry, Lund University, POB 124, SE-221 00 Lund, Sweden
| | - Samuel Lenton
- Theoretical Chemistry, Lund University, POB 124, SE-221 00 Lund, Sweden
- LINXS - Lund Institute of Advanced Neutron and X-ray Science, Scheelevägen 19, 223 70 Lund, Sweden
| | - Marie Skepö
- Theoretical Chemistry, Lund University, POB 124, SE-221 00 Lund, Sweden
- LINXS - Lund Institute of Advanced Neutron and X-ray Science, Scheelevägen 19, 223 70 Lund, Sweden
| |
Collapse
|
12
|
Karamanos TK, Jackson MP, Calabrese AN, Goodchild SC, Cawood EE, Thompson GS, Kalverda AP, Hewitt EW, Radford SE. Structural mapping of oligomeric intermediates in an amyloid assembly pathway. eLife 2019; 8:e46574. [PMID: 31552823 PMCID: PMC6783270 DOI: 10.7554/elife.46574] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 09/24/2019] [Indexed: 01/02/2023] Open
Abstract
Transient oligomers are commonly formed in the early stages of amyloid assembly. Determining the structure(s) of these species and defining their role(s) in assembly is key to devising new routes to control disease. Here, using a combination of chemical kinetics, NMR spectroscopy and other biophysical methods, we identify and structurally characterize the oligomers required for amyloid assembly of the protein ΔN6, a truncation variant of human β2-microglobulin (β2m) found in amyloid deposits in the joints of patients with dialysis-related amyloidosis. The results reveal an assembly pathway which is initiated by the formation of head-to-head non-toxic dimers and hexamers en route to amyloid fibrils. Comparison with inhibitory dimers shows that precise subunit organization determines amyloid assembly, while dynamics in the C-terminal strand hint to the initiation of cross-β structure formation. The results provide a detailed structural view of early amyloid assembly involving structured species that are not cytotoxic.
Collapse
Affiliation(s)
- Theodoros K Karamanos
- The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUnited Kingdom
- School of Molecular and Cellular BiologyUniversity of LeedsLeedsUnited Kingdom
| | - Matthew P Jackson
- The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUnited Kingdom
- School of Molecular and Cellular BiologyUniversity of LeedsLeedsUnited Kingdom
| | - Antonio N Calabrese
- The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUnited Kingdom
- School of Molecular and Cellular BiologyUniversity of LeedsLeedsUnited Kingdom
| | - Sophia C Goodchild
- The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUnited Kingdom
- School of Molecular and Cellular BiologyUniversity of LeedsLeedsUnited Kingdom
| | - Emma E Cawood
- The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUnited Kingdom
- School of Molecular and Cellular BiologyUniversity of LeedsLeedsUnited Kingdom
| | - Gary S Thompson
- The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUnited Kingdom
- School of Molecular and Cellular BiologyUniversity of LeedsLeedsUnited Kingdom
| | - Arnout P Kalverda
- The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUnited Kingdom
- School of Molecular and Cellular BiologyUniversity of LeedsLeedsUnited Kingdom
| | - Eric W Hewitt
- The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUnited Kingdom
- School of Molecular and Cellular BiologyUniversity of LeedsLeedsUnited Kingdom
| | - Sheena E Radford
- The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUnited Kingdom
- School of Molecular and Cellular BiologyUniversity of LeedsLeedsUnited Kingdom
| |
Collapse
|
13
|
Abstract
AbstractThe dynamics of proteins in solution includes a variety of processes, such as backbone and side-chain fluctuations, interdomain motions, as well as global rotational and translational (i.e. center of mass) diffusion. Since protein dynamics is related to protein function and essential transport processes, a detailed mechanistic understanding and monitoring of protein dynamics in solution is highly desirable. The hierarchical character of protein dynamics requires experimental tools addressing a broad range of time- and length scales. We discuss how different techniques contribute to a comprehensive picture of protein dynamics, and focus in particular on results from neutron spectroscopy. We outline the underlying principles and review available instrumentation as well as related analysis frameworks.
Collapse
|
14
|
Dynamical Oligomerisation of Histidine Rich Intrinsically Disordered ProteinS Is Regulated through Zinc-Histidine Interactions. Biomolecules 2019; 9:biom9050168. [PMID: 31052346 PMCID: PMC6571702 DOI: 10.3390/biom9050168] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 12/19/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) can form functional oligomers and in some cases, insoluble disease related aggregates. It is therefore vital to understand processes and mechanisms that control pathway distribution. Divalent cations including Zn2+ can initiate IDP oligomerisation through the interaction with histidine residues but the mechanisms of doing so are far from understood. Here we apply a multi-disciplinary approach using small angle X-ray scattering, nuclear magnetic resonance spectroscopy, calorimetry and computations to show that that saliva protein Histatin 5 forms highly dynamic oligomers in the presence of Zn2+. The process is critically dependent upon interaction between Zn2+ ions and distinct histidine rich binding motifs which allows for thermodynamic switching between states. We propose a molecular mechanism of oligomerisation, which may be generally applicable to other histidine rich IDPs. Finally, as Histatin 5 is an important saliva component, we suggest that Zn2+ induced oligomerisation may be crucial for maintaining saliva homeostasis.
Collapse
|
15
|
Carver JA, Holt C. Functional and dysfunctional folding, association and aggregation of caseins. PROTEIN MISFOLDING 2019; 118:163-216. [DOI: 10.1016/bs.apcsb.2019.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Vural D, Smith JC, Glyde HR. Determination of Dynamical Heterogeneity from Dynamic Neutron Scattering of Proteins. Biophys J 2018; 114:2397-2407. [PMID: 29580551 DOI: 10.1016/j.bpj.2018.02.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/26/2018] [Accepted: 02/12/2018] [Indexed: 02/04/2023] Open
Abstract
Motional displacements of hydrogen (H) in proteins can be measured using incoherent neutron-scattering methods. These displacements can also be calculated numerically using data from molecular dynamics simulations. An enormous amount of data on the average mean-square motional displacement (MSD) of H as a function of protein temperature, hydration, and other conditions has been collected. H resides in a wide spectrum of sites in a protein. Some H are tightly bound to molecular chains, and the H motion is dictated by that of the chain. Other H are quite independent. As a result, there is a distribution of motions and MSDs of H within a protein that is denoted dynamical heterogeneity. The goal of this paper is to incorporate a distribution of MSDs into models of the H incoherent intermediate scattering function, I(Q,t), that is calculated and observed. The aim is to contribute information on the distribution as well as on the average MSD from comparison of the models with simulations and experiment. For example, we find that simulations of I(Q,t) in lysozyme are well reproduced if the distribution of MSDs is bimodal with two broad peaks rather than a single broad peak.
Collapse
Affiliation(s)
- Derya Vural
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware; Department of Physics, Giresun University, Giresun, Turkey.
| | - Jeremy C Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Henry R Glyde
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware
| |
Collapse
|
17
|
La Penna G, Chelli R. Structural Insights into the Osteopontin-Aptamer Complex by Molecular Dynamics Simulations. Front Chem 2018; 6:2. [PMID: 29441346 PMCID: PMC5797602 DOI: 10.3389/fchem.2018.00002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/08/2018] [Indexed: 12/17/2022] Open
Abstract
Osteopontin is an intrinsically disordered protein involved in tissue remodeling. As a biomarker for pathological hypertrophy and fibrosis, the protein is targeted by an RNA aptamer. In this work, we model the interactions between osteopontin and its aptamer, including mono- (Na+) and divalent (Mg2+) cations. The molecular dynamics simulations suggest that the presence of divalent cations forces the N-terminus of osteopontin to bind the shell of divalent cations adsorbed over the surface of its RNA aptamer, the latter exposing a high negative charge density. The osteopontin plasticity as a function of the local concentration of Mg is discussed in the frame of the proposed strategies for osteopontin targeting as biomarker and in theranostic.
Collapse
Affiliation(s)
- Giovanni La Penna
- Istituto di Chimica dei Composti Organometallici, Consiglio Nazionale delle Ricerche (CNR), Florence, Italy
| | - Riccardo Chelli
- Dipartimento di Chimica, Università di Firenze, Florence, Italy
| |
Collapse
|
18
|
Ameseder F, Radulescu A, Khaneft M, Lohstroh W, Stadler AM. Homogeneous and heterogeneous dynamics in native and denatured bovine serum albumin. Phys Chem Chem Phys 2018; 20:5128-5139. [DOI: 10.1039/c7cp08292d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Quasielastic incoherent neutron spectroscopy experiments reveal that chemical denaturation significantly modifies the internal dynamics of bovine serum albumin.
Collapse
Affiliation(s)
- Felix Ameseder
- Jülich Centre for Neutron Science JCNS and Institute for Complex Systems ICS
- Forschungszentrum Jülich GmbH
- 52425 Jülich
- Germany
| | - Aurel Radulescu
- Jülich Centre for Neutron Science JCNS
- Forschungszentrum Jülich GmbH, Outstation at MLZ
- 85747 Garching
- Germany
| | - Marina Khaneft
- Jülich Centre for Neutron Science JCNS
- Forschungszentrum Jülich GmbH, Outstation at MLZ
- 85747 Garching
- Germany
| | - Wiebke Lohstroh
- Heinz Maier-Leibnitz Zentrum
- Technische Universität München
- 85747 Garching
- Germany
| | - Andreas M. Stadler
- Jülich Centre for Neutron Science JCNS and Institute for Complex Systems ICS
- Forschungszentrum Jülich GmbH
- 52425 Jülich
- Germany
| |
Collapse
|
19
|
Migliaccio AR, Uversky VN. Dissecting physical structure of calreticulin, an intrinsically disordered Ca 2+-buffering chaperone from endoplasmic reticulum. J Biomol Struct Dyn 2017; 36:1617-1636. [PMID: 28504081 DOI: 10.1080/07391102.2017.1330224] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Calreticulin (CALR) is a Ca2+ binding multifunctional protein that mostly resides in the endoplasmic reticulum (ER) and plays a number of important roles in various physiological and pathological processes. Although the major functions ascribed to CALR are controlling the Ca2+ homeostasis in ER and acting as a lectin-like ER chaperon for many glycoproteins, this moonlighting protein can be found in various cellular compartments where it has many non-ER functions. To shed more light on the mechanisms underlying polyfunctionality of this moonlighting protein that can be found in different cellular compartments and that possesses a wide spectrum of unrelated biological activities, being able to interact with Ca2+ (and potentially other metal ions), RNA, oligosaccharides, and numerous proteins, we used a set of experimental and computational tools to evaluate the intrinsic disorder status of CALR and the role of calcium binding on structural properties and conformational stability of the full-length CALR and its isolated P- and C-domains.
Collapse
Affiliation(s)
- Anna Rita Migliaccio
- a Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai (ISMMS) , New York , NY , USA.,b Department of Biomedical and Neuromotorial Sciences , Alma Mater University , Bologna , Italy
| | - Vladimir N Uversky
- c Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute , Morsani College of Medicine, University of South Florida , Tampa , FL , USA.,d Laboratory of New Methods in Biology , Institute for Biological Instrumentation, Russian Academy of Sciences , Pushchino , Moscow Region 142290 , Russia
| |
Collapse
|