1
|
Lan PD, Nissley DA, Sitarik I, Vu QV, Jiang Y, To P, Xia Y, Fried SD, Li MS, O'Brien EP. Synonymous Mutations Can Alter Protein Dimerization Through Localized Interface Misfolding Involving Self-entanglements. J Mol Biol 2024; 436:168487. [PMID: 38341172 PMCID: PMC11260358 DOI: 10.1016/j.jmb.2024.168487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/10/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Synonymous mutations in messenger RNAs (mRNAs) can reduce protein-protein binding substantially without changing the protein's amino acid sequence. Here, we use coarse-grain simulations of protein synthesis, post-translational dynamics, and dimerization to understand how synonymous mutations can influence the dimerization of two E. coli homodimers, oligoribonuclease and ribonuclease T. We synthesize each protein from its wildtype, fastest- and slowest-translating synonymous mRNAs in silico and calculate the ensemble-averaged interaction energy between the resulting dimers. We find synonymous mutations alter oligoribonuclease's dimer properties. Relative to wildtype, the dimer interaction energy becomes 4% and 10% stronger, respectively, when translated from its fastest- and slowest-translating mRNAs. Ribonuclease T dimerization, however, is insensitive to synonymous mutations. The structural and kinetic origin of these changes are misfolded states containing non-covalent lasso-entanglements, many of which structurally perturb the dimer interface, and whose probability of occurrence depends on translation speed. These entangled states are kinetic traps that persist for long time scales. Entanglements cause altered dimerization energies for oligoribonuclease, as there is a large association (odds ratio: 52) between the co-occurrence of non-native self-entanglements and weak-binding dimer conformations. Simulated at all-atom resolution, these entangled structures persist for long timescales, indicating the conclusions are independent of model resolution. Finally, we show that regions of the protein we predict to have changes in entanglement are also structurally perturbed during refolding, as detected by limited-proteolysis mass spectrometry. Thus, non-native changes in entanglement at dimer interfaces is a mechanism through which oligomer structure and stability can be altered.
Collapse
Affiliation(s)
- Pham Dang Lan
- Institute for Computational Sciences and Technology, Ho Chi Minh City, Viet Nam; Faculty of Physics and Engineering Physics, VNUHCM-University of Science, 227, Nguyen Van Cu Street, District 5, Ho Chi Minh City, Viet Nam
| | - Daniel Allen Nissley
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Ian Sitarik
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Quyen V Vu
- Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland
| | - Yang Jiang
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Philip To
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yingzi Xia
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Stephen D Fried
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA; Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Mai Suan Li
- Institute for Computational Sciences and Technology, Ho Chi Minh City, Viet Nam; Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland
| | - Edward P O'Brien
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA; Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA; Institute for Computational and Data Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
2
|
Mecha MF, Hutchinson RB, Lee JH, Cavagnero S. Protein folding in vitro and in the cell: From a solitary journey to a team effort. Biophys Chem 2022; 287:106821. [PMID: 35667131 PMCID: PMC9636488 DOI: 10.1016/j.bpc.2022.106821] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 12/22/2022]
Abstract
Correct protein folding is essential for the health and function of living organisms. Yet, it is not well understood how unfolded proteins reach their native state and avoid aggregation, especially within the cellular milieu. Some proteins, especially small, single-domain and apparent two-state folders, successfully attain their native state upon dilution from denaturant. Yet, many more proteins undergo misfolding and aggregation during this process, in a concentration-dependent fashion. Once formed, native and aggregated states are often kinetically trapped relative to each other. Hence, the early stages of protein life are absolutely critical for proper kinetic channeling to the folded state and for long-term solubility and function. This review summarizes current knowledge on protein folding/aggregation mechanisms in buffered solution and within the bacterial cell, highlighting early stages. Remarkably, teamwork between nascent chain, ribosome, trigger factor and Hsp70 molecular chaperones enables all proteins to overcome aggregation propensities and reach a long-lived bioactive state.
Collapse
Affiliation(s)
- Miranda F Mecha
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Rachel B Hutchinson
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Jung Ho Lee
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Silvia Cavagnero
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America.
| |
Collapse
|
3
|
The folding and misfolding mechanisms of multidomain proteins. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
4
|
Song Y, Hyeon C. Thermodynamic Cost, Speed, Fluctuations, and Error Reduction of Biological Copy Machines. J Phys Chem Lett 2020; 11:3136-3143. [PMID: 32227999 DOI: 10.1021/acs.jpclett.0c00545] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Due to large fluctuations in cellular environments, transfer of information in biological processes without regulation is error-prone. The mechanistic details of error-reducing mechanisms in biological copying processes have been a subject of active research; however, how error reduction of a process is balanced with its thermodynamic cost and dynamical properties remain largely unexplored. Here, we study the error reducing strategies in light of the recently discovered thermodynamic uncertainty relation (TUR) that sets a physical bound to the cost-precision trade-off for dissipative processes. We found that the two representative copying processes, DNA replication by the exonuclease-deficient T7 DNA polymerase and mRNA translation by the E. coli ribosome, reduce the error rates to biologically acceptable levels while also optimizing the processes close to the physical limit dictated by TUR.
Collapse
Affiliation(s)
- Yonghyun Song
- Korea Institute for Advanced Study, Seoul 02455, Korea
| | | |
Collapse
|
5
|
Girodat D, Blanchard SC, Wieden HJ, Sanbonmatsu KY. Elongation Factor Tu Switch I Element is a Gate for Aminoacyl-tRNA Selection. J Mol Biol 2020; 432:3064-3077. [PMID: 32061931 DOI: 10.1016/j.jmb.2020.01.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/15/2020] [Accepted: 01/24/2020] [Indexed: 12/16/2022]
Abstract
Selection of correct aminoacyl (aa)-tRNA at the ribosomal A site is fundamental to maintaining translational fidelity. Aa-tRNA selection is a multistep process facilitated by the guanosine triphosphatase elongation factor (EF)-Tu. EF-Tu delivers aa-tRNA to the ribosomal A site and participates in tRNA selection. The structural mechanism of how EF-Tu is involved in proofreading remains to be fully resolved. Here, we provide evidence that switch I of EF-Tu facilitates EF-Tu's involvement during aa-tRNA selection. Using structure-based and explicit solvent molecular dynamics simulations based on recent cryo-electron microscopy reconstructions, we studied the conformational change of EF-Tu from the guanosine triphosphate to guanine diphosphate conformation during aa-tRNA accommodation. Switch I of EF-Tu rapidly converts from an α-helix into a β-hairpin and moves to interact with the acceptor stem of the aa-tRNA. In doing so, switch I gates the movement of the aa-tRNA during accommodation through steric interactions with the acceptor stem. Pharmacological inhibition of the aa-tRNA accommodation pathway prevents the proper positioning of switch I with the aa-tRNA acceptor stem, suggesting that the observed interactions are specific for cognate aa-tRNA substrates, and thus capable of contributing to the fidelity mechanism.
Collapse
Affiliation(s)
- Dylan Girodat
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hans-Joachim Wieden
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA; New Mexico Consortium, Los Alamos, NM, 87544.
| |
Collapse
|
6
|
Leininger SE, Trovato F, Nissley DA, O'Brien EP. Domain topology, stability, and translation speed determine mechanical force generation on the ribosome. Proc Natl Acad Sci U S A 2019; 116:5523-5532. [PMID: 30824598 PMCID: PMC6431206 DOI: 10.1073/pnas.1813003116] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The concomitant folding of a nascent protein domain with its synthesis can generate mechanical forces that act on the ribosome and alter translation speed. Such changes in speed can affect the structure and function of the newly synthesized protein as well as cellular phenotype. The domain properties that govern force generation have yet to be identified and understood, and the influence of translation speed is unknown because all reported measurements have been carried out on arrested ribosomes. Here, using coarse-grained molecular simulations and statistical mechanical modeling of protein synthesis, we demonstrate that force generation is determined by a domain's stability and topology, as well as translation speed. The statistical mechanical models we create predict how force profiles depend on these properties. These results indicate that force measurements on arrested ribosomes will not always accurately reflect what happens in a cell, especially for slow-folding domains, and suggest the possibility that certain domain properties may be enriched or depleted across the structural proteome of organisms through evolutionary selection pressures to modulate protein synthesis speed and posttranslational protein behavior.
Collapse
Affiliation(s)
- Sarah E Leininger
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802
| | - Fabio Trovato
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802
| | - Daniel A Nissley
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802
| | - Edward P O'Brien
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802;
- Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802
- Institute for CyberScience, Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
7
|
Kemp G, Kudva R, de la Rosa A, von Heijne G. Force-Profile Analysis of the Cotranslational Folding of HemK and Filamin Domains: Comparison of Biochemical and Biophysical Folding Assays. J Mol Biol 2019; 431:1308-1314. [DOI: 10.1016/j.jmb.2019.01.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/27/2019] [Accepted: 01/29/2019] [Indexed: 12/31/2022]
|
8
|
Nissley DA, O’Brien EP. Structural Origins of FRET-Observed Nascent Chain Compaction on the Ribosome. J Phys Chem B 2018; 122:9927-9937. [PMID: 30265800 PMCID: PMC11260357 DOI: 10.1021/acs.jpcb.8b07726] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A fluorescence signal arising from a Förster resonance energy transfer process was used to monitor conformational changes of a domain within the E. coli protein HemK during its synthesis by the ribosome. An increase in fluorescence was observed to begin 10 s after translation was initiated, indicating the domain became more compact in size. Since fluorescence only reports a single value at each time point it contains very little information about the structural ensemble that gives rise to it. Here, we supplement this experimental information with coarse-grained simulations that describe protein conformations and transitions at a spatial resolution of 3.8 Å. We use these simulations to test three hypotheses that might explain the cause of domain compaction: (1) that poor solvent quality conditions drive the unfolded state to compact, (2) that a change in the dimension of the space the domain occupies upon moving outside the exit tunnel causes compaction, or (3) that domain folding causes compaction. We find that domain folding and dimensional collapse are both consistent with the experimental data, while poor-solvent collapse is inconsistent. We identify alternative dye labeling positions on HemK that upon fluorescence can differentiate between the domain folding and dimensional collapse mechanisms. Partial folding of domains has been observed in C-terminally truncated forms of proteins. Therefore, it is likely that the experimentally observed compact state is a partially folded intermediate consisting, according to our simulations, of the first three helices of the HemK N-terminal domain adopting a native, tertiary configuration. With these simulations we also identify the possible cotranslational folding pathways of HemK.
Collapse
Affiliation(s)
- Daniel A. Nissley
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
| | - Edward P. O’Brien
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
- Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802, United States
- Institute for CyberScience, Penn State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
9
|
Abstract
This review summarizes our current understanding of translation in prokaryotes, focusing on the mechanistic and structural aspects of each phase of translation: initiation, elongation, termination, and ribosome recycling. The assembly of the initiation complex provides multiple checkpoints for messenger RNA (mRNA) and start-site selection. Correct codon-anticodon interaction during the decoding phase of elongation results in major conformational changes of the small ribosomal subunit and shapes the reaction pathway of guanosine triphosphate (GTP) hydrolysis. The ribosome orchestrates proton transfer during peptide bond formation, but requires the help of elongation factor P (EF-P) when two or more consecutive Pro residues are to be incorporated. Understanding the choreography of transfer RNA (tRNA) and mRNA movements during translocation helps to place the available structures of translocation intermediates onto the time axis of the reaction pathway. The nascent protein begins to fold cotranslationally, in the constrained space of the polypeptide exit tunnel of the ribosome. When a stop codon is reached at the end of the coding sequence, the ribosome, assisted by termination factors, hydrolyzes the ester bond of the peptidyl-tRNA, thereby releasing the nascent protein. Following termination, the ribosome is dissociated into subunits and recycled into another round of initiation. At each step of translation, the ribosome undergoes dynamic fluctuations between different conformation states. The aim of this article is to show the link between ribosome structure, dynamics, and function.
Collapse
Affiliation(s)
- Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen 37077, Germany
| |
Collapse
|
10
|
Timing during translation matters: synonymous mutations in human pathologies influence protein folding and function. Biochem Soc Trans 2018; 46:937-944. [PMID: 30065107 DOI: 10.1042/bst20170422] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/18/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022]
Abstract
Ribosomes translate mRNAs with non-uniform speed. Translation velocity patterns are a conserved feature of mRNA and have evolved to fine-tune protein folding, expression and function. Synonymous single-nucleotide polymorphisms (sSNPs) that alter programmed translational speed affect expression and function of the encoded protein. Synergistic advances in next-generation sequencing have led to the identification of sSNPs associated with disease penetrance. Here, we draw on studies with disease-related proteins to enhance our understanding of mechanistic contributions of sSNPs to functional alterations of the encoded protein. We emphasize the importance of identification of sSNPs along with disease-causing mutations to understand genotype-phenotype relationships.
Collapse
|
11
|
Hanazono Y, Takeda K, Miki K. Co-translational folding of α-helical proteins: structural studies of intermediate-length variants of the λ repressor. FEBS Open Bio 2018; 8:1312-1321. [PMID: 30087834 PMCID: PMC6070647 DOI: 10.1002/2211-5463.12480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/17/2018] [Accepted: 06/14/2018] [Indexed: 11/17/2022] Open
Abstract
Nascent polypeptide chains fold cotranslationally, but the atomic‐level details of this process remain unknown. Here, we report crystallographic, de novo modeling, and spectroscopic studies of intermediate‐length variants of the λ repressor N‐terminal domain. Although the ranges of helical regions of the half‐length variant were almost identical to those of the full‐length protein, the relative orientations of these helices in the intermediate‐length variants differed. Our results suggest that cotranslational folding of the λ repressor initially forms a helical structure with a transient conformation, as in the case of a molten globule state. This conformation subsequently matures during the course of protein synthesis. Database Structural data are available in the PDB under the accession numbers http://www.rcsb.org/pdb/search/structidSearch.do?structureId=5ZCA and http://www.rcsb.org/pdb/search/structidSearch.do?structureId=3WOA.
Collapse
Affiliation(s)
- Yuya Hanazono
- Department of Chemistry Graduate School of Science Kyoto University Japan.,Present address: Graduate School of Information Sciences Tohoku University Aoba-ku, Sendai 980-8579 Japan
| | - Kazuki Takeda
- Department of Chemistry Graduate School of Science Kyoto University Japan
| | - Kunio Miki
- Department of Chemistry Graduate School of Science Kyoto University Japan
| |
Collapse
|
12
|
Seligmann H. Protein Sequences Recapitulate Genetic Code Evolution. Comput Struct Biotechnol J 2018; 16:177-189. [PMID: 30002789 PMCID: PMC6040577 DOI: 10.1016/j.csbj.2018.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 12/16/2022] Open
Abstract
Several hypotheses predict ranks of amino acid assignments to genetic code's codons. Analyses here show that average positions of amino acid species in proteins correspond to assignment ranks, in particular as predicted by Juke's neutral mutation hypothesis for codon assignments. In all tested protein groups, including co- and post-translationally folding proteins, 'recent' amino acids are on average closer to gene 5' extremities than 'ancient' ones. Analyses of pairwise residue contact energies matrices suggest that early amino acids stereochemically selected late ones that stablilize residue interactions within protein cores, presumably producing 5'-late-to-3'-early amino acid protein sequence gradients. The gradient might reduce protein misfolding, also after mutations, extending principles of neutral mutations to protein folding. Presumably, in self-perpetuating and self-correcting systems like the genetic code, initial conditions produce similarities between evolution of the process (the genetic code) and 'ontogeny' of resulting structures (here proteins), producing apparent teleonomy between process and product.
Collapse
Affiliation(s)
- Hervé Seligmann
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR MEPHI, Aix-Marseille Université, IRD, Assistance Publique-Hôpitaux de Marseille, Institut Hospitalo-Universitaire Méditerranée-Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France.
| |
Collapse
|
13
|
Samelson AJ, Bolin E, Costello SM, Sharma AK, O’Brien EP, Marqusee S. Kinetic and structural comparison of a protein's cotranslational folding and refolding pathways. SCIENCE ADVANCES 2018; 4:eaas9098. [PMID: 29854950 PMCID: PMC5976279 DOI: 10.1126/sciadv.aas9098] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
Precise protein folding is essential for the survival of all cells, and protein misfolding causes a number of diseases that lack effective therapies, yet the general principles governing protein folding in the cell remain poorly understood. In vivo, folding can begin cotranslationally and protein quality control at the ribosome is essential for cellular proteostasis. We directly characterize and compare the refolding and cotranslational folding trajectories of the protein HaloTag. We introduce new techniques for both measuring folding kinetics and detecting the conformations of partially folded intermediates during translation in real time. We find that, although translation does not affect the rate-limiting step of HaloTag folding, a key aggregation-prone intermediate observed during in vitro refolding experiments is no longer detectable. This rerouting of the folding pathway increases HaloTag's folding efficiency and may serve as a general chaperone-independent mechanism of quality control by the ribosome.
Collapse
Affiliation(s)
- Avi J. Samelson
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720–3220, USA
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA 94720–3220, USA
| | - Eric Bolin
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA 94720–3220, USA
- Biophysics Graduate Program, University of California Berkeley, Berkeley, CA 94720–3220, USA
| | - Shawn M. Costello
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA 94720–3220, USA
- Biophysics Graduate Program, University of California Berkeley, Berkeley, CA 94720–3220, USA
| | - Ajeet K. Sharma
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Edward P. O’Brien
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720–3220, USA
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA 94720–3220, USA
| |
Collapse
|
14
|
Non-equilibrium coupling of protein structure and function to translation-elongation kinetics. Curr Opin Struct Biol 2018; 49:94-103. [PMID: 29414517 DOI: 10.1016/j.sbi.2018.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/21/2017] [Accepted: 01/02/2018] [Indexed: 01/23/2023]
Abstract
Protein folding research has been dominated by the assumption that thermodynamics determines protein structure and function. And that when the folding process is compromised in vivo the proteostasis machinery-chaperones, deaggregases, the proteasome-work to restore proteins to their soluble, functional form or degrade them to maintain the cellular pool of proteins in a quasi-equilibrium state. During the past decade, however, more and more proteins have been identified for which altering only their speed of synthesis alters their structure and function, the efficiency of the down-stream processes they take part in, and cellular phenotype. Indeed, evidence has emerged that evolutionary selection pressures have encoded translation-rate information into mRNA molecules to coordinate diverse co-translational processes. Thus, non-equilibrium physics can play a fundamental role in influencing nascent protein behavior, mRNA sequence evolution, and disease. Here, we discuss how our understanding of this phenomenon is being advanced by the application of theoretical tools from the physical sciences.
Collapse
|
15
|
Trovato F, Fumagalli G. Molecular simulations of cellular processes. Biophys Rev 2017; 9:941-958. [PMID: 29185136 DOI: 10.1007/s12551-017-0363-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 11/19/2017] [Indexed: 12/12/2022] Open
Abstract
It is, nowadays, possible to simulate biological processes in conditions that mimic the different cellular compartments. Several groups have performed these calculations using molecular models that vary in performance and accuracy. In many cases, the atomistic degrees of freedom have been eliminated, sacrificing both structural complexity and chemical specificity to be able to explore slow processes. In this review, we will discuss the insights gained from computer simulations on macromolecule diffusion, nuclear body formation, and processes involving the genetic material inside cell-mimicking spaces. We will also discuss the challenges to generate new models suitable for the simulations of biological processes on a cell scale and for cell-cycle-long times, including non-equilibrium events such as the co-translational folding, misfolding, and aggregation of proteins. A prominent role will be played by the wise choice of the structural simplifications and, simultaneously, of a relatively complex energetic description. These challenging tasks will rely on the integration of experimental and computational methods, achieved through the application of efficient algorithms. Graphical abstract.
Collapse
Affiliation(s)
- Fabio Trovato
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, 14195, Berlin, Germany.
| | - Giordano Fumagalli
- Nephrology and Dialysis Unit, USL Toscana Nord Ovest, 55041, Lido di Camaiore, Lucca, Italy
| |
Collapse
|
16
|
Abstract
Recent experiments and simulations have demonstrated that proteins can fold on the ribosome. However, the extent and generality of fitness effects resulting from cotranslational folding remain open questions. Here we report a genome-wide analysis that uncovers evidence of evolutionary selection for cotranslational folding. We describe a robust statistical approach to identify loci within genes that are both significantly enriched in slowly translated codons and evolutionarily conserved. Surprisingly, we find that domain boundaries can explain only a small fraction of these conserved loci. Instead, we propose that regions enriched in slowly translated codons are associated with cotranslational folding intermediates, which may be smaller than a single domain. We show that the intermediates predicted by a native-centric model of cotranslational folding account for the majority of these loci across more than 500 Escherichia coli proteins. By making a direct connection to protein folding, this analysis provides strong evidence that many synonymous substitutions have been selected to optimize translation rates at specific locations within genes. More generally, our results indicate that kinetics, and not just thermodynamics, can significantly alter the efficiency of self-assembly in a biological context.
Collapse
|
17
|
Wruck F, Avellaneda MJ, Koers EJ, Minde DP, Mayer MP, Kramer G, Mashaghi A, Tans SJ. Protein Folding Mediated by Trigger Factor and Hsp70: New Insights from Single-Molecule Approaches. J Mol Biol 2017; 430:438-449. [PMID: 28911846 DOI: 10.1016/j.jmb.2017.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/26/2017] [Accepted: 09/04/2017] [Indexed: 01/01/2023]
Abstract
Chaperones assist in protein folding, but what this common phrase means in concrete terms has remained surprisingly poorly understood. We can readily measure chaperone binding to unfolded proteins, but how they bind and affect proteins along folding trajectories has remained obscure. Here we review recent efforts by our labs and others that are beginning to pry into this issue, with a focus on the chaperones trigger factor and Hsp70. Single-molecule methods are central, as they allow the stepwise process of folding to be followed directly. First results have already revealed contrasts with long-standing paradigms: rather than acting only "early" by stabilizing unfolded chain segments, these chaperones can bind and stabilize partially folded structures as they grow to their native state. The findings suggest a fundamental redefinition of the protein folding problem and a more extensive functional repertoire of chaperones than previously assumed.
Collapse
Affiliation(s)
- Florian Wruck
- AMOLF, Science Park 104, 1098 XG Amsterdam, the Netherlands
| | | | - Eline J Koers
- AMOLF, Science Park 104, 1098 XG Amsterdam, the Netherlands
| | - David P Minde
- AMOLF, Science Park 104, 1098 XG Amsterdam, the Netherlands
| | - Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | - Günter Kramer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | - Alireza Mashaghi
- Leiden Academic Centre for Drug Research, Faculty of Mathematics and Natural Sciences, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Sander J Tans
- AMOLF, Science Park 104, 1098 XG Amsterdam, the Netherlands.
| |
Collapse
|
18
|
Seligmann H, Warthi G. Genetic Code Optimization for Cotranslational Protein Folding: Codon Directional Asymmetry Correlates with Antiparallel Betasheets, tRNA Synthetase Classes. Comput Struct Biotechnol J 2017; 15:412-424. [PMID: 28924459 PMCID: PMC5591391 DOI: 10.1016/j.csbj.2017.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/20/2017] [Accepted: 08/05/2017] [Indexed: 12/14/2022] Open
Abstract
A new codon property, codon directional asymmetry in nucleotide content (CDA), reveals a biologically meaningful genetic code dimension: palindromic codons (first and last nucleotides identical, codon structure XZX) are symmetric (CDA = 0), codons with structures ZXX/XXZ are 5'/3' asymmetric (CDA = - 1/1; CDA = - 0.5/0.5 if Z and X are both purines or both pyrimidines, assigning negative/positive (-/+) signs is an arbitrary convention). Negative/positive CDAs associate with (a) Fujimoto's tetrahedral codon stereo-table; (b) tRNA synthetase class I/II (aminoacylate the 2'/3' hydroxyl group of the tRNA's last ribose, respectively); and (c) high/low antiparallel (not parallel) betasheet conformation parameters. Preliminary results suggest CDA-whole organism associations (body temperature, developmental stability, lifespan). Presumably, CDA impacts spatial kinetics of codon-anticodon interactions, affecting cotranslational protein folding. Some synonymous codons have opposite CDA sign (alanine, leucine, serine, and valine), putatively explaining how synonymous mutations sometimes affect protein function. Correlations between CDA and tRNA synthetase classes are weaker than between CDA and antiparallel betasheet conformation parameters. This effect is stronger for mitochondrial genetic codes, and potentially drives mitochondrial codon-amino acid reassignments. CDA reveals information ruling nucleotide-protein relations embedded in reversed (not reverse-complement) sequences (5'-ZXX-3'/5'-XXZ-3').
Collapse
Affiliation(s)
- Hervé Seligmann
- Aix-Marseille Univ, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS UMR7278, IRD 198, INSERM U1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, Postal code 13385, France
- Dept. Ecol Evol Behav, Alexander Silberman Inst Life Sci, The Hebrew University of Jerusalem, IL-91904 Jerusalem, Israel
| | - Ganesh Warthi
- Aix-Marseille Univ, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS UMR7278, IRD 198, INSERM U1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, Postal code 13385, France
| |
Collapse
|