Bruce Macdonald HE, Cave-Ayland C, Ross GA, Essex JW. Ligand Binding Free Energies with Adaptive Water Networks: Two-Dimensional Grand Canonical Alchemical Perturbations.
J Chem Theory Comput 2018;
14:6586-6597. [PMID:
30451501 PMCID:
PMC6293443 DOI:
10.1021/acs.jctc.8b00614]
[Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
Computational methods
to calculate ligand binding affinities are
increasing in popularity, due to improvements in simulation algorithms,
computational resources, and easy-to-use software. However, issues
can arise in relative ligand binding free energy simulations if the
ligands considered have different active site water networks, as simulations
are typically performed with a predetermined number of water molecules
(fixed N ensembles) in preassigned locations. If an alchemical perturbation
is attempted where the change should result in a different active
site water network, the water molecules may not be able to adapt appropriately
within the time scales of the simulations—particularly if the
active site is occluded. By combining the grand canonical ensemble
(μVT) to sample active site water molecules, with conventional
alchemical free energy methods, the water network is able to dynamically
adapt to the changing ligand. We refer to this approach as grand canonical
alchemical perturbation (GCAP). In this work we demonstrate GCAP for
two systems; Scytalone Dehydratase (SD) and Adenosine A2A receptor. For both systems, GCAP is shown to perform
well at reproducing experimental binding affinities. Calculating the
relative binding affinities with a naïve, conventional
attempt to solvate the active site illustrates how poor results can
be if proper consideration of water molecules in occluded pockets
is neglected. GCAP results are shown to be consistent with time-consuming
double decoupling simulations. In addition, by obtaining the free
energy surface for ligand perturbations, as a function of both the
free energy coupling parameter and water chemical potential, it is
possible to directly deconvolute the binding energetics in terms of
protein–ligand direct interactions and protein binding site
hydration.
Collapse