1
|
Bardajee GR, Chahrogh AR, Atashkadi M. The FRET-Based APTA Sensor/Cy3 Complex for Glucose Determination. LUMINESCENCE 2025; 40:e70097. [PMID: 39916299 DOI: 10.1002/bio.70097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/26/2024] [Accepted: 01/07/2025] [Indexed: 05/07/2025]
Abstract
This study developed a sensitive and cost-effective fluorescent probe based on the Förster Resonance Energy Transfer (FRET) method to monitor blood glucose levels. The APTA sensor/Cy3 probe consisted of cadmium telluride quantum dots modified with thioglycolic acid (CdTe-TGA QDs), a thiol-glucose-aptamer, and a Cy3-labeled aptamer. Due to the well-matched emission spectrum of the CdTe QDs and the absorption spectrum of Cy3, the FRET system decreased fluorescence intensity. However, glucose molecules quenched it when introduced to the system. The linear relationship between fluorescence intensity and glucose concentration was established with a detection limit of 7.72 × 10-9 M. The APTA sensor/Cy3 complex demonstrated excellent selectivity and specificity toward glucose and a high recovery rate of 96.00-101.11% in human serum and urine using the spiking method. The structural and morphological characteristics of the APTA sensor/Cy3 complex were confirmed by UV-visible spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), atomic force microscopy (AFM), and dynamic light scattering (DLS) analyses. The results suggest that the FRET-based APTA sensor/Cy3 complex would lead to the development of fluorescent probes for screening biological metabolites in clinical diagnostics and research.
Collapse
Affiliation(s)
- Ghasem Rezanejade Bardajee
- Department of Polymer and Materials Chemistry, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | | | | |
Collapse
|
2
|
Lee SH, Lee TJ, Sarkar S, Cho H, Nhu QPN, Chang YT. Atom-Efficient Synthesis of Trimethine Cyanines Using Formaldehyde as a Single-Carbon Source. Angew Chem Int Ed Engl 2025; 64:e202413121. [PMID: 39291296 DOI: 10.1002/anie.202413121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Herein, we present an innovative and atom-efficient synthesis of trimethine cyanines (Cy3) using formaldehyde (FA) as a single-carbon reagent. The widespread application of Cy3 dyes in bioimaging and genomics/proteomics is often limited by synthetic routes plagued by low atom economy and substantial side-product formation. Through systematic investigation, we have developed a practical and efficient synthetic pathway for both symmetrical and unsymmetrical Cy3 derivatives, significantly minimizing resource utilization. Notably, this approach yields water as the by-product, in alignment with sustainable chemistry principles. Moreover, the efficient one-pot synthesis facilitates the detection of intracellular FA levels, utilizing the fluorescence signal of Cy3 in live cells. It is also possible to detect endogenous FA in the intestinal tissues. We observed a significant decrease in FA in the small intestine of inflammatory bowel disease (IBD) mice as compared to healthy mice. This methodological advancement not only enhances the scope of fluorescent dye synthesis but also contributes to sustainable practices within chemical manufacturing, offering a significant leap forward in the development of environmentally friendly synthetic strategies.
Collapse
Affiliation(s)
- Sun Hyeok Lee
- Basic Science Research Institute (BSRI), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Taek-Jun Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | | | - Heewon Cho
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Quynh Pham Nguyen Nhu
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Young-Tae Chang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
3
|
Wu JK, Lee YY, Hung H, Chang YP, Tai MH, Fan HF. Binding Behavior of Human Hepatoma-Derived Growth Factor on SMYD1. J Phys Chem B 2024; 128:7722-7735. [PMID: 39091133 PMCID: PMC11331505 DOI: 10.1021/acs.jpcb.4c01854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
The protein-induced fluorescence change technique was employed to investigate the interactions between proteins and their DNA substrates modified with the Cy3 fluorophore. It has been reported that the human hepatoma-derived growth factor (HDGF), containing the chromatin-associated N-terminal proline-tryptophan-tryptophan-proline (PWWP) domain (the N-terminal 100 amino acids of HDGF) capable of binding the SMYD1 promoter, participates in various cellular processes and is involved in human cancer. This project investigated the specific binding behavior of HDGF, the PWWP domain, and the C140 domain (the C-terminal 140 amino acids of HDGF) sequentially using protein-induced fluorescence change. We found that the binding of HDGF and its related proteins on Cy3-labeled 15 bp SMYD1 dsDNA will cause a significant decrease in the recorded Cy3 fluorophore intensity, indicating the occurrence of protein-induced fluorescence quenching. The dissociation equilibrium constant was determined by fitting the bound fraction curve to a binding model. An approximate 10-time weaker SMYD1 binding affinity of the PWWP domain was found in comparison to HDGF. Moreover, the PWWP domain is required for DNA binding, and the C140 domain can enhance the DNA binding affinity. Furthermore, we found that the C140 domain can regulate the sequence-specific binding capability of HDGF on SMYD1.
Collapse
Affiliation(s)
- Jan-Kai Wu
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 80424, Taiwan
| | - Ying-ying Lee
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 80424, Taiwan
| | - Hsin Hung
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 80424, Taiwan
| | - Yuan-Ping Chang
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 80424, Taiwan
| | - Ming-Hong Tai
- Institute
of Biomedical Science, National Sun Yat-sen
University, Kaohsiung 80424, Taiwan
| | - Hsiu-Fang Fan
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 80424, Taiwan
| |
Collapse
|
4
|
Kuppa S, Corless E, Caldwell CC, Spies M, Antony E. Generation of site-specifically labelled fluorescent human XPA to investigate DNA binding dynamics during nucleotide excision repair. Methods 2024; 224:47-53. [PMID: 38387709 PMCID: PMC10960328 DOI: 10.1016/j.ymeth.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024] Open
Abstract
Nucleotide excision repair (NER) promotes genomic integrity by removing bulky DNA adducts introduced by external factors such as ultraviolet light. Defects in NER enzymes are associated with pathological conditions such as Xeroderma Pigmentosum, trichothiodystrophy, and Cockayne syndrome. A critical step in NER is the binding of the Xeroderma Pigmentosum group A protein (XPA) to the ss/ds DNA junction. To better capture the dynamics of XPA interactions with DNA during NER we have utilized the fluorescence enhancement through non-canonical amino acids (FEncAA) approach. 4-azido-L-phenylalanine (4AZP or pAzF) was incorporated at Arg-158 in human XPA and conjugated to Cy3 using strain-promoted azide-alkyne cycloaddition. The resulting fluorescent XPA protein (XPACy3) shows no loss in DNA binding activity and generates a robust change in fluorescence upon binding to DNA. Here we describe methods to generate XPACy3 and detail in vitro experimental conditions required to stably maintain the protein during biochemical and biophysical studies.
Collapse
Affiliation(s)
- Sahiti Kuppa
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Elliot Corless
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Colleen C Caldwell
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Maria Spies
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Edwin Antony
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| |
Collapse
|
5
|
Kaushik V, Chadda R, Kuppa S, Pokhrel N, Vayyeti A, Grady S, Arnatt C, Antony E. Fluorescent human RPA to track assembly dynamics on DNA. Methods 2024; 223:95-105. [PMID: 38301751 PMCID: PMC10923064 DOI: 10.1016/j.ymeth.2024.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024] Open
Abstract
DNA metabolic processes including replication, repair, recombination, and telomere maintenance occur on single-stranded DNA (ssDNA). In each of these complex processes, dozens of proteins function together on the ssDNA template. However, when double-stranded DNA is unwound, the transiently open ssDNA is protected and coated by the high affinity heterotrimeric ssDNA binding Replication Protein A (RPA). Almost all downstream DNA processes must first remodel/remove RPA or function alongside to access the ssDNA occluded under RPA. Formation of RPA-ssDNA complexes trigger the DNA damage checkpoint response and is a key step in activating most DNA repair and recombination pathways. Thus, in addition to protecting the exposed ssDNA, RPA functions as a gatekeeper to define functional specificity in DNA maintenance and genomic integrity. RPA achieves functional dexterity through a multi-domain architecture utilizing several DNA binding and protein-interaction domains connected by flexible linkers. This flexible and modular architecture enables RPA to adopt a myriad of configurations tailored for specific DNA metabolic roles. To experimentally capture the dynamics of the domains of RPA upon binding to ssDNA and interacting proteins we here describe the generation of active site-specific fluorescent versions of human RPA (RPA) using 4-azido-L-phenylalanine (4AZP) incorporation and click chemistry. This approach can also be applied to site-specific modifications of other multi-domain proteins. Fluorescence-enhancement through non-canonical amino acids (FEncAA) and Förster Resonance Energy Transfer (FRET) assays for measuring dynamics of RPA on DNA are also described. The fluorescent human RPA described here will enable high-resolution structure-function analysis of RPA-ssDNA interactions.
Collapse
Affiliation(s)
- Vikas Kaushik
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Rahul Chadda
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Sahiti Kuppa
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Nilisha Pokhrel
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Abhinav Vayyeti
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Scott Grady
- Department of Chemistry, St. Louis University, St. Louis, MO 63103, USA
| | - Chris Arnatt
- Department of Chemistry, St. Louis University, St. Louis, MO 63103, USA
| | - Edwin Antony
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO 63104, USA.
| |
Collapse
|
6
|
Fazio NT, Mersch KN, Hao L, Lohman TM. E. coli RecB Nuclease Domain Regulates RecBCD Helicase Activity but not Single Stranded DNA Translocase Activity. J Mol Biol 2024; 436:168381. [PMID: 38081382 PMCID: PMC11131135 DOI: 10.1016/j.jmb.2023.168381] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Much is still unknown about the mechanisms by which helicases unwind duplex DNA. Whereas structure-based models describe DNA unwinding as occurring by the ATPase motors mechanically pulling the DNA duplex across a wedge domain in the helicase, biochemical data show that processive DNA unwinding by E. coli RecBCD helicase can occur in the absence of ssDNA translocation by the canonical RecB and RecD motors. Here we show that DNA unwinding is not a simple consequence of ssDNA translocation by the motors. Using stopped-flow fluorescence approaches, we show that a RecB nuclease domain deletion variant (RecBΔNucCD) unwinds dsDNA at significantly slower rates than RecBCD, while the ssDNA translocation rate is unaffected. This effect is primarily due to the absence of the nuclease domain since a nuclease-dead mutant (RecBD1080ACD), which retains the nuclease domain, showed no change in ssDNA translocation or dsDNA unwinding rates relative to RecBCD on short DNA substrates (≤60 base pairs). Hence, ssDNA translocation is not rate-limiting for DNA unwinding. RecBΔNucCD also initiates unwinding much slower than RecBCD from a blunt-ended DNA. RecBΔNucCD also unwinds DNA ∼two-fold slower than RecBCD on long DNA (∼20 kilo base pair) in single molecule optical tweezer experiments, although the rates for RecBD1080ACD unwinding are intermediate between RecBCD and RecBΔNucCD. Surprisingly, significant pauses in DNA unwinding occur even in the absence of chi (crossover hotspot instigator) sites. We hypothesize that the nuclease domain influences the rate of DNA base pair melting, possibly allosterically and that RecBΔNucCD may mimic a post-chi state of RecBCD.
Collapse
Affiliation(s)
- Nicole T Fazio
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
| | - Kacey N Mersch
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
| | - Linxuan Hao
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
| | - Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States.
| |
Collapse
|
7
|
Lapoot L, Wang C, Matikonda SS, Schnermann MJ, Greer A. Bluer Phototruncation: Retro-Diels-Alder of Heptamethine Cyanine to Trimethine Cyanine through an Allene Hydroperoxide Intermediate. J Org Chem 2023. [PMID: 38051763 DOI: 10.1021/acs.joc.3c02245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The photoconversion of heptamethine to pentamethine cyanines and of pentamethine to trimethine cyanines was recently reported. Here, we report mechanistic studies and initial experimental evidence for a previously unexplored 4-carbon truncation reaction that converts the simplest heptamethine cyanine to the corresponding trimethine cyanine. We propose a DFT-supported model describing a singlet oxygen (1O2)-mediated formation of an allene hydroperoxide intermediate and subsequent 4-carbon loss through a retro-Diels-Alder process. Fluorescence and mass spectrometry measurements provide evidence of this direct conversion process. This 4-carbon truncation reaction adds to a growing body of cyanine reactivity and may provide an optical tool leading to a substantial blue-shift (Δλem) of ∼200 nm.
Collapse
Affiliation(s)
- Lloyd Lapoot
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Connor Wang
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Siddharth S Matikonda
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Alexander Greer
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
8
|
Kaushik V, Chadda R, Kuppa S, Pokhrel N, Vayyeti A, Grady S, Arnatt C, Antony E. Fluorescent human RPA to track assembly dynamics on DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.23.568455. [PMID: 38045304 PMCID: PMC10690285 DOI: 10.1101/2023.11.23.568455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
DNA metabolic processes including replication, repair, recombination, and telomere maintenance occur on single-stranded DNA (ssDNA). In each of these complex processes, dozens of proteins function together on the ssDNA template. However, when double-stranded DNA is unwound, the transiently open ssDNA is protected and coated by the high affinity heterotrimeric ssDNA binding Replication Protein A (RPA). Almost all downstream DNA processes must first remodel/remove RPA or function alongside to access the ssDNA occluded under RPA. Formation of RPA-ssDNA complexes trigger the DNA damage checkpoint response and is a key step in activating most DNA repair and recombination pathways. Thus, in addition to protecting the exposed ssDNA, RPA functions as a gatekeeper to define functional specificity in DNA maintenance and genomic integrity. RPA achieves functional dexterity through a multi-domain architecture utilizing several DNA binding and protein-interaction domains connected by flexible linkers. This flexible and modular architecture enables RPA to adopt a myriad of configurations tailored for specific DNA metabolic roles. To experimentally capture the dynamics of the domains of RPA upon binding to ssDNA and interacting proteins we here describe the generation of active site-specific fluorescent versions of human RPA (RPA) using 4-azido-L-phenylalanine (4AZP) incorporation and click chemistry. This approach can also be applied to site-specific modifications of other multi-domain proteins. Fluorescence-enhancement through non-canonical amino acids (FEncAA) and Förster Resonance Energy Transfer (FRET) assays for measuring dynamics of RPA on DNA are also described.
Collapse
Affiliation(s)
- Vikas Kaushik
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO 63104
| | - Rahul Chadda
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO 63104
| | - Sahiti Kuppa
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO 63104
| | - Nilisha Pokhrel
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Abhinav Vayyeti
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO 63104
| | - Scott Grady
- Department of Chemistry, St. Louis University, St. Louis, MO 63103
| | - Chris Arnatt
- Department of Chemistry, St. Louis University, St. Louis, MO 63103
| | - Edwin Antony
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO 63104
| |
Collapse
|
9
|
Fazio N, Mersch KN, Hao L, Lohman TM. E. coli RecBCD Nuclease Domain Regulates Helicase Activity but not Single Stranded DNA Translocase Activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.13.561901. [PMID: 37905078 PMCID: PMC10614803 DOI: 10.1101/2023.10.13.561901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Much is still unknown about the mechanisms by which helicases unwind duplex DNA. Whereas structure-based models describe DNA unwinding as a consequence of mechanically pulling the DNA duplex across a wedge domain in the helicase by the single stranded (ss)DNA translocase activity of the ATPase motors, biochemical data indicate that processive DNA unwinding by the E. coli RecBCD helicase can occur in the absence of ssDNA translocation of the canonical RecB and RecD motors. Here, we present evidence that dsDNA unwinding is not a simple consequence of ssDNA translocation by the RecBCD motors. Using stopped-flow fluorescence approaches, we show that a RecB nuclease domain deletion variant (RecB ΔNuc CD) unwinds dsDNA at significantly slower rates than RecBCD, while the rate of ssDNA translocation is unaffected. This effect is primarily due to the absence of the nuclease domain and not the absence of the nuclease activity, since a nuclease-dead mutant (RecB D1080A CD), which retains the nuclease domain, showed no significant change in rates of ssDNA translocation or dsDNA unwinding relative to RecBCD on short DNA substrates (≤ 60 base pairs). This indicates that ssDNA translocation is not rate-limiting for DNA unwinding. RecB ΔNuc CD also initiates unwinding much slower than RecBCD from a blunt-ended DNA, although it binds with higher affinity than RecBCD. RecB ΔNuc CD also unwinds DNA ∼two-fold slower than RecBCD on long DNA (∼20 kilo base pair) in single molecule optical tweezer experiments, although the rates for RecB D1080A CD unwinding are intermediate between RecBCD and RecB ΔNuc CD. Surprisingly, significant pauses occur even in the absence of chi (crossover hotspot instigator) sites. We hypothesize that the nuclease domain influences the rate of DNA base pair melting, rather than DNA translocation, possibly allosterically. Since the rate of DNA unwinding by RecBCD also slows after it recognizes a chi sequence, RecB ΔNuc CD may mimic a post- chi state of RecBCD.
Collapse
|
10
|
Ploetz E, Ambrose B, Barth A, Börner R, Erichson F, Kapanidis AN, Kim HD, Levitus M, Lohman TM, Mazumder A, Rueda DS, Steffen FD, Cordes T, Magennis SW, Lerner E. A new twist on PIFE: photoisomerisation-related fluorescence enhancement. Methods Appl Fluoresc 2023; 12:012001. [PMID: 37726007 PMCID: PMC10570931 DOI: 10.1088/2050-6120/acfb58] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/24/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
PIFE was first used as an acronym for protein-induced fluorescence enhancement, which refers to the increase in fluorescence observed upon the interaction of a fluorophore, such as a cyanine, with a protein. This fluorescence enhancement is due to changes in the rate ofcis/transphotoisomerisation. It is clear now that this mechanism is generally applicable to interactions with any biomolecule. In this review, we propose that PIFE is thereby renamed according to its fundamental working principle as photoisomerisation-related fluorescence enhancement, keeping the PIFE acronym intact. We discuss the photochemistry of cyanine fluorophores, the mechanism of PIFE, its advantages and limitations, and recent approaches to turning PIFE into a quantitative assay. We provide an overview of its current applications to different biomolecules and discuss potential future uses, including the study of protein-protein interactions, protein-ligand interactions and conformational changes in biomolecules.
Collapse
Affiliation(s)
- Evelyn Ploetz
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Benjamin Ambrose
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0HS, United Kingdom
- Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London, W12 0HS, United Kingdom
| | - Anders Barth
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | - Richard Börner
- Laserinstitut Hochschule Mittweida, Mittweida University of Applied Sciences, Mittweida, Germany
| | - Felix Erichson
- Laserinstitut Hochschule Mittweida, Mittweida University of Applied Sciences, Mittweida, Germany
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Department of Physics, University of Oxford, Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, United Kingdom
| | - Harold D Kim
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332, United States of America
| | - Marcia Levitus
- School of Molecular Sciences, Arizona State University, 551 E. University Drive, Tempe, AZ,85287, United States of America
| | - Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States of America
| | - Abhishek Mazumder
- CSIR-Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India
| | - David S Rueda
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0HS, United Kingdom
- Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London, W12 0HS, United Kingdom
| | - Fabio D Steffen
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Großhadernerstr. 2-4, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Steven W Magennis
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, United Kingdom
| | - Eitan Lerner
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, Edmond J. Safra Campus, Hebrew University of Jerusalem; Jerusalem 9190401, Israel
- Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem; Jerusalem 9190401, Israel
| |
Collapse
|
11
|
Gidi Y, Robert A, Tordo A, Lovell TC, Ramos-Sanchez J, Sakaya A, Götte M, Cosa G. Binding and Sliding Dynamics of the Hepatitis C Virus Polymerase: Hunting the 3' Terminus. ACS Infect Dis 2023; 9:1488-1498. [PMID: 37436367 DOI: 10.1021/acsinfecdis.3c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
The hepatitis C virus (HCV) nonstructural protein 5B (NS5B) polymerase catalyzes the replication of the (+) single-stranded RNA genome of HCV. In vitro studies have shown that replication can be performed in the absence of a primer. However, the dynamics and mechanism by which NS5B locates the 3'-terminus of the RNA template to initiate de novo synthesis remain elusive. Here, we performed single-molecule fluorescence studies based on protein-induced fluorescence enhancement reporting on NS5B dynamics on a short model RNA substrate. Our results suggest that NS5B exists in a fully open conformation in solution wherefrom it accesses its binding site along RNA and then closes. Our results revealed two NS5B binding modes: an unstable one resulting in rapid dissociation, and a stable one characterized by a larger residence time on the substrate. We associate these bindings to an unproductive and productive orientation, respectively. Addition of extra mono (Na+)- and divalent (Mg2+) ions increases the mobility of NS5B along its RNA substrate. However, only Mg2+ ions induce a decrease in NS5B residence time. Dwell times of residence increase with the length of the single-stranded template, suggesting that NS5B unbinds its substrate by unthreading the template rather than by spontaneous opening.
Collapse
Affiliation(s)
- Yasser Gidi
- Department of Chemistry and Quebec Center for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Anaïs Robert
- Department of Chemistry and Quebec Center for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Alix Tordo
- Department of Chemistry and Quebec Center for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Terri C Lovell
- Department of Chemistry and Quebec Center for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Jorge Ramos-Sanchez
- Department of Chemistry and Quebec Center for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Aya Sakaya
- Department of Chemistry and Quebec Center for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Gonzalo Cosa
- Department of Chemistry and Quebec Center for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
12
|
Ploetz E, Ambrose B, Barth A, Börner R, Erichson F, Kapanidis AN, Kim HD, Levitus M, Lohman TM, Mazumder A, Rueda DS, Steffen FD, Cordes T, Magennis SW, Lerner E. A new twist on PIFE: photoisomerisation-related fluorescence enhancement. ARXIV 2023:arXiv:2302.12455v2. [PMID: 36866225 PMCID: PMC9980184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
PIFE was first used as an acronym for protein-induced fluorescence enhancement, which refers to the increase in fluorescence observed upon the interaction of a fluorophore, such as a cyanine, with a protein. This fluorescence enhancement is due to changes in the rate of cis/trans photoisomerisation. It is clear now that this mechanism is generally applicable to interactions with any biomolecule and, in this review, we propose that PIFE is thereby renamed according to its fundamental working principle as photoisomerisation-related fluorescence enhancement, keeping the PIFE acronym intact. We discuss the photochemistry of cyanine fluorophores, the mechanism of PIFE, its advantages and limitations, and recent approaches to turn PIFE into a quantitative assay. We provide an overview of its current applications to different biomolecules and discuss potential future uses, including the study of protein-protein interactions, protein-ligand interactions and conformational changes in biomolecules.
Collapse
Affiliation(s)
- Evelyn Ploetz
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Benjamin Ambrose
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0HS, UK, Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London, W12 0HS, UK
| | - Anders Barth
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | - Richard Börner
- Laserinstitut Hochschule Mittweida, Mittweida University of Applied Sciences, Mittweida, Germany
| | - Felix Erichson
- Laserinstitut Hochschule Mittweida, Mittweida University of Applied Sciences, Mittweida, Germany
| | - Achillefs N. Kapanidis
- Kavli Institute for Nanoscience Discovery, Department of Biological Physics, The University of Oxford, UK
| | - Harold D. Kim
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332, USA
| | - Marcia Levitus
- School of Molecular Sciences, Arizona State University, 551 E. University Drive, Tempe, AZ, 85287, USA
| | - Timothy M. Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Abhishek Mazumder
- Kavli Institute for Nanoscience Discovery, Department of Biological Physics, The University of Oxford, UK
| | - David S. Rueda
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0HS, UK, Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London, W12 0HS, UK
| | - Fabio D. Steffen
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr, 2-4, 82152 Planegg-Martinsried, Germany
| | - Steven W. Magennis
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, UK
| | - Eitan Lerner
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, Edmond J. Safra Campus, Hebrew University of Jerusalem; Jerusalem 9190401, Israel, Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem; Jerusalem 9190401, Israel
| |
Collapse
|
13
|
Mersch K, Sokoloski J, Nguyen B, Galletto R, Lohman T. "Helicase" Activity promoted through dynamic interactions between a ssDNA translocase and a diffusing SSB protein. Proc Natl Acad Sci U S A 2023; 120:e2216777120. [PMID: 37011199 PMCID: PMC10104510 DOI: 10.1073/pnas.2216777120] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/06/2023] [Indexed: 04/05/2023] Open
Abstract
Replication protein A (RPA) is a eukaryotic single-stranded (ss) DNA-binding (SSB) protein that is essential for all aspects of genome maintenance. RPA binds ssDNA with high affinity but can also diffuse along ssDNA. By itself, RPA is capable of transiently disrupting short regions of duplex DNA by diffusing from a ssDNA that flanks the duplex DNA. Using single-molecule total internal reflection fluorescence and optical trapping combined with fluorescence approaches, we show that S. cerevisiae Pif1 can use its ATP-dependent 5' to 3' translocase activity to chemomechanically push a single human RPA (hRPA) heterotrimer directionally along ssDNA at rates comparable to those of Pif1 translocation alone. We further show that using its translocation activity, Pif1 can push hRPA from a ssDNA loading site into a duplex DNA causing stable disruption of at least 9 bp of duplex DNA. These results highlight the dynamic nature of hRPA enabling it to be readily reorganized even when bound tightly to ssDNA and demonstrate a mechanism by which directional DNA unwinding can be achieved through the combined action of a ssDNA translocase that pushes an SSB protein. These results highlight the two basic requirements for any processive DNA helicase: transient DNA base pair melting (supplied by hRPA) and ATP-dependent directional ssDNA translocation (supplied by Pif1) and that these functions can be unlinked by using two separate proteins.
Collapse
Affiliation(s)
- Kacey N. Mersch
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110-1093
| | - Joshua E. Sokoloski
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110-1093
- Department of Chemistry, Salisbury University, Salisbury, MD21801
| | - Binh Nguyen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110-1093
| | - Roberto Galletto
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110-1093
| | - Timothy M. Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110-1093
| |
Collapse
|
14
|
Monitoring protein conformational changes using fluorescent nanoantennas. Nat Methods 2022; 19:71-80. [PMID: 34969985 DOI: 10.1038/s41592-021-01355-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 11/10/2021] [Indexed: 01/03/2023]
Abstract
Understanding the relationship between protein structural dynamics and function is crucial for both basic research and biotechnology. However, methods for studying the fast dynamics of structural changes are limited. Here, we introduce fluorescent nanoantennas as a spectroscopic technique to sense and report protein conformational changes through noncovalent dye-protein interactions. Using experiments and molecular simulations, we detect and characterize five distinct conformational states of intestinal alkaline phosphatase, including the transient enzyme-substrate complex. We also explored the universality of the nanoantenna strategy with another model protein, Protein G and its interaction with antibodies, and demonstrated a rapid screening strategy to identify efficient nanoantennas. These versatile nanoantennas can be used with diverse dyes to monitor small and large conformational changes, suggesting that they could be used to characterize diverse protein movements or in high-throughput screening applications.
Collapse
|
15
|
Jonely M, Singh RK, Donelick HM, Bass BL, Noriega R. Loquacious-PD regulates the terminus-dependent molecular recognition of Dicer-2 toward double-stranded RNA. Chem Commun (Camb) 2021; 57:10879-10882. [PMID: 34590626 DOI: 10.1039/d1cc03843e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dicer-2 cleaves double-stranded RNA into siRNAs in a terminus-dependent manner as part of D. melanogaster's RNA interference pathway. Using ultrafast fluorescence, we probe the local environment of chromophores at the dsRNA terminus upon binding by Dicer-2 and interrogate the effects of Loquacious-PD, an accessory protein. We find substrate-selective modes of molecular recognition that distinguish between blunt and 3'overhang termini, but whose differences are greatly reduced by Loquacious-PD. These results connect the molecular recognition properties of Dicer-2 to its selective processing of dsRNAs with different termini and to its need for Loquacious-PD to efficiently produce endogenous siRNAs.
Collapse
Affiliation(s)
- McKenzie Jonely
- University of Utah, Department of Chemistry, Salt Lake City, UT 84112, USA.
| | - Raushan K Singh
- University of Utah, Department of Biochemistry, Salt Lake City, UT 84112, USA
| | - Helen M Donelick
- University of Utah, Department of Biochemistry, Salt Lake City, UT 84112, USA
| | - Brenda L Bass
- University of Utah, Department of Biochemistry, Salt Lake City, UT 84112, USA
| | - Rodrigo Noriega
- University of Utah, Department of Chemistry, Salt Lake City, UT 84112, USA.
| |
Collapse
|
16
|
Sorour MI, Kistler KA, Marcus AH, Matsika S. Accurate Modeling of Excitonic Coupling in Cyanine Dye Cy3. J Phys Chem A 2021; 125:7852-7866. [PMID: 34494437 DOI: 10.1021/acs.jpca.1c05556] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Accurate modeling of excitonic coupling in molecules is of great importance for inferring the structures and dynamics of coupled systems. Cy3 is a cyanine dye that is widely used in molecular spectroscopy. Its well-separated excitation bands, high sensitivity to the surroundings, and the high energy transfer efficiency make it a perfect choice for excitonic coupling experiments. Many methods have been used to model the excitonic coupling in molecules with varying degrees of accuracy. The atomic transition charge model offers a high-accuracy and cost-effective way to calculating the excitonic coupling. The main focus of this work is to generate high-quality atomic transition charges that can accurately model the Cy3 dye's transition density. The transition density of the excitation of the ground to first excited state is calculated using configuration-interaction singles and time-dependent density functional theory and is benchmarked against the algebraic diagrammatic construction method. Using the transition density we derived the atomic transition charges using two approaches: Mulliken population analysis and charges fitted to the transition electrostatic potential. The quality of the charges is examined, and their ability to accurately calculate the excitonic coupling is assessed via comparison to experimental data of an artificial biscyanine construct. Theoretical comparisons to the supermolecule ab initio couplings and the widely used point-dipole approximation are also made. Results show that using the transition electrostatic potential is a reliable approach for generating the transition atomic charges. A high-quality set of charges, that can be used to model the Cy3 dye dimer excitonic coupling with high-accuracy and a reasonable computational cost, is obtained.
Collapse
Affiliation(s)
- Mohammed I Sorour
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Kurt A Kistler
- Department of Chemistry, Brandywine Campus, The Pennsylvania State University, Media, Pennsylvania 19063, United States
| | - Andrew H Marcus
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
17
|
Probing DNA-protein interactions using single-molecule diffusivity contrast. BIOPHYSICAL REPORTS 2021; 1:100009. [PMID: 36425309 PMCID: PMC9680706 DOI: 10.1016/j.bpr.2021.100009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/20/2021] [Indexed: 11/28/2022]
Abstract
Single-molecule fluorescence investigations of protein-nucleic acid interactions require robust means to identify the binding state of individual substrate molecules in real time. Here, we show that diffusivity contrast, widely used in fluorescence correlation spectroscopy at the ensemble level and in single-particle tracking on individual (but slowly diffusing) species, can be used as a general readout to determine the binding state of single DNA molecules with unlabeled proteins in solution. We first describe the technical basis of drift-free single-molecule diffusivity measurements in an anti-Brownian electrokinetic trap. We then cross-validate our method with protein-induced fluorescence enhancement, a popular technique to detect protein binding on nucleic acid substrates with single-molecule sensitivity. We extend an existing hydrodynamic modeling framework to link measured diffusivity to particular DNA-protein structures and obtain good agreement between the measured and predicted diffusivity values. Finally, we show that combining diffusivity contrast with protein-induced fluorescence enhancement allows simultaneous mapping of binding stoichiometry and location on individual DNA-protein complexes, potentially enhancing single-molecule views of relevant biophysical processes.
Collapse
|
18
|
Hong JY, Cassel J, Yang J, Lin H, Weiser BP. High-Throughput Screening Identifies Ascorbyl Palmitate as a SIRT2 Deacetylase and Defatty-Acylase Inhibitor. ChemMedChem 2021; 16:3484-3494. [PMID: 34382754 DOI: 10.1002/cmdc.202100343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/14/2021] [Indexed: 11/10/2022]
Abstract
Small-molecule inhibitors of the human sirtuin SIRT2 are being developed because of their therapeutic potential in a variety of diseases. Here, we developed a high-throughput screen to identify novel SIRT2 inhibitors using a fluorescent SIRT2 probe, 1-aminoanthracene (AMA). AMA has high fluorescence when bound to SIRT2, and its fluorescence reduces >10-fold when it is displaced from SIRT2 by other ligands. We used this property of AMA to screen a library of known bioactive compounds for SIRT2 binding and discovered two known pharmaceutical compounds that bind SIRT2 with Kd values in the low μM range, ascorbyl palmitate and pictilisib. Both compounds inhibit the deacetylase and defatty-acylase activities of SIRT2. While pictilisib has selectivity for SIRT2, ascorbyl palmitate also inhibits the enzymatic activities of SIRT1 and SIRT6. Finally, we show that ascorbyl palmitate inhibits SIRT2 deacetylase and defatty-acylase activities in cells, and SIRT2 inhibition by ascorbyl palmitate contributes to the cytotoxicity of the compound. Our work discovered novel SIRT2 deacylase inhibitors and presents a screening approach that can be applied on a larger scale.
Collapse
Affiliation(s)
- Jun Young Hong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Joel Cassel
- Molecular Screening & Protein Expression Facility, Wistar Institute, Philadelphia, PA, 19104, USA
| | - Jie Yang
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08084, USA
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Brian P Weiser
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08084, USA
| |
Collapse
|
19
|
Kozlov AG, Lohman TM. Probing E. coli SSB protein-DNA topology by reversing DNA backbone polarity. Biophys J 2021; 120:1522-1533. [PMID: 33636169 PMCID: PMC8105733 DOI: 10.1016/j.bpj.2021.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli single-strand (ss) DNA binding protein (SSB) is an essential protein that binds ssDNA intermediates formed during genome maintenance. SSB homotetramers bind ssDNA in two major modes, differing in occluded site size and cooperativity. The (SSB)35 mode in which ssDNA wraps, on average, around two subunits is favored at low [NaCl] and high SSB/DNA ratios and displays high unlimited, nearest-neighbor cooperativity forming long protein clusters. The (SSB)65 mode, in which ssDNA wraps completely around four subunits of the tetramer, is favored at higher [NaCl] (>200 mM) and displays limited low cooperativity. Crystal structures of E. coli SSB and Plasmodium falciparum SSB show ssDNA bound to the SSB subunits (OB folds) with opposite polarities of the sugar phosphate backbones. To investigate whether SSB subunits show a polarity preference for binding ssDNA, we examined EcSSB and PfSSB binding to a series of (dT)70 constructs in which the backbone polarity was switched in the middle of the DNA by incorporating a reverse-polarity (RP) phosphodiester linkage, either 3'-3' or 5'-5'. We find only minor effects on the DNA binding properties for these RP constructs, although (dT)70 with a 3'-3' polarity switch shows decreased affinity for EcSSB in the (SSB)65 mode and lower cooperativity in the (SSB)35 mode. However, (dT)70 in which every phosphodiester linkage is reversed does not form a completely wrapped (SSB)65 mode but, rather, binds EcSSB in the (SSB)35 mode with little cooperativity. In contrast, PfSSB, which binds ssDNA only in an (SSB)65 mode and with opposite backbone polarity and different topology, shows little effect of backbone polarity on its DNA binding properties. We present structural models suggesting that strict backbone polarity can be maintained for ssDNA binding to the individual OB folds if there is a change in ssDNA wrapping topology of the RP ssDNA.
Collapse
Affiliation(s)
- Alexander G Kozlov
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, Missouri.
| |
Collapse
|
20
|
Singh RK, Jonely M, Leslie E, Rejali NA, Noriega R, Bass BL. Transient kinetic studies of the antiviral Drosophila Dicer-2 reveal roles of ATP in self-nonself discrimination. eLife 2021; 10:65810. [PMID: 33787495 PMCID: PMC8079148 DOI: 10.7554/elife.65810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/31/2021] [Indexed: 11/25/2022] Open
Abstract
Some RIG-I-like receptors (RLRs) discriminate viral and cellular dsRNA by their termini, and Drosophila melanogaster Dicer-2 (dmDcr-2) differentially processes dsRNA with blunt or 2 nucleotide 3’-overhanging termini. We investigated the transient kinetic mechanism of the dmDcr-2 reaction using a rapid reaction stopped-flow technique and time-resolved fluorescence spectroscopy. Indeed, we found that ATP binding to dmDcr-2’s helicase domain impacts association and dissociation kinetics of dsRNA in a termini-dependent manner, revealing termini-dependent discrimination of dsRNA on a biologically relevant time scale (seconds). ATP hydrolysis promotes transient unwinding of dsRNA termini followed by slow rewinding, and directional translocation of the enzyme to the cleavage site. Time-resolved fluorescence anisotropy reveals a nucleotide-dependent modulation in conformational fluctuations (nanoseconds) of the helicase and Platform–PAZ domains that is correlated with termini-dependent dsRNA cleavage. Our study offers a kinetic framework for comparison to other Dicers, as well as all members of the RLRs involved in innate immunity.
Collapse
Affiliation(s)
- Raushan K Singh
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - McKenzie Jonely
- Department of Chemistry, University of Utah, Salt Lake City, United States
| | - Evan Leslie
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - Nick A Rejali
- Department of Pathology, University of Utah, Salt Lake City, United States
| | - Rodrigo Noriega
- Department of Chemistry, University of Utah, Salt Lake City, United States
| | - Brenda L Bass
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| |
Collapse
|
21
|
Sreenivasan R, Shkel IA, Chhabra M, Drennan A, Heitkamp S, Wang HC, Sridevi MA, Plaskon D, McNerney C, Callies K, Cimperman CK, Record MT. Fluorescence-Detected Conformational Changes in Duplex DNA in Open Complex Formation by Escherichia coli RNA Polymerase: Upstream Wrapping and Downstream Bending Precede Clamp Opening and Insertion of the Downstream Duplex. Biochemistry 2020; 59:1565-1581. [PMID: 32216369 DOI: 10.1021/acs.biochem.0c00098] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
FRET (fluorescence resonance energy transfer) between far-upstream (-100) and downstream (+14) cyanine dyes (Cy3, Cy5) showed extensive bending and wrapping of λPR promoter DNA on Escherichia coli RNA polymerase (RNAP) in closed and open complexes (CC and OC, respectively). Here we determine the kinetics and mechanism of DNA bending and wrapping by FRET and of formation of RNAP contacts with -100 and +14 DNA by single-dye protein-induced fluorescence enhancement (PIFE). FRET and PIFE kinetics exhibit two phases: rapidly reversible steps forming a CC ensemble ({CC}) of four intermediates [initial (RPC), early (I1E), mid (I1M), and late (I1L)], followed by conversion of {CC} to OC via I1L. FRET and PIFE are first observed for I1E, not RPc. FRET and PIFE together reveal large-scale bending and wrapping of upstream and downstream DNA as RPC advances to I1E, decreasing the Cy3-Cy5 distance to ∼75 Å and making RNAP-DNA contacts at -100 and +14. We propose that far-upstream DNA wraps on the upper β'-clamp while downstream DNA contacts the top of the β-pincer in I1E. Converting I1E to I1M (∼1 s time scale) reduces FRET efficiency with little change in -100 or +14 PIFE, interpreted as clamp opening that moves far-upstream DNA (on β') away from downstream DNA (on β) to increase the Cy3-Cy5 distance by ∼14 Å. FRET increases greatly in converting I1M to I1L, indicating bending of downstream duplex DNA into the clamp and clamp closing to reduce the Cy3-Cy5 distance by ∼21 Å. In the subsequent rate-determining DNA-opening step, in which the clamp may also open, I1L is converted to the initial unstable OC (I2). Implications for facilitation of CC-to-OC isomerization by upstream DNA and upstream binding, DNA-bending transcription activators are discussed.
Collapse
|
22
|
Kumari N, Ciuba MA, Levitus M. Photophysical properties of the hemicyanine Dy-630 and its potential as a single-molecule fluorescent probe for biophysical applications. Methods Appl Fluoresc 2019; 8:015004. [PMID: 31585443 DOI: 10.1088/2050-6120/ab4b0d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Protein-induced fluorescence enhancement (PIFE) is an increasingly used approach to investigate DNA-protein interactions at the single molecule level. The optimal probe for this type of application is highly photostable, has a high absorption extinction coefficient, and has a moderate fluorescence quantum yield that increases significantly when the dye is in close proximity to a large macromolecule such as a protein. So far, the green-absorbing symmetric cyanine known as Cy3 has been the probe of choice in this field because the magnitude of the increase observed upon protein binding (usually 2-4 -fold) is large enough to allow for the analysis of protein dynamics on the inherently noisy single-molecule signals. Here, we report the characterization of the photophysical properties of the red-absorbing hemicyanine dye Dy-630 in the context of its potential application as a single-molecule PIFE probe. The behavior of Dy-630 in solution is similar to that of Cy3; the fluorescence quantum yield and lifetime of Dy-630 increase with increasing viscosity, and decrease with increasing temperature indicating the existence of an activated nonradiative process that depopulates the singlet state of the dye. As in the case of Cy3, the results of transient spectroscopy experiments are consistent with the formation of a photoisomer that reverts to the ground state thermally in the microsecond timescale. Unfortunately, experiments with DNA samples paint a more complex scenario. As in the case of Cy3, the fluorescence quantum yield of Dy-630 increases significantly when the dye interacts with the DNA bases, but in the case of Dy-630 attachment to DNA results in an already long fluorescence lifetime that does not provide a significant window for the protein-induced enhancement observed with Cy3. Although we show that Dy-630 may not be well-suited for PIFE, our results shed light on the optimal design principles for probes for PIFE applications.
Collapse
|
23
|
Kubánková M, Chambers JE, Huber RG, Bond PJ, Marciniak SJ, Kuimova MK. Linker length affects photostability of protein-targeted sensor of cellular microviscosity. Methods Appl Fluoresc 2019; 7:044004. [DOI: 10.1088/2050-6120/ab481f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|